A Connection for Born Geometry

Felix J. Rudolph

Max-Planck-Institut für Physik, Munich

Based on 1706.07089 & 1806.05992 With Laurent Freidel & David Svoboda

Corfu Summer Institute
Dualities and Generalized Geometries
September 13, 2018

Physics & Geometry

Geometrical Structures

symplectic geometry
Riemannian geometry
geometry of principle bundles

Physical Concepts

classical & quantum mechanics general relativity gauge theories

Physics & Geometry

Geometrical Structures

symplectic geometry
Riemannian geometry
geometry of principle bundles

Physical Concepts

classical & quantum mechanics general relativity gauge theories

What is the geometry for Quantum Gravity?

Context

- Consider possible geometry for "quantum gravity"
- Motivated by principles from GR and QM
- String Theory naturally lives in such geometry
- Study geometric objects such as connections, curvature, fluxes, ...

Outline

- I. Introduction: Context & Motivation
- 2. What is Born Geometry?
- 3. Para-Hermitian Geometry & D-Structures
- 4. Born Connection
- 5. Outlook

What is Born Geometry?

Doubled Space: 2d-dimensional manifold ${\mathcal P}$

- Doubled Space: 2d-dimensional manifold ${\mathcal P}$ motivated by
 - ightharpoonup Doubled target space (DFT) $X = \begin{pmatrix} x \\ \tilde{x} \end{pmatrix}$

- Doubled Space: 2d-dimensional manifold ${\mathcal P}$ motivated by
 - → Doubled target space (DFT) $X = \begin{pmatrix} x \\ \tilde{x} \end{pmatrix}$ $\tilde{x}' = p$

$$X = \begin{pmatrix} x \\ \tilde{x} \end{pmatrix}$$

$$\tilde{x}' = p$$

Phase space of string

$$\operatorname{Ham}(x,p) = \dot{x} \cdot p - \operatorname{Lag} = \frac{1}{2} Z^T \mathcal{H} Z$$
 $Z = \begin{pmatrix} x' \\ p \end{pmatrix}$

$$Z = \begin{pmatrix} x' \\ p \end{pmatrix}$$

- Doubled Space: 2d-dimensional manifold ${\mathcal P}$ motivated by
 - ullet Doubled target space (DFT) $X = \begin{pmatrix} x \\ \tilde{x} \end{pmatrix}$ $\tilde{x}' = p$
 - Phase space of string

$$\operatorname{Ham}(x,p) = \dot{x} \cdot p - \operatorname{Lag} = \frac{1}{2} Z^T \mathcal{H} Z$$
 $Z = \begin{pmatrix} x' \\ p \end{pmatrix}$

Three compatible structures on ${\mathcal P}$

- Generalized metric ${\cal H}$
- Neutral metric η
- (Almost) Symplectic form $\,\,\omega$

- Doubled Space: 2d-dimensional manifold ${\mathcal P}$ motivated by
 - ightharpoonup Doubled target space (DFT) $X = \begin{pmatrix} x \\ \tilde{x} \end{pmatrix}$ $\tilde{x}' = p$
 - Phase space of string

$$\operatorname{Ham}(x,p) = \dot{x} \cdot p - \operatorname{Lag} = \frac{1}{2} Z^T \mathcal{H} Z$$
 $Z = \begin{pmatrix} x' \\ p \end{pmatrix}$

Three compatible structures on ${\mathcal P}$

- Generalized metric ${\cal H}$
- Neutral metric $\,\eta\,$
- (Almost) Symplectic form $\,\,\omega$
- Para-Hermitian manifold + generalized metric

String Theory

String Theory naturally lives in a Born geometry.

- Doubled Formalism
 - World sheet: Doubled String Sigma Model (Tseytlin)
 - Target space: Double Field Theory (DFT)

$$X = \begin{pmatrix} x \\ \tilde{x} \end{pmatrix}$$

with dual coordinates defined via $\tilde{x}'=p$

Doubled String Sigma Model

includes topological term

$$S_{\text{doubled}} = \frac{1}{2} \int d\tau d\sigma \left[(\eta_{MN} + \omega_{MN}) \partial_{\tau} X^{M} \partial_{\sigma} X^{N} - \mathcal{H}_{MN} \partial_{\sigma} X^{M} \partial_{\sigma} X^{N} \right]$$

[Tseytlin '90; Giveon, Rocek '91; Hull '06]

String sigma model action containing all three structures

- ightharpoonup Global O(d,d) symmetry manifest
- → Not Lorentz invariant impose as constraint
- Interpret target space as DFT / Born geometry

Double Field Theory

[Siegel '93; Hull & Zwiebach '09]

Doubled Target Space

Generalized Ricci scalar

$$S_{\mathrm{DFT}} = \int \mathrm{d}^{2d} X e^{-2\Phi} \, \mathcal{R}(\mathcal{H}, \Phi)$$

Unification of background fields in target space

$$\mathcal{H} = \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix}$$

- Unification of local symmetries (diffeos & gauge trafos)
 - Closure of symmetry algebra gives constraint

Connections

Riemann vs Born

Differential geometry Riemannian manifold "Generalized" geometry
Born manifold

Levi-Civita Connection

- Recall: Connection ∇ in Riemannian geometry (M,g)
 - ightharpoonup Metric compatible: $\nabla_X g = 0$

Lie bracket

Torsion-free: $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y] = 0$

Levi-Civita Connection

- Recall: Connection ∇ in Riemannian geometry (M,g)
 - ightharpoonup Metric compatible: $\nabla_X g = 0$

- Torsion-free: $T(X,Y) = \nabla_X Y \nabla_Y X [X,Y] = 0$
- Such a connection always exists and is unique
 - → Koszul formula:

$$g(\nabla_X Y,Z) = \frac{1}{2} \Big\{ X[g(Y,Z)] + Y[g(Z,X)] - Z[g(X,Y)] \\ + g([X,Y],Z) - g([Y,Z],X) - g([X,Z],Y) \Big\}$$
 ivita

Levi-Civita connection

Riemann vs Born

Differential geometry Riemannian manifold

- ullet Riemannian manifold M
- Metric g

- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry
Born manifold

The Unique Connection Problem

- In DFT one only considers the structures (η,\mathcal{H}) on \mathcal{P}
- Compatibility with (η, \mathcal{H}) and vanishing (generalized) torsion \mathcal{T} is not enough to fix a unique connection!
- Certain components remain undetermined

The Unique Connection Problem

- In DFT one only considers the structures (η,\mathcal{H}) on \mathcal{P}
- Compatibility with (η, \mathcal{H}) and vanishing (generalized) torsion \mathcal{T} is not enough to fix a unique connection!
- Certain components remain undetermined
- But: Generalized Ricci scalar in action is fully determined
- Issues may arise for higher order corrections
- Unsatisfactory hints at missing ingredient

Towards the Born Connection

- Can be fixed in Born geometry!
- Missing ingredient is ω
- First need to understand **para-Hermitian** sector (η, ω) of Born geometry

Need generalized differentiable structure

Para-Hermitian Geometry

Para-Complex Manifold

- 2d-dimensional para-complex manifold (\mathcal{P}, K)
- Para-complex structure $K^2=+\mathbb{1}$

$$K^2 = +1$$

Eigenbundles (of equal rank)

$$K\Big|_{L}=+1$$
 $K\Big|_{\tilde{L}}=-1$ $P, \tilde{P}=\frac{1}{2}(\mathbb{1}\pm K)$

- Splitting of tangent space $K: T\mathcal{P} = L \oplus \tilde{L}$
- Integrability of L and \tilde{L} is independent

Para-Hermitian Manifold

- Include pseudo-Riemannian metric $\eta \iff (\mathcal{P}, \eta, K)$
- Skew-orthogonality: $K^{\mathsf{T}}\eta K = -\eta$
- Split signature (d,d) since eigenbundles have same rank
- Fundamental form $\omega = \eta K$ (almost symplectic)

$$\omega = \eta K = -K^{\mathsf{T}} \eta = -\omega^{\mathsf{T}}$$

ullet Eigenbundles L and $ilde{L}$ are isotropic w.r.t η and ω

Riemann vs Born

Differential geometry Riemannian manifold

- ullet Riemannian manifold M
- Metric g

- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry
Born manifold

- para-Hermitian manifold ${\mathcal P}$
- Structure (η, K)

Differentiable Structure

- Two main notions of differentiation on a smooth manifold
 - ightharpoonup Lie derivative \mathcal{L}_X always exists
 - ightharpoonup Covariant derivative ∇_X need connection
- For vector fields

 Lie bracket

$$\mathcal{L}_X Y = [X, Y]$$

Differentiable Structure

- Two main notions of differentiation on a smooth manifold
 - ightharpoonup Lie derivative \mathcal{L}_X always exists
 - ightharpoonup Covariant derivative ∇_X need connection
- For vector fields

 Lie bracket

$$\mathcal{L}_X Y = [X, Y] = \nabla_X Y - \nabla_Y X$$

any torsion-free connection

Riemann vs Born

Differential geometry Riemannian manifold

- Riemannian manifold ${\cal M}$
- Metric g
- Differentiable structure
 - Lie derivative \mathcal{L}_X
 - Lie bracket [,]
- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry Born manifold

- para-Hermitian manifold ${\mathcal P}$
- Structure (η, K)

Generalized Lie derivative

$$\mathbb{L}_X Y = [\![X,Y]\!]$$

D-bracket

- Bracket operation $[\![\ , \]\!]$ for vector fields on $T\mathcal{P}$ with
 - lacktriangleq Leibniz property $[\![X,fY]\!]=f[\![X,Y]\!]+X[f]Y$
 - Compatible with the metric:

$$\mathbb{L}_X \eta = 0$$

not true in general for Lie derivative

- Compatible with $K \implies$ generalized integrability
 - lacktriangle Eigenbundles L and \tilde{L} are Dirac structures (involutive)

- Compatible with $K \implies$ generalized integrability
 - lacktriangle Eigenbundles L and \widetilde{L} are Dirac structures (involutive)

D-structure

$$(\mathcal{P}, \eta, K, \llbracket \,, \, \rrbracket)$$

D-bracket $[\![\ , \]\!]$

- Leibniz property
- Compatible with η
- ullet Compatible with K

[Freidel, FJR, Svoboda '18]

Riemann vs Born

Differential geometry Riemannian manifold

- Riemannian manifold ${\cal M}$
- Metric g
- Differentiable structure
 - Lie derivative \mathcal{L}_X
 - Lie bracket [,]
- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry Born manifold

- para-Hermitian manifold ${\cal P}$
- Structure (η, K)
- D-structure
 - Gen. Lie derivative \mathbb{L}_X
 - D-bracket [,]

• Can define a D-bracket for any metric-compatible connection ∇

$$\eta(\llbracket X, Y \rrbracket^{\nabla}, Z) = \eta(\nabla_X Y - \nabla_Y X, Z) + \eta(\nabla_Z X, Y)$$

 Can define a D-bracket for any metric-compatible connection ∇

$$\eta(\llbracket X, Y \rrbracket^{\nabla}, Z) = \eta(\nabla_X Y - \nabla_Y X, Z) + \eta(\nabla_Z X, Y)$$

• Among all D-brackets, there is a **canonical** one which projects onto the Lie bracket when restricted to L and \tilde{L}

$$[P(X), P(Y)] = P([P(X), P(Y)])$$

$$[\![\tilde{P}(X), \tilde{P}(Y)]\!] = \tilde{P}([\tilde{P}(X), \tilde{P}(Y)])$$

D-structure

The canonical D-bracket is unique:

Proposition

On a para-Hermitian manifold (\mathcal{P},η,K) there exists a unique canonical D-bracket $[\![\ ,\]\!]^c$ with the above properties (Leibniz, compatibility with η and K) and which projects onto the Lie bracket $[\![\ ,\]\!]$ when restricted to L and \tilde{L} .

Note:

The bracket is unique but the connection is not, i.e. there are different connections giving the canonical bracket.

Generalized Torsion

- Ordinary torsion $T^{\nabla}(X,Y) = \nabla_X Y \nabla_Y X [X,Y]$
 - → Difference between brackets $[X,Y]^{\nabla} := \nabla_X Y \nabla_Y X$

Generalized Torsion

- Ordinary torsion $T^{\nabla}(X,Y) = \nabla_X Y \nabla_Y X [X,Y]$
 - **→** Difference between brackets $[X,Y]^{\nabla} := \nabla_X Y \nabla_Y X$

Generalized torsion

$$\mathcal{T}^{\nabla}(X,Y) = [\![X,Y]\!]^{\nabla} - [\![X,Y]\!]^c$$

Defined in terms of the unique canonical D-bracket

Riemann vs Born

Differential geometry Riemannian manifold

- ullet Riemannian manifold M
- Metric g
- Differentiable structure
 - Lie derivative \mathcal{L}_X
 - Lie bracket [,]
- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry Born manifold

- para-Hermitian manifold ${\cal P}$
- Structure (η, K)
- D-structure
 - Gen. Lie derivative \mathbb{L}_X
- Gen. torsion \mathcal{T}

Born Geometry

- Start from para-Hermitian manifold $(\mathcal{P}, \eta, \omega)$
- Include another metric $\mathcal{H} \implies (\mathcal{P}, \eta, \omega, \mathcal{H})$
 - Chiral structure $J=\eta^{-1}\mathcal{H}$ $J^2=+\mathbb{1}$

$$J^2 = +1$$

Proposition

Born Geometry is equivalent to a para-Hermitian structure (η, K) along with a choice of Riemannian metric g on L .

Riemann vs Born

Differential geometry Riemannian manifold

- Riemannian manifold ${\cal M}$
- Metric g
- Differentiable structure
 - Lie derivative \mathcal{L}_X
 - Lie bracket [,]
- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry Born manifold

- Born manifold \mathcal{P}
- Structures $(\eta, \omega, \mathcal{H})$
- D-structure
 - Gen. Lie derivative \mathbb{L}_X
 - D-bracket ▮, ▮
- Gen. torsion \mathcal{T}

• Connection compatible with Born geometry $(\mathcal{P}, \eta, \omega, \mathcal{H})$

$$\nabla^B \eta = \nabla^B \omega = \nabla^B \mathcal{H} = 0$$

Vanishing generalized torsion

$$\mathcal{T}^{\nabla^B} = 0$$

The Born connection exists and is unique!

(Like Levi-Civita connection for Riemannian geometry.)

Theorem (Freidel, FJR, Svoboda)

There exists a unique connection ∇^B compatible with the Born structure $(\eta,\omega,\mathcal{H})$ and with vanishing generalized torsion $\mathcal T$. It is given by

$$\nabla_X^{\mathrm{B}} Y = [\![X_-, Y_+]\!]_+^c + [\![X_+, Y_-]\!]_-^c + (K[\![X_+, KY_+]\!]_-^c)_+ + (K[\![X_-, KY_-]\!]_-^c)_-$$

where $X_{\pm}=\frac{1}{2}(\mathbb{1}\pm J)X$ are the projected components associated with the splitting of $T\mathcal{P}$ given by the chiral structure J .

$$\nabla_X^{\mathrm{B}} Y = [\![X_-, Y_+]\!]_+^c + [\![X_+, Y_-]\!]_-^c + (K[\![X_+, KY_+]\!]_-^c)_+ + (K[\![X_-, KY_-]\!]_-^c)_-$$

- Lagrangian subspaces
- Chiral subspaces

$$P_{\pm} = \frac{1}{2}(\mathbb{1} \pm J)$$

$$K: T\mathcal{P} = L \oplus \tilde{L}$$

$$J: T\mathcal{P} = C_+ \oplus C_-$$

$$X_{\pm} = P_{\pm}(X)$$

$$\nabla_X^{\mathrm{B}} Y = [X_-, Y_+]_+^c + [X_+, Y_-]_-^c + (K[X_+, KY_+]_-^c)_+ + (K[X_-, KY_-]_-^c)_-$$

- Born geometry analogue of Koszul formula for Levi-Civita connection
- No coincidence: (L,g) is a Riemannian vector bundle recalling P(X)=x

Projected Born Connection

- Born geometry analogue of Koszul formula for Levi-Civita connection
- No coincidence: (L,g) is a Riemannian vector bundle recalling P(X)=x

Theorem

The Born connection $\nabla^{\rm B}$ restricts on L to the Levi-Civita connection ∇^g of g

$$\nabla_{P(X)}^{\mathcal{B}} P(Y) = \nabla_x^g y$$

Riemann vs Born

Differential geometry Riemannian manifold

- Riemannian manifold M
- Metric g
- Differentiable structure
 - Lie derivative \mathcal{L}_X
 - Lie bracket [,]
- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry Born manifold

- Born manifold \mathcal{P}
- Structures $(\eta, \omega, \mathcal{H})$
- D-structure
 - Gen. Lie derivative \mathbb{L}_X
 - D-bracket ▮, ▮
- Structure compatibility
- Gen. torsion ${\mathcal T}$
- Born connection $abla^{
 m B}$

Outlook

Outlook

- Make relation to DFT precise
 - Include Dilaton: need weighted bundle (tensor density)
 - → Include Fluxes: obstruction to closure, integrability
- Generalized Fluxes in Born geometry
 - Twisted D-bracket: $[[,]] = [[,]]_0 + \mathcal{F}$
- Analogue of Riemann Normal Coordinates

• • •

Summary

- Born Geometry: possible geometry for Quantum Gravity
- para-Hermitian manifold + dynamical metric $(\mathcal{P}, \eta, \omega, \mathcal{H})$
- Generalized differentiable structure: D-bracket [,]
- Born Connection ∇^{B} : unique, torsion-free, compatible
- Reduces to Levi-Civita connection ∇^g on L

Extensions

Riemann vs Born

Differential geometry Riemannian manifold

- Riemannian manifold M
- Metric g
- Differentiable structure
 - Lie derivative \mathcal{L}_X
 - Lie bracket [,]
- Metric compatibility
- Torsion T
- Levi-Civita connection $abla^g$

"Generalized" geometry Born manifold

- Born manifold \mathcal{P}
- Structures $(\eta, \omega, \mathcal{H})$
- D-structure
 - Gen. Lie derivative \mathbb{L}_X
 - D-bracket ▮, ▮
- Structure compatibility
- Gen. torsion ${\mathcal T}$
- Born connection $abla^{
 m B}$

Born Geometry

Proposition

There always exists a frame $E \in GL(2d)$ in which the triple $(\eta, \omega, \mathcal{H})$ takes the form

$$\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \mathcal{H} = \begin{pmatrix} h & 0 \\ 0 & h^{-1} \end{pmatrix}.$$

- The frame E is only determined up to an ${\cal O}(d)$ trafo
- h is a constant metric on L
- Riemannian metric $g = e^{\mathsf{T}} h e^{\mathsf{T}}$

Structure Groups

$$Sp(2d) \cap O(d,d) \cap O(2d) = O(d)$$

Structure Groups

neutral metric η

Lorentz group

$$Sp(2d) \cap O(d,d) \cap O(2d) = O(d)$$

sympletic form $\,\omega\,$

dynamical metric ${\cal H}$

Generalized Kinematics & Dynamics for DFT

Generalization

- Generalization of geometry suitable for strings in a doubled space
- Kinematical structure encoded in (η, ω)
 - ightharpoonup Neutral metric $\eta \in O(d,d)$
 - ightharpoonup Symplectic form $\ \omega \in Sp(2d)$
- Dynamical d.o.f. in generalized metric $\; {\cal H}(g,B) \;$

Generalizations for DFT

- DFT is limit of Born geometry
- Right setup to allow for general $\,\eta$ and $\,\omega$
- Accommodate:
 - Geometric and non-geometric fluxes
 - Non-commutativity, non-associativity, non-geometry, ...

T-Duality

T-Duality

- What is T-duality?
 - lacktriangle Sigma model with two sets of fields $\,x^{\mu}\,$ and $\, ilde{x}_{\mu}\,$
 - Integrate out one or the other

$$\tilde{x}' = p = \dot{x}$$
 $x' = w = \dot{\tilde{x}}$

- Get T-duality related actions
- Canonical transformation on phase space
 - No need for compact dimensions or isometries

• Worldsheet symmetry (exchanges σ and τ)

$$\mathrm{d}x^{\mu} \to *\mathrm{d}x^{\mu}$$

Target space symmetry

chiral structure

$$X \to J(X)$$

Doubled string actions with manifest symmetry

