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Consider possible geometry for "quantum gravity"

Motivated by principles from GR and QM
String Theory naturally lives in such geometry

Study geometric objects such as connections, curvature,
fluxes, ...
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Doubled Space: 2d-dimensional manifold P - motivated by

~

Doubled target space (DFT) X = (i)

Phase space of string

1
Ham(xz,p) =z -p — Lag = §ZT’HZ

Three compatible structures on P
+ Generalized metric H
* Neutral metric 7)
* (Almost) Symplectic form W

Para-Hermitian manifold + generalized metric




String Theory

B

Doubled Formalism
World sheet: Doubled String Sigma Model (Tseytlin)

Target space: Double Field Theory (DFT)

with dual coordinates
defined via 7' = p




Doubled String Sigma Model

Sdoubled =

/ drdo [(nun +wnmn)0- XM 0, X — Hyn0e XM 0, X ]

1
2

[ Tseytlin "90; Giveon, Rocek "9 |; Hull '06]

String sigma model action containing all three structures
Global O(d, d) symmetry manifest
Not Lorentz invariant — impose as constraint

Interpret target space as DFT / Born geometry




Double Field Theory [Siegel '93; Hull & Zwiebach '09]

Doubled Target Space

SprT = /dZdX6_2(I) R(H, (I))

Unification of background fields in target space

Unification of local symmetries (diffeos & gauge trafos)

Closure of symmetry algebra gives constraint




Connections
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Levi-Civita Connection

T

Recall: Connection V in Riemannian geometry (M, g)
Metric compatible: Vxg =20 ’
Torsion-free: T(X,Y)=VxY —-VyX —[X,Y]=0

Such a connection always exists and is unique

Koszul formula:

o(VxY.2) = 2 { Xlg(¥. 2)] + Y[9(Z. X)] — Z[g(X, V)]

+9([X,Y),2) - g([Y, 2], X) - g([X, 2],) }




Riemann vs Born

Differential geometry
Riemannian manifold

Riemannian manifold M
Metric ¢

Metric compatibility
Torsion 1’
Levi-Civita connection VY




The Unique Connection Problem

In DFT one only considers the structures (7, ) on P

Compatibility with (1, ) and vanishing (generalized)
torsion 7 is not enough to fix a unique connection!

Certain components remain undetermined




The Unique Connection Problem
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In DFT one only considers the structures (7, ) on P

Compatibility with (1, ) and vanishing (generalized)
torsion 7 is not enough to fix a unique connection!

Certain components remain undetermined
But: Generalized Ricci scalar in action is fully determined
Issues may arise for higher order corrections

Unsatisfactory - hints at missing ingredient




Towards the Born Connection

Can be fixed in Born geometry!

Missing ingredient is @

First need to understand para-Hermitian sector (77, @)
of Born geometry




Para-Hermitian Geometry




Para-Complex Manifold

2d-dimensional para-complex manifold (P, K)
Para-complex structure

Eigenbundles (of equal rank)

Splitting of tangent space K : TP =L & L

~

Integrability of L and [ is independent




Para-Hermitian Manifold

Include pseudo-Riemannian metric 7 — _~ (P, n, K)

Skew-orthogonality: K 'nK = —n

Split signature (d,d) since eigenbundles have same rank

Fundamental form w = nK (almost symplectic)

~

Eigenbundles L and L areisotropicw.rt 77 and w
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Riemannian manifold M
Metric ¢

Metric compatibility
Torsion 1’
Levi-Civita connection VY
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Differentiable Structure

Two main notions of differentiation on a smooth manifold
Lie derivative L£Lx — always exists
Covariant derivative Vx — need connection

For vector fields -~ Lie bracket

LxY =[X,Y]
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Two main notions of differentiation on a smooth manifold
Lie derivative L£Lx — always exists
Covariant derivative Vx — need connection

For vector fields -~ Lie bracket

LxY =[X,Y]=VyY —VyX
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Riemannian manifold M
Metric ¢
Differentiable structure
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D-structure

Generalized Lie derivative

LY = [X,Y] ’

Bracket operation |, | for vector fields on TP with

Leibniz property [ X, fY] = f[X,Y] + X|f|Y

Compatible with the metric:

Lxn =0




D-structure

Compatible with K . generalized integrability

Eigenbundles [, and L are Dirac structures (involutive)

[L,L] C L
P[P(X),P(Y)] =0




D-structure

Compatible with K . generalized integrability

Eigenbundles [, and L are Dirac structures (involutive)

[L,L] C L
P[P(X),P(Y)] =0

D-structure

(P,m, K, [,

D-bracket [ , I
* Leibniz property

+ Compatible with 77 Freidel, FJR
+ Compatible with /X Svobocia | 8]
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D-structure

Can define a D-bracket for any metric-compatible
connection V

n([X, Y]V, 2) =n(VxY —Vy X, Z)+n(VzX,Y)




D-structure

Can define a D-bracket for any metric-compatible
connection V

n([X, Y]V, 2) =n(VxY —Vy X, Z)+n(VzX,Y)

Among all D-brackets, there is a canonical one which
projects onto the Lie bracket when restricted to L and [

/)
/)




D-structure [Freidel, F|R, Svoboda ' | 8]

The canonical D-bracket is unique:

Proposition

On a para-Hermitian manifold (P, 7, K) there exists a unique
canonical D-bracket [ , | with the above properties (Leibniz,
compatibility with 7 and /" ) and which projects onto the
Lie bracket | ; | when restricted to I, and L .

Note:
The bracket is unique but the connection is not, i.e. there
are different connections giving the canonical bracket.
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Generalized Torsion

Ordinary torsion 7TVY(X,Y)=VxY —VyX — [X,Y]

Difference between brackets [X,Y]Y :=VxY —Vy X

Generalized torsion

TV(X,Y) =[X,Y]Y - [X,Y]°

Defined in terms of the unique canonical D-bracket
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Born Geometry

Start from para-Hermitian manifold (P,n,w)

Include another metric H — - (P,n,w,H

Chiral structure J =1n"'H

Proposition

Born Geometry is equivalent to a para-Hermitian structure (77, K)
along with a choice of Riemannian metric £ on L .
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Born Connection [Freidel, FR, Svoboda 18]

* Connection compatible with Born geometry (P, n, w, H)

VPn=VPw=V"H =0

* Vanishing generalized torsion

TV =0




Born Connection

Theorem (Freidel, FJR, Svoboda)

There exists a unique connection VB compatible with the Born
structure (1), w, H) and with vanishing generalized torsion 7 .lt s
given by

V)B(Y — IIX—7Y-|—]]?|— + [X4, Y |2
+ (K[ X4, KYL )4 + (K[X_, KY_|°) -

where X, = %(1 + J)X are the projected components
associated with the splitting of /P given by the chiral structure J .




Born Connection

VY = [X_ Yi]§ + [Xy, Y]
+ (K[ Xy, KYL %) + (KX, KY_[9) -

Lagrangian subspaces K:TP=L&L

Chiral subspaces J:TP=CLaC_

Py = ()




Born Connection

VY = [X_ Yi]§ + [Xy, Y]
+ (K[ Xy, KYL %) + (KX, KY_[9) -

Born geometry analogue of Koszul formula for Levi-Civita
connection

No coincidence: (L, g) is a Riemannian vector bundle
recalling P(X) ==«




Projected Born Connection

Born geometry analogue of Koszul formula for Levi-Civita
connection

No coincidence: (L, g) is a Riemannian vector bundle
recalling P(X) =«

Theorem

The Born connection VE restricts on L to the Levi-Civita
connection VI of g

Vi) PY) =
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Outlook

Make relation to DFT precise
Include Dilaton: need weighted bundle (tensor density)
Include Fluxes: obstruction to closure, integrability

Generalized Fluxes in Born geometry

Twisted D-bracket: [, =1, Jo+F

Analogue of Riemann Normal Coordinates




Summary

Born Geometry: possible geometry for Quantum Gravity
para-Hermitian manifold + dynamical metric (P, n,w, H)

Generalized differentiable structure: D-bracket | , |

: B, . : :
Born Connection V : unique, torsion-free, compatible

Reduces to Levi-Civita connection V? on L
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Born Geometry

Proposition

There always exists a frame E € GL(2d) in which the
triple (77, W, H) takes the form

0 1 0 -1 h
77:(1 0)’ "":<1 0)’ Hz(o B!

The frame E is only determined up to an O(d) trafo
h is a constant metric on L

Riemannian metric g = e he




Structure Groups

Sp(2d) N O(d,d) N O(2d) = O(d)




Structure Groups

o=

Sp(2d) N O(d,d) N O(2d) = O(d)

> =




Generalized Kinematics &

Dynamics for DFT




Generalization

Generalization of geometry suitable for strings in a
doubled space

Kinematical structure encoded in (7, w)

Neutral metric 1 € O(d, d)
Symplectic form w € Sp(2d)

Dynamical d.o.f.in generalized metric H(yg, B)




Generalizations for DFT

DFT is limit of Born geometry
Right setup to allow for general 17 and w

Accommodate:

Geometric and non-geometric fluxes

Non-commutativity, non-associativity, non-geometry, ...




T-Duality



T-Duality

What is T-duality?
Sigma model with two sets of fields =" and 7,

Integrate out one or the other

T =p=2x T =w=2

Get T-duality related actions
Canonical transformation on phase space

No need for compact dimensions or isometries




T-Duality [Tseytlin '90, Duff '90, Siegel '93]

R

Worldsheet symmetry (exchanges o and 7)

doz* — xdzg*

Target space symmetry ’

X — J(X)

Doubled string actions with manifest symmetry







