The D-bracket 00 Twisted Bracket and Fluxes 000000 Discussion O

## Twisted D-bracket and Deformations of para-Kähler Manifolds

### David Svoboda

Perimeter Institute for Theoretical Physics

dsvoboda@perimeterinstitute.ca

## Generalized Geometry and Dualities, September 2018



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The D-bracket 00 Twisted Bracket and Fluxes 000000 Discussion O

## Papers

• Algebroid Structures on para-Hermitian manifolds (arXiv:1802.08180)



The D-bracket 00 Twisted Bracket and Fluxes 000000 Discussion O

### Papers

- Algebroid Structures on para-Hermitian manifolds (arXiv:1802.08180)
- $\bullet$  Generalised Kinematics for Double Field Theory (arXiv:1706.07089, joint w/ F. Rudolph and L. Freidel)

The D-bracket 00 Twisted Bracket and Fluxes 000000 Discussion O

### Papers

- Algebroid Structures on para-Hermitian manifolds (arXiv:1802.08180)
- Generalised Kinematics for Double Field Theory (arXiv:1706.07089, joint w/ F. Rudolph and L. Freidel)
- A Unique Connection for Born Geometry (arXiv:1806.05992, joint w/ F. Rudolph and L. Freidel)

| Para-Hermitian Geometry |  |
|-------------------------|--|
| •0                      |  |

Twisted Bracket and Fluxe 000000 Discussior O

## Para-Hermitian Geometry

• (*P*, η, *K*) :



| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Disc |
|-------------------------|---------------|----------------------------|------|
| •0                      | 00            | 000000                     | 0    |
|                         |               |                            |      |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# Para-Hermitian Geometry

•  $(\mathcal{P}, \eta, K)$  :  $\mathcal{P}$  2*n*-dimensional manifold,

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |
|                         |               |                            |            |

Para-Hermitian Geometry

•  $(\mathcal{P}, \eta, K)$  :  $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |
|                         |               |                            |            |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# Para-Hermitian Geometry

•  $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1},$ 

| Para-H | ermitian Ge | ometry |   | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|--------|-------------|--------|---|---------------|----------------------------|------------|
| •0     |             |        |   | 00            | 000000                     | 0          |
|        |             |        |   |               |                            |            |
| -      |             |        | ~ |               |                            |            |

### Para-Hermitian Geometry

•  $(\mathcal{P}, \eta, K) : \mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$ 

| Para-Hermitian Geometry |  | The D-bracket | Twisted Bracket and Fluxes | Discussion |   |
|-------------------------|--|---------------|----------------------------|------------|---|
| •0                      |  |               | 00                         | 000000     | 0 |
|                         |  |               |                            |            |   |
| D                       |  | <br>~         |                            |            |   |

- $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$
- Analogous to Hermitian geometry, except K is a para-Complex structure  $\longrightarrow$  real eigenbundles L,  $\tilde{L}$

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |
|                         |               |                            |            |

- $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$
- Analogous to Hermitian geometry, except K is a para-Complex structure  $\longrightarrow$  real eigenbundles L,  $\tilde{L}$

• Fundamental form  $\omega = \eta K$ ,  $d\omega = 0 \longrightarrow para-K\ddot{a}hler$  geometry

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |
|                         |               |                            |            |

- $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$
- Analogous to Hermitian geometry, except K is a para-Complex structure  $\longrightarrow$  real eigenbundles L,  $\tilde{L}$

- Fundamental form  $\omega = \eta K$ ,  $d\omega = 0 \longrightarrow para-K\ddot{a}hler$  geometry
- $L, \tilde{L}$  Lagrangians of  $\omega$ , isotropic w.r.t.  $\eta$

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |
|                         |               |                            |            |

- $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$
- Analogous to Hermitian geometry, except K is a para-Complex structure  $\longrightarrow$  real eigenbundles L,  $\tilde{L}$
- Fundamental form  $\omega = \eta K$ ,  $d\omega = 0 \longrightarrow para-K\ddot{a}hler$  geometry
- $L, \tilde{L}$  Lagrangians of  $\omega$ , isotropic w.r.t.  $\eta$
- In the frame  $(L, \tilde{L})$ , K takes the form

$$\mathcal{K} = egin{pmatrix} \mathbbm{1} & \mathbbm{0} \\ \mathbbm{0} & -\mathbbm{1} \end{pmatrix}$$

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

- $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$
- Analogous to Hermitian geometry, except K is a para-Complex structure  $\longrightarrow$  real eigenbundles L,  $\tilde{L}$
- Fundamental form  $\omega = \eta K$ ,  $d\omega = 0 \longrightarrow para-K\ddot{a}hler$  geometry
- $L, \tilde{L}$  Lagrangians of  $\omega$ , isotropic w.r.t.  $\eta$
- In the frame  $(L, \tilde{L})$ , K takes the form

$${\cal K}=egin{pmatrix} \mathbbm{1}&0\0&-\mathbbm{1} \end{pmatrix}$$

• L and  $\tilde{L}$  in general need not be integrable and integrability is independent

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| •0                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

- $(\mathcal{P}, \eta, K)$  : $\mathcal{P}$  2*n*-dimensional manifold,  $\eta$  signature (n, n) metric,  $K \in \text{End}(T\mathcal{P}), K^2 = \mathbb{1}, \eta(K \cdot, K \cdot) = -\eta$
- Analogous to Hermitian geometry, except K is a para-Complex structure  $\longrightarrow$  real eigenbundles L,  $\tilde{L}$
- Fundamental form  $\omega = \eta K$ ,  $d\omega = 0 \longrightarrow para-K\ddot{a}hler$  geometry
- $L, \tilde{L}$  Lagrangians of  $\omega$ , isotropic w.r.t.  $\eta$
- In the frame  $(L, \tilde{L})$ , K takes the form

$$\mathcal{K} = \begin{pmatrix} \mathbb{1} & \mathbf{0} \\ \mathbf{0} & -\mathbb{1} \end{pmatrix}$$

- L and  $\tilde{L}$  in general need not be integrable and integrability is independent
- For our applications we demand that *L* is integrable → *P* is foliated by Space-time leaves: *P* = ∪<sub>i</sub> *M*<sub>i</sub>

The D-bracket

Twisted Bracket and Fluxes 000000 Discussion O



| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | •0            | 000000                     | 0          |
|                         |               |                            |            |

Given an (almost) para-Hermitian manifold, we define the D-bracket [[ , ]] by the following properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | •0            | 000000                     | 0          |
|                         |               |                            |            |

Given an (almost) para-Hermitian manifold, we define the D-bracket [[ , ]] by the following properties

Leibniz property

 $\llbracket X, fY \rrbracket = f\llbracket X, Y \rrbracket + X[f]Y,$ 



| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | •0            | 000000                     | 0          |
|                         |               |                            |            |

Given an (almost) para-Hermitian manifold, we define the D-bracket [[ , ]] by the following properties

• Leibniz property

$$\llbracket X, fY \rrbracket = f\llbracket X, Y \rrbracket + X[f]Y,$$

• Compatibility with  $\eta$ 

$$X[\eta(Y,Z)] = \eta(\llbracket X, Y \rrbracket, Z) + \eta(Y,\llbracket X, Z \rrbracket)$$
  
$$\eta(Y,\llbracket X, X \rrbracket) = \eta(\llbracket Y, X \rrbracket, X),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | •0            | 000000                     | 0          |
|                         |               |                            |            |

Given an (almost) para-Hermitian manifold, we define the D-bracket [[ , ]] by the following properties

Leibniz property

$$\llbracket X, fY \rrbracket = f\llbracket X, Y \rrbracket + X[f]Y,$$

 $\bullet$  Compatibility with  $\eta$ 

$$\begin{split} &X[\eta(Y,Z)] = \eta(\llbracket X, Y \rrbracket, Z) + \eta(Y,\llbracket X, Z \rrbracket) \\ &\eta(Y,\llbracket X, X \rrbracket) = \eta(\llbracket Y, X \rrbracket, X), \end{split}$$

• Compatibility with K: vanishing generalized Nijenhuis tensor

$$\mathcal{N}_{\mathcal{K}} = \llbracket X, Y \rrbracket + \llbracket \mathcal{K}X, \mathcal{K}Y \rrbracket - \mathcal{K} (\llbracket \mathcal{K}X, Y \rrbracket + \llbracket X, \mathcal{K}Y \rrbracket) = 0.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussio |
|-------------------------|---------------|----------------------------|-----------|
| 00                      | •0            | 000000                     | 0         |
|                         |               |                            |           |

Given an (almost) para-Hermitian manifold, we define the D-bracket [[ , ]] by the following properties

Leibniz property

$$\llbracket X, fY \rrbracket = f\llbracket X, Y \rrbracket + X[f]Y,$$

 $\bullet$  Compatibility with  $\eta$ 

$$\begin{split} & X[\eta(Y,Z)] = \eta(\llbracket X, Y \rrbracket, Z) + \eta(Y,\llbracket X, Z \rrbracket) \\ & \eta(Y,\llbracket X, X \rrbracket) = \eta(\llbracket Y, X \rrbracket, X), \end{split}$$

• Compatibility with K: vanishing generalized Nijenhuis tensor

$$\mathcal{N}_{\mathcal{K}} = \llbracket X, Y \rrbracket + \llbracket \mathcal{K}X, \mathcal{K}Y \rrbracket - \mathcal{K} \bigl(\llbracket \mathcal{K}X, Y \rrbracket + \llbracket X, \mathcal{K}Y \rrbracket \bigr) = 0.$$

• Relationship with the Lie bracket

$$\llbracket PX, PY \rrbracket = P([PX, PY]),$$
  
$$\llbracket \tilde{P}X, \tilde{P}Y \rrbracket = \tilde{P}([\tilde{P}X, \tilde{P}Y]),$$

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 0.            | 000000                     | 0          |
|                         |               |                            |            |
| The D-bracket           |               |                            |            |

# Theorem (Freidel, Rudolph, DS)

A unique D-bracket exists on any almost para-Hermitian manifold and is given by the formula

$$\eta(\llbracket X, Y \rrbracket, Z) = \eta(\nabla_X^c Y - \nabla_Y^c X, Z) + \eta(\nabla_X^c Z, Y),$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where  $\nabla_X^c Y = \mathring{\nabla}_X Y + \frac{1}{2} K(\mathring{\nabla}_X K) Y$ ,  $\mathring{\nabla}$  being the Levi-Civita connection of  $\eta$ .

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |
|                         |               |                            |            |

#### Theorem (Freidel, Rudolph, DS)

A unique D-bracket exists on any almost para-Hermitian manifold and is given by the formula

$$\eta(\llbracket X, Y \rrbracket, Z) = \eta(\nabla_X^c Y - \nabla_Y^c X, Z) + \eta(\nabla_X^c Z, Y),$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where  $\nabla_X^c Y = \mathring{\nabla}_X Y + \frac{1}{2} K(\mathring{\nabla}_X K) Y$ ,  $\mathring{\nabla}$  being the Levi-Civita connection of  $\eta$ .

#### Remarks:

• In the "DFT limit", when  $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  and  $\omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ , (1) recovers the usual expression

$$\llbracket X, Y \rrbracket^{D} = \left( X^{I} \partial_{I} Y^{J} - Y^{I} \partial_{I} X^{J} + \eta_{IL} \eta^{KJ} Y^{I} \partial_{K} X^{L} \right) \partial_{J}$$

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussio |
|-------------------------|---------------|----------------------------|-----------|
| 00                      | 00            | 000000                     | 0         |
|                         |               |                            |           |
|                         |               |                            |           |

#### Theorem (Freidel, Rudolph, DS)

A unique D-bracket exists on any almost para-Hermitian manifold and is given by the formula

$$\eta(\llbracket X, Y \rrbracket, Z) = \eta(\nabla_X^c Y - \nabla_Y^c X, Z) + \eta(\nabla_X^c Z, Y),$$
(1)

where  $\nabla_X^c Y = \mathring{\nabla}_X Y + \frac{1}{2} K(\mathring{\nabla}_X K) Y$ ,  $\mathring{\nabla}$  being the Levi-Civita connection of  $\eta$ .

#### Remarks:

• In the "DFT limit", when  $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  and  $\omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ , (1) recovers the usual expression

$$\llbracket X, Y \rrbracket^{D} = \left( X^{I} \partial_{I} Y^{J} - Y^{I} \partial_{I} X^{J} + \eta_{IL} \eta^{KJ} Y^{I} \partial_{K} X^{L} \right) \partial_{J}.$$

 (1) recovers Dorfman brackets on *M*/*M̃* by the formula
 η(**[***X*, *Y*]]<sub>±</sub>, *Z*) = η(∇<sup>c</sup><sub>P/P̃X</sub> *Y* − ∇<sup>c</sup><sub>P/P̃Y</sub> *X*, *Z*) + η(∇<sup>c</sup><sub>P/P̃X</sub> *Z*, *Y*),

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discus |
|-------------------------|---------------|----------------------------|--------|
| 00                      | 00            | 00000                      | 0      |
|                         |               |                            |        |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# The B-transformation

# • Fix $(\eta, K) \Longrightarrow$ unique $\llbracket, \rrbracket$

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussio |
|-------------------------|---------------|----------------------------|-----------|
| 00                      | 00            | 00000                      | 0         |
|                         |               |                            |           |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# The B-transformation

• Fix  $(\eta, K) \Longrightarrow$  unique  $[\![ , ]\!]$ Question: How to get the twisted bracket/fluxes?

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 00000                      | 0          |
|                         |               |                            |            |
| The B-transformation    |               |                            |            |

Fix (η, K) ⇒ unique [[, ]]
 Question: How to get the twisted bracket/fluxes?
 Answer: Deform K and look at the D-bracket associated to the deformed structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 00000                      | 0          |
|                         |               |                            |            |
| The B-transformation    |               |                            |            |

- Fix (η, K) ⇒ unique [[, ]]
   Question: How to get the twisted bracket/fluxes?
   Answer: Deform K and look at the D-bracket associated to the deformed structure
- Introduce a **B-transformation** of K:

$$K \mapsto K_B = \begin{pmatrix} \mathbb{1} & 0 \\ 2B & -\mathbb{1} \end{pmatrix}, \quad B: L \to \tilde{L}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 00000                      | 0          |
|                         |               |                            |            |
| The B-transformation    |               |                            |            |

- Fix (η, K) ⇒ unique [[, ]]
   Question: How to get the twisted bracket/fluxes?
   Answer: Deform K and look at the D-bracket associated to the deformed structure
  - Introduce a **B-transformation** of K:

$$K \mapsto K_B = \begin{pmatrix} \mathbb{1} & 0 \\ 2B & -\mathbb{1} \end{pmatrix}, \quad B: L \to \tilde{L}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

When B satisfies  $\eta(BX, Y) = -\eta(X, BY)$ ,  $(K_B, \eta)$  is an (almost) para-Hermitian structure

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 00000                      | 0          |
|                         |               |                            |            |
| The B-transformation    |               |                            |            |

- Fix (η, K) ⇒ unique [[, ]]
   Question: How to get the twisted bracket/fluxes?
   Answer: Deform K and look at the D-bracket associated to the deformed structure
- Introduce a **B-transformation** of K:

$$K \mapsto K_B = \begin{pmatrix} \mathbb{1} & 0\\ 2B & -\mathbb{1} \end{pmatrix}, \quad B: L \to \tilde{L}$$

When B satisfies  $\eta(BX, Y) = -\eta(X, BY)$ ,  $(K_B, \eta)$  is an (almost) para-Hermitian structure

• Eigenbundles of  $K_B$  are L = L + B(L) and  $\tilde{L}$  (unchanged)

The D-bracket 00 Twisted Bracket and Fluxes 000000 Discussior O

# The B-transform



| Para-Hermitian | Geometry |
|----------------|----------|
| 00             |          |

Twisted Bracket and Fluxes 000000 Discussion O

# The B-transformation



| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

$$b = \eta B \in \Gamma(\Lambda^2 L^*), \quad \beta = B\eta^{-1} \in \Gamma(\Lambda^2 \tilde{L})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

$$b = \eta B \in \Gamma(\Lambda^2 L^*), \quad \beta = B\eta^{-1} \in \Gamma(\Lambda^2 \tilde{L})$$

 $\Rightarrow$  B can be thought of as a 2-form in the space-time directions L or as a bi-vector in the directions of the dual space-time  $\tilde{L}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

$$b = \eta B \in \Gamma(\Lambda^2 L^*), \quad \beta = B\eta^{-1} \in \Gamma(\Lambda^2 \tilde{L})$$

 $\Rightarrow$  B can be thought of as a 2-form in the space-time directions L or as a bi-vector in the directions of the dual space-time  $\tilde{L}$ 

• In coordinates, we have

$$b = b_{ij} dx^i \wedge dx^j, \quad \beta = b_{ij} \tilde{\partial}^i \wedge \tilde{\partial}^j$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

$$b = \eta B \in \Gamma(\Lambda^2 L^*), \quad \beta = B\eta^{-1} \in \Gamma(\Lambda^2 \tilde{L})$$

 $\Rightarrow$  B can be thought of as a 2-form in the space-time directions L or as a bi-vector in the directions of the dual space-time  $\tilde{L}$ 

• In coordinates, we have

$$b = b_{ij} dx^i \wedge dx^j, \quad \beta = b_{ij} \tilde{\partial}^i \wedge \tilde{\partial}^j$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• The fundamental form deforms as  $\omega\mapsto\omega+2B$ 

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

$$b = \eta B \in \Gamma(\Lambda^2 L^*), \quad \beta = B\eta^{-1} \in \Gamma(\Lambda^2 \tilde{L})$$

 $\Rightarrow$  B can be thought of as a 2-form in the space-time directions L or as a bi-vector in the directions of the dual space-time  $\tilde{L}$ 

• In coordinates, we have

$$b = b_{ij} dx^i \wedge dx^j, \quad \beta = b_{ij} \tilde{\partial}^i \wedge \tilde{\partial}^j$$

- The fundamental form deforms as  $\omega \mapsto \omega + 2B$
- If  $K_B$  is a B-transformation of K by B, then K is a B-transformation of  $K_B$  by -B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

### B-transform as a deformation

**Recall:** the D-bracket associated to any para-Hermitian structure  $(\eta, K)$  is compatible with K in the following sense:

 $\mathcal{N}_{\mathcal{K}} = \llbracket X, Y \rrbracket + \llbracket \mathcal{K}X, \mathcal{K}Y \rrbracket - \mathcal{K} \big(\llbracket \mathcal{K}X, Y \rrbracket + \llbracket X, \mathcal{K}Y \rrbracket \big) = 0.$ 

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

### B-transform as a deformation

**Recall:** the D-bracket associated to any para-Hermitian structure  $(\eta, K)$  is compatible with K in the following sense:

 $\mathcal{N}_{\mathcal{K}} = \llbracket X, Y \rrbracket + \llbracket \mathcal{K}X, \mathcal{K}Y \rrbracket - \mathcal{K}(\llbracket \mathcal{K}X, Y \rrbracket + \llbracket X, \mathcal{K}Y \rrbracket) = 0.$ 

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Hermitian structure  $(\eta, K)$ . Then the D-bracket of  $K_B$  is compatible with K if and only if the covariantized H-flux

$$\mathcal{H}_{ijk} = \partial_{[i} b_{jk]} + b_{[il} \tilde{\partial}^{l} b_{jk]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

vanishes.

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 000000                     | 0          |
|                         |               |                            |            |

### B-transform as a deformation

**Recall:** the D-bracket associated to any para-Hermitian structure  $(\eta, K)$  is compatible with K in the following sense:

 $\mathcal{N}_{\mathcal{K}} = \llbracket X, Y \rrbracket + \llbracket \mathcal{K}X, \mathcal{K}Y \rrbracket - \mathcal{K}(\llbracket \mathcal{K}X, Y \rrbracket + \llbracket X, \mathcal{K}Y \rrbracket) = 0.$ 

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Hermitian structure  $(\eta, K)$ . Then the D-bracket of  $K_B$  is compatible with K if and only if the covariantized H-flux

$$\mathcal{H}_{ijk} = \partial_{[i} b_{jk]} + b_{[il} \tilde{\partial}^{l} b_{jk]}$$

vanishes.

The vanishing of a covariantized H-flux takes the coordinate-free expression

$$\mathbf{d}_{+}\boldsymbol{b} + (\Lambda^{3}\eta)[\beta,\beta]_{-} = \mathbf{0},$$

and therefore can be understood as a Maurer-Cartan element associated to the deformation  $K \mapsto K_B$ .

| Para-Hermitian | Geometry |
|----------------|----------|
| 00             |          |

Twisted Bracket and Fluxes

Discussion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Twisted D-bracket and Fluxes

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Kähler structure  $(\eta, K)$  ( $d\omega = 0$ ). Then the D-bracket  $[\![, ]\!]^B$  associated to  $K_B$  is given by

 $\llbracket X, Y \rrbracket^B = \llbracket X, Y \rrbracket - \mathrm{d} b(X, Y)$ 

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 00000                      | 0          |
|                         |               |                            |            |

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Kähler structure  $(\eta, K)$  ( $d\omega = 0$ ). Then the D-bracket  $[\![, ]\!]^B$  associated to  $K_B$  is given by

$$\llbracket X, Y \rrbracket^B = \llbracket X, Y \rrbracket - \mathrm{d}b(X, Y)$$

We then recover fluxes by looking at different components of db in the splitting given by  $K_B$ :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussion |
|-------------------------|---------------|----------------------------|------------|
| 00                      | 00            | 00000                      | 0          |
|                         |               |                            |            |

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Kähler structure  $(\eta, K)$  ( $d\omega = 0$ ). Then the D-bracket  $[\![, ]\!]^B$  associated to  $K_B$  is given by

$$\llbracket X, Y \rrbracket^B = \llbracket X, Y \rrbracket - \mathrm{d}b(X, Y)$$

We then recover fluxes by looking at different components of db in the splitting given by  $K_B$ :

•  $(3,0)_B$  component gives **H-flux** and a "dual" **R-flux**:

$$\mathrm{d}\boldsymbol{b}^{(+3,-0)_B} = \mathrm{d}_+\boldsymbol{b} + (\Lambda^3\eta)[\beta,\beta]_- = \boldsymbol{H} + \tilde{\boldsymbol{R}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussio |
|-------------------------|---------------|----------------------------|-----------|
| 00                      | 00            | 00000                      | 0         |
|                         |               |                            |           |

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Kähler structure  $(\eta, K)$  ( $d\omega = 0$ ). Then the D-bracket  $[\![, ]\!]^B$  associated to  $K_B$  is given by

$$\llbracket X, Y \rrbracket^B = \llbracket X, Y \rrbracket - \mathrm{d}b(X, Y)$$

We then recover fluxes by looking at different components of db in the splitting given by  $K_B$ :

•  $(3,0)_B$  component gives **H-flux** and a "dual" **R-flux**:

$$\mathrm{d}b^{(+3,-0)_B} = \mathrm{d}_+b + (\Lambda^3\eta)[\beta,\beta]_- = H + \tilde{R}$$

•  $(2,1)_B$  component gives

$$\mathrm{d}\boldsymbol{b}^{(+2,-1)_B} = \mathrm{d}_{-}\boldsymbol{b} - (\Lambda^3\eta)[\beta,\beta]_{-} = \boldsymbol{Q} - \tilde{\boldsymbol{R}},$$

where in coordinates  $Q_{ij}^k = \tilde{\partial}^k b_{ij}$ .

| Para-Hermitian Geometry | The D-bracket | Twisted Bracket and Fluxes | Discussio |
|-------------------------|---------------|----------------------------|-----------|
| 00                      | 00            | 00000                      | 0         |
|                         |               |                            |           |

### Theorem (DS)

Let  $K_B$  be a B-transformation of a para-Kähler structure  $(\eta, K)$  ( $d\omega = 0$ ). Then the D-bracket  $[\![, ]\!]^B$  associated to  $K_B$  is given by

$$\llbracket X, Y \rrbracket^B = \llbracket X, Y \rrbracket - \mathrm{d}b(X, Y)$$

We then recover fluxes by looking at different components of db in the splitting given by  $K_B$ :

•  $(3,0)_B$  component gives **H-flux** and a "dual" **R-flux**:

$$\mathrm{d}b^{(+3,-0)_B} = \mathrm{d}_+b + (\Lambda^3\eta)[\beta,\beta]_- = H + \tilde{R}$$

•  $(2,1)_B$  component gives

$$\mathrm{d}\boldsymbol{b}^{(+2,-1)_B} = \mathrm{d}_{-}\boldsymbol{b} - (\Lambda^3\eta)[\beta,\beta]_{-} = \boldsymbol{Q} - \tilde{\boldsymbol{R}},$$

where in coordinates  $Q_{ij}^k = \tilde{\partial}^k b_{ij}$ .

| Para-Hermitian | Geometry |
|----------------|----------|
| 00             |          |

Twisted Bracket and Fluxes



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Remarks, discussion and outlook

• "Reverse construction": We can understand the appearance of the fluxes as a result of a choice of non-integrable splitting of  $T\mathcal{P}(K_B)$ , which can be *B*-transformed into an integrable para-Kahler structure (*K*)

| Para-Hermitian | Geometry |
|----------------|----------|
| 00             |          |

Twisted Bracket and Fluxes 000000 Discussion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Remarks, discussion and outlook

- "Reverse construction": We can understand the appearance of the fluxes as a result of a choice of non-integrable splitting of  $TP(K_B)$ , which can be *B*-transformed into an integrable para-Kahler structure (*K*)
- Question: Starting from any K, can we in general find para-Kahler K', such that K is a B-transform (+ T-duality?) of K' (at least in some local sense)? ⇒ "Normal coordinates"?

| Para-Hermitian | Geometry |
|----------------|----------|
| 00             |          |

Twisted Bracket and Fluxes 000000



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Remarks, discussion and outlook

- "Reverse construction": We can understand the appearance of the fluxes as a result of a choice of non-integrable splitting of  $TP(K_B)$ , which can be *B*-transformed into an integrable para-Kahler structure (*K*)
- Question: Starting from any K, can we in general find para-Kahler K', such that K is a B-transform (+ T-duality?) of K' (at least in some local sense)? ⇒ "Normal coordinates"?
- Full set of fluxes  $\Rightarrow$  include the dual *B*-transform  $\tilde{B} : \tilde{L} \rightarrow L$

| Para-Hermitian | Geometry |
|----------------|----------|
| 00             |          |

Twisted Bracket and Fluxes 000000 Discussion

## Remarks, discussion and outlook

- "Reverse construction": We can understand the appearance of the fluxes as a result of a choice of non-integrable splitting of  $TP(K_B)$ , which can be *B*-transformed into an integrable para-Kahler structure (*K*)
- Question: Starting from any K, can we in general find para-Kahler K', such that K is a B-transform (+ T-duality?) of K' (at least in some local sense)? ⇒ "Normal coordinates"?
- Full set of fluxes  $\Rightarrow$  include the dual *B*-transform  $\tilde{B}: \tilde{L} \rightarrow L$
- Full deformation theory of Para-Hermitian geometry