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The	Standard	Models	is	not	a	scale	invariant	theory

It	turns	out	to	be	scale	invariant	if	we	switch	off	the	Higgs	vev

The	question:	how	to	generate	the	Higgs	mass.	

We	are	not	allowed	to	introduce	a	dimensionful	 constant	in	order	to	
define	 the	electroweak	scale	because	that	would	violate	scale	invariance	
explicitly	(	no	scale	invariant	Lagrangian)	

For	a	gauge	theory	SSB	leaves	the	Lagrangian	gauge	invariant,	only	the	
vacuum	is	not	gauge	symmetric.

Scale	invariance	is	gained	at	the	cost	of	introducing	 a	dilaton	in	the	
theory	but	we	face	the	issue	of	a	flat	direction	in	the	Higgs-dilaton	
potential



different	choices	of	the	unobservable	vacuum	energy

V2	is	stable	
in	the	conformal	extension

let's	choose	V2



canonical	EMT

term	of	improvement	

using	 the	equations	of	motion the	grace	is	proportional	 to	the	scaling	parameter



promoting	 scale	invariance		(field	enlarging	 transformation)

Sigma(x)	at	this	stage	is	a	compensator,	which	needs	be	rendered	dynamical	by	the	addition	of	
a	kinetic	term

in	the	form	V2	of	the	potential

The	new	Lagrangian	is	dilatation	invariant	



V2	allows	to	perform	the	spontaneous	breaking	of	the	scale	symmetry	around	a	stable	
minimum,	 by	setting		

if	we	expand	around	 the	vev	of	Sigma,	leaving	the	Higgs	as	it	is	
(i.e.	above	the	ew	scale)	

rho	is	the	dilaton

Lambda	is	the	conformal	 scale

one	can	write	down	a	dilaton	interaction	at	order	1/Lambda	

using	 the	eqs	of	motion	



we	could	have	expanded	around	 te	two	vevs	(i.e.	below	the	ew	scale)	by	sequentailly	 invoking	
a	spontaneous	breaking	of	the	scale	symmetry	folllowed	by	a	breaking	of	the	ew	scale	
(v,	Lambda)

clearly,	we	need	to	give	a	mass	to	rho(x)	 is	we	want	to	justify	 the	veve	of	Sigma	(Lambda)



The	result	of	such	simple	considerations	are	that	we	cannot	get	away	from	the	scale	symmetric	phase	
without	an	extra	potential	which	explicitly	breaks	scale	invariance	and	that	we	should	attribute	to	some	
unspecified	 dynamical	mechanism.	
SSB's	are	related	to	vacuum	degeneracies	from	which	we	pick	up	one	specific	state	"the	vacuum".

vacuum	degeneracies	of	SIGMA	and	H	are	connected	

1.	somehow	we	should	 have	an	extra	potential	which	is	vacuum	degenerate	only	 respect	to	Sigma,	

2.	assign		a	vev	to	Sigma	by	a	vacuum	selection	(Lambda)	 	(but	the	Lagrangian	should	still	be	scale	symmetric)

3.	Now	end	up	with	a	vacuum	degeneracy	in	H,	and	proceed	with	the	usual	electroweak	SSB

The	problem:	How	do	we	guarantee	a	vacuum	degeneracy	in	Sigma	without	breaking	the	scale	symmetry	
of	the	Lagrangian?



at	quantum	 level	the	dilaton	will	couple	to	the	anomaly

one	can		integrate	out	matter	(in	this	case	the	SM	)	in	order	to	define	an	effective	action	
and	the	interactions	of	the	dilaton.	
A	stress	energy	 tensor	which	contains	the	term	of	improvement	 and	reproduces	all	the	features	discussed	above	
is	obtained	via	a	metric	embedding	 	

The diagonalization of the corresponding mass matrix, which mixes the dilaton and the
Higgs field, allows to define the two mass eigenstates ⇢0 and h0, which are given by
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with
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⇢0 is the massless dilaton, while h0 will describe a massive scalar, a new Higgs field, whose
mass is given by

m2
h0

= 2�v2
✓
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�
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and with m2
h
= 2�v2 being the mass of the SM Higgs. The Higgs mass is modified by the

new scale ⇤, which is treated as a free parameter in our phenomenological analysis. For a
⌃ field not conformally coupled, this mixing matrix gets renormalized at one loop by an
extra counterterm, unrelated to those of the electroweak sector, due to a renormalization
of the term of improvement in the coupling of the dilaton to the Higgs.

2.1 Dilaton interactions

In this section we will briefly review the structure of the coupling of a dilaton field to the
mattter of the SM.

The leading interactions of the dilaton with the SM fields are obtained through the
divergence of the dilatation current. This corresponds to the trace of the energy-momentum
tensor Tµ

µSM
computed on the SM fields

Lint = � 1

⇤
⇢Tµ

µSM
. (2.8)

The expression of the energy-momentum tensor can be derived by embedding the SM
Lagrangean on the background metric gµ⌫

S = SG+SSM +SI = � 1
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where 2 = 16⇡GN , with GN being the four dimensional Newton’s constant and H is the
Higgs doublet. We have defined

Tµ⌫(x) =
2p

�g(x)

�[SSM + SI ]

�gµ⌫(x)
, (2.10)

or, in terms of the SM Lagrangian, as
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satisfying the conservation equation gµ⇢Tµ⌫;⇢ = 0, or @µTµ⌫ = 0 in flat spacetime. The
complete expression of the energy-momentum tensor can be found in [9]. SI is responsible
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we	can	add	a	dilaton	by	hand	after	taking	the	flat	spacetime	limit



An	economical	way	to	couple	the	dilaton	to	the	Standard	Model,	
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k

Figure 1. Bilinear dilaton/Higgs vertex at tree level from the term of improvement.

for generating a term of improvement (I), which induces a mixing between the Higgs and
the dilaton after tracing its indices. As usual we parameterize the vacuum H0 in the scalar
sector in terms of the electroweak vev v as

H0 =

 
0
vp
2

!
(2.12)

and we expand the Higgs doublet in terms of the physical Higgs boson H and the two
Goldstone bosons �+, � as

H =

 
�i�+

1p
2
(v +H + i�)

!
, (2.13)

obtaining from the term of improvement of the stress-energy tensor the expression

T I
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which is responsible for a bilinear vertex shown in Fig. 1

VI, ⇢H(k) = � i

⇤

12� swMW

e
k2.

The trace takes contribution from the massive fields, the fermions and the electroweak
gauge bosons, and from the trace-anomaly in the massless gauge boson sector, through the
� functions of the corresponding coupling constants.
In a phenomenological context is is expected that both for a fundamental or for a composed
dilaton the interaction with the fields of SM should be characterised by these two terms.
This separation between the anomalous and the explicit mass-related terms in the expression
of the trace anomaly can be explicitly verified in perturbation theory, in the computation
of basic correlators with one insertion of the stress energy tensor [1, 5]. As pointed out in
[1], one can check that in a mass-independent renormalization scheme, such as Dimensional
Regularization with minimal subtraction, this separation can be verified at least at one loop
level and provides a realization of the (anomalous) scale Ward identity

�↵�(z, x, y) ⌘ ⌘µ⌫
D
Tµ⌫(z)V ↵(x)V �(y)

E
=

�2A(z)

�A↵(x)�A�(y)
+
D
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µ(z)V
↵(x)V �(y)

E
,

(2.15)
where we have denoted by A(z) the anomaly functional and with A↵ the gauge sources
coupled to the current V ↵. Here, �↵� denotes a generic dilaton/gauge/gauge vertex, which
is obtained form the TV V 0 vertex by tracing the spacetime indices µ⌫. A(z) is derived
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from the renormalized expression of the vertex by tracing the gravitational counterterms in
4� ✏ dimensions

hTµ

µ i = A(z), (2.16)

which in a curved background is given by the metric functional

A(z)� 1
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�
, (2.17)

where b, b0 and c are parameters. For the case of a single fermion in an abelian gauge theory
they are: b = 1/320⇡2, b0 = �11/5760⇡2, and c = �e2/24⇡2. C2 is the square of the Weyl
tensor and E is the Euler density given by

C2 = C�µ⌫⇢C
�µ⌫⇢ = R�µ⌫⇢R

�µ⌫⇢ � 2Rµ⌫R
µ⌫ +

R2

3
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�µ⌫⇢ � 4Rµ⌫R
µ⌫ +R2. (2.19)

In a flat metric background the expression of such functional reduces to the simple form
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(z)F i
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(z), (2.20)

where �i are clearly the mass-independent � functions of the gauge fields and gi the cor-
responding coupling constants. For an extension which is quantum conformal invariant,
the �i vanish. In general, quantum conformal invariance requires that in the absence of all
external sources (metric and gauge sources) A vanishes.

The two terms on the right hand side of (2.15) are identified by computing the renormal-
ized vertex hTµ⌫V ↵V 0�i (i.e. the graviton/gauge/gauge vertex) and from its 4-dimensional
trace. It can be checked that the insertion of the trace of Tµ⌫ (i.e. Tµ

µ )into a two point
function V V 0, allows to identify the second term on the right-hand-side of the same equa-
tion, hTµ

µ (z)V ↵(x)V �(y)i. The difference between the trace of the lhs of (2.15)- which is
computed from the correlator with open indices - and the vertex obtained by the direct in-
sertion of Tµ

µ , corresponds to the anomaly, in this regularization scheme. It reproduces the
A-term, obtained differentiating twice the anomaly functional A respect to the external
source (the gauge field) [6].
Beside the contribution from the anomaly, the remaining contributions are contained, for
each decay channel, into 2 additional form factors, denoted as ⌃ and �. ⌃ and � terms
are related to the exchange of fermions, gauge bosons and scalars (Higgs/Goldstones). In a
mass independent regularization scheme, such as dimensional regularization, the contribu-
tion from the trace anomaly appears separately from the remaining contributions coming
from the massive terms, as one can explicitly verify by a direct computation. Explicit re-
sults starting for the ⇢V V 0 vertices (V, V 0 = �, Z), denoted as �↵�

V V 0 , are given in [1] which
are decomposed in momentum space in the form

�↵�

V V 0(k, p, q) = (2⇡)4 �4(k � p� q)
i

⇤
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⌘
, (2.21)
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mass independent regularization scheme, such as dimensional regularization, the contribu-
tion from the trace anomaly appears separately from the remaining contributions coming
from the massive terms, as one can explicitly verify by a direct computation. Explicit re-
sults starting for the ⇢V V 0 vertices (V, V 0 = �, Z), denoted as �↵�

V V 0 , are given in [1] which
are decomposed in momentum space in the form

�↵�

V V 0(k, p, q) = (2⇡)4 �4(k � p� q)
i

⇤

⇣
A↵�(p, q) + ⌃↵�(p, q) +�↵�(p, q)

⌘
, (2.21)
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and several STI’ s whose expressions are rather involved. In the case of the TZZ vertex,
for instance, in the R⇠ gauge this takes the form

p↵q�GZZ
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(p, q)� i⇠MZp
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Z�

µ (q)]

+ iqµ[�ip↵PZZ

↵⌫ (p)� ⇠MZP
Z�

⌫ (p)] + iq⌫ [�ip↵PZZ
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µ (p)]
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⇢

Z�
(q)]� i⌘µ⌫k⇢[�ip↵P

⇢↵

ZZ
(p)� ⇠MZP

⇢
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(p)]� i⇠2⌘µ⌫

�
.

(2.25)

2.2 The coupling to the anomaly and the breaking of quantum scale invariance

As we have mentioned above, for a classical scale invariant estension, the coupling of the
dilaton to the fields of the SM is characterised by two terms, the first of them being pro-
portional to the anomaly. In the case of a quantum scale invariant extension [? ], this
term is obviously absent, due to a vanishing beta functions, but it reappears as an effective
interaction if the fermions of the high energy spectrum of the quantum conformal theory
are far heavier than the scale at which we probe the theory, which in this case is the LHC
scale. This simple phenomenon can be easily understood in perturbation theory by look-
ing at the fermion sector of the ⇢/gauge/gauge vertex, for on shell external gauge lines.
The corresponding triangle diagram is expressed from the standard one-loop scalar integral
C0(s,m2

f
), where s is of the order of the dilaton mass, and mi the mass of each particle

running in the loop. The corresponding interaction takes the form

�⇢V V ⇠ g2

⇡2⇤
m2

i


1

s
� 1

2
C0(s,m

2
i )

✓
1� 4m2

i

s

◆�
⇠ g2

⇡2⇤

1

6
+O

✓
s

m2
i

◆
(2.26)

where we have performed the large mass limit of the amplitude (mf � s) using

C0(s,m
2
i ) ⇠ � 1

2m2
i

✓
1 +

1

12

s

m2
i

+O(
s2

m4
i

)

◆
(2.27)

This shows that in the case of heavy fermions, the dependence on the fermion mass cancels,
with the appearance of a point-like coupling of the dilaton to the trace anomaly FF .
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The	computation	of	the	SM	corrections	to	TVV	vertices	shows	that	renormalization	
does	not	require	additional	counterterms	 if		the	coupling	 of	the	Higgs	 is	conformal	

from the renormalized expression of the vertex by tracing the gravitational counterterms in
4� ✏ dimensions

hTµ

µ i = A(z), (2.16)

which in a curved background is given by the metric functional

A(z)� 1

8


2bC2 + 2b0

✓
E � 2

3
⇤R

◆
+ 2c F 2

�
, (2.17)

where b, b0 and c are parameters. For the case of a single fermion in an abelian gauge theory
they are: b = 1/320⇡2, b0 = �11/5760⇡2, and c = �e2/24⇡2. C2 is the square of the Weyl
tensor and E is the Euler density given by

C2 = C�µ⌫⇢C
�µ⌫⇢ = R�µ⌫⇢R

�µ⌫⇢ � 2Rµ⌫R
µ⌫ +

R2

3
(2.18)

E = ⇤R�µ⌫⇢
⇤R�µ⌫⇢ = R�µ⌫⇢R

�µ⌫⇢ � 4Rµ⌫R
µ⌫ +R2. (2.19)

In a flat metric background the expression of such functional reduces to the simple form

A(z) =
X

i

�i
2gi

F↵�

i
(z)F i

↵�
(z), (2.20)

where �i are clearly the mass-independent � functions of the gauge fields and gi the cor-
responding coupling constants. For an extension which is quantum conformal invariant,
the �i vanish. In general, quantum conformal invariance requires that in the absence of all
external sources (metric and gauge sources) A vanishes.

The two terms on the right hand side of (2.15) are identified by computing the renormal-
ized vertex hTµ⌫V ↵V 0�i (i.e. the graviton/gauge/gauge vertex) and from its 4-dimensional
trace. It can be checked that the insertion of the trace of Tµ⌫ (i.e. Tµ

µ )into a two point
function V V 0, allows to identify the second term on the right-hand-side of the same equa-
tion, hTµ

µ (z)V ↵(x)V �(y)i. The difference between the trace of the lhs of (2.15)- which is
computed from the correlator with open indices - and the vertex obtained by the direct in-
sertion of Tµ

µ , corresponds to the anomaly, in this regularization scheme. It reproduces the
A-term, obtained differentiating twice the anomaly functional A respect to the external
source (the gauge field) [6].
Beside the contribution from the anomaly, the remaining contributions are contained, for
each decay channel, into 2 additional form factors, denoted as ⌃ and �. ⌃ and � terms
are related to the exchange of fermions, gauge bosons and scalars (Higgs/Goldstones). In a
mass independent regularization scheme, such as dimensional regularization, the contribu-
tion from the trace anomaly appears separately from the remaining contributions coming
from the massive terms, as one can explicitly verify by a direct computation. Explicit re-
sults starting for the ⇢V V 0 vertices (V, V 0 = �, Z), denoted as �↵�

V V 0 , are given in [1] which
are decomposed in momentum space in the form

�↵�

V V 0(k, p, q) = (2⇡)4 �4(k � p� q)
i

⇤

⇣
A↵�(p, q) + ⌃↵�(p, q) +�↵�(p, q)

⌘
, (2.21)
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Figure 2. Typical amplitudes of triangle and bubble topologies contributing to the ⇢��, ⇢�Z and
⇢ZZ interactions. They include fermion (F ), gauge bosons (B) and contributions from the term
of improvement (I). Diagrams (a)-(g) contribute to all the three channels while (h)-(k) only in the
⇢ZZ case.

where

A↵�(p, q) =

Z
d4x d4y eip·x+iq·y �2A(0)

�A↵(x)�A�(y)
(2.22)

and
⌃↵�(p, q) +�↵�(p, q) =

Z
d4x d4y eip·x+iq·y

D
Tµ

µ(0)V
↵(x)V �(y)

E
. (2.23)

We have denoted with ⌃↵� the cut vertex contribution to �↵�

⇢V V 0 , while �↵� includes the
dilaton-Higgs mixing on the dilaton line, as shown in Fig. 3. The bilinear mixing �↵�

does not appear in the decay amplitude, since this has to be cut on the external lines,
but it plays a role in the overal renormalization of the effective theory beyond one loop
order. If the dilaton is described by a conformally coupled scalar, then the renormaliza-
tion of the SM Lagrangean is sufficient for removing all the singularities present in this
vertex, and specifically, in the bilinear mixing [1]. For a dilaton described by a generic non-
minimal/minimally coupled scalar, then this 2-point function contributions � requires an
extra counterterm, generated by the renormalization of the term of improvement. However,
if we diagonalize the Higgs/dilaton bilinear mixing at tree level, the contribution from the
renormalized � will appear in the radiative corrections, and needs to be taken into account.
It is a two-loop contribution which renormalizes the dilaton/Higgs mixing matrix, but in
our one-loop analysis it does not play any role. There are several Ward and Slavnov-Taylor
(STI) identities which can be used to secure the correctness of the complete perturbative
result [9]

kµ�V V
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.
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We have denoted with ⌃↵� the cut vertex contribution to �↵�

⇢V V 0 , while �↵� includes the
dilaton-Higgs mixing on the dilaton line, as shown in Fig. 3. The bilinear mixing �↵�

does not appear in the decay amplitude, since this has to be cut on the external lines,
but it plays a role in the overal renormalization of the effective theory beyond one loop
order. If the dilaton is described by a conformally coupled scalar, then the renormaliza-
tion of the SM Lagrangean is sufficient for removing all the singularities present in this
vertex, and specifically, in the bilinear mixing [1]. For a dilaton described by a generic non-
minimal/minimally coupled scalar, then this 2-point function contributions � requires an
extra counterterm, generated by the renormalization of the term of improvement. However,
if we diagonalize the Higgs/dilaton bilinear mixing at tree level, the contribution from the
renormalized � will appear in the radiative corrections, and needs to be taken into account.
It is a two-loop contribution which renormalizes the dilaton/Higgs mixing matrix, but in
our one-loop analysis it does not play any role. There are several Ward and Slavnov-Taylor
(STI) identities which can be used to secure the correctness of the complete perturbative
result [9]
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and several STI’ s whose expressions are rather involved. In the case of the TZZ vertex,
for instance, in the R⇠ gauge this takes the form
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2.2 The coupling to the anomaly and the breaking of quantum scale invariance

As we have mentioned above, for a classical scale invariant estension, the coupling of the
dilaton to the fields of the SM is characterised by two terms, the first of them being pro-
portional to the anomaly. In the case of a quantum scale invariant extension [? ], this
term is obviously absent, due to a vanishing beta functions, but it reappears as an effective
interaction if the fermions of the high energy spectrum of the quantum conformal theory
are far heavier than the scale at which we probe the theory, which in this case is the LHC
scale. This simple phenomenon can be easily understood in perturbation theory by look-
ing at the fermion sector of the ⇢/gauge/gauge vertex, for on shell external gauge lines.
The corresponding triangle diagram is expressed from the standard one-loop scalar integral
C0(s,m2

f
), where s is of the order of the dilaton mass, and mi the mass of each particle

running in the loop. The corresponding interaction takes the form
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(2.26)

where we have performed the large mass limit of the amplitude (mf � s) using

C0(s,m
2
i ) ⇠ � 1

2m2
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✓
1 +
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12

s

m2
i

+O(
s2

m4
i

)

◆
(2.27)

This shows that in the case of heavy fermions, the dependence on the fermion mass cancels,
with the appearance of a point-like coupling of the dilaton to the trace anomaly FF .
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Figure 12. The decay branching fractions of the dilaton (a) to gluon pair and (b)-(c) gauge boson
pais for different ⇠ parameters.

mass combinatorics can give us much earlier hint for such resonance peak. The results of
our analysis is can be easily extrapolated for higher conformal breaking scale ⇤ and higher
mass values of the dilaton. In section 6 we also discuss the effect of the mixing between
dilaton and Higgs boson. Our results can be easily interpreted for any non-zero ⇠ case by
rescaling the decay bracning fraction of the dilaton. Finally we expect LHC run II will
unveil more data that will give more inside to this extension of SM.
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Figure 4. The mass dependence of the branching ratios of the dilaton (a) and the Higgs boson
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the production rates. Even in this less favourable situation, if confronted with the Higgs
production rates of the SM, the dilaton rates can still be studied al the LHC.
We calculate the dilaton production cross-section via gluon fusion by weighting the Higgs
boson to gluon-gluon decay widths with the corresponding dilaton decay width. The dilaton
production cross-section with the incoming gluons thus can be written as

�gg!⇢ = �gg!h

�⇢!gg

�h!gg

, (4.1)

where we use the same factorization scale in the DGLAP evolution of the parton distribution
functions (PDF) of [22]. The width of ⇢ ! gg is given in Eq. (3.13) and we can use the
same expression to calculate the width of h ! gg, replacing the breaking scale ⇤ with v

and setting �qcd ⌘ 0. The ratio of the two widths appearing in Eq. (4.1) is then given by

�⇢!gg

�h!gg

=
v2

⇤2

|�qcd +
P

i
xi [1 + (1� xi) f(xi)]|2

|
P

i
xi [1 + (1� xi) f(xi)]|2

. (4.2)

In Figure 5 we present the production cross-section of the dilaton at the LHC at 14
TeV centre of mass energy mediated by (a) gluon fusion and (b) vector boson fusion, versus
m⇢. Shown are the variations of the same observables for three conformal breaking scale
⇤ = 1, 5, 10 TeV.

4.1 Bounds on the dilaton from heavy Higgs searches at the LHC

Since the mass of the dilaton is a free parameter, and given the similarities with the main
production and decay channels of this particle with the Higgs boson, several features of the
production and decay channels in the Higgs sector, with the due modifications, are shared
also by the dilaton case.
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One loop expressions for decays into ��, �Z and ZZ pairs are expressed in terms of a set
of form factors whose explicit expressions can be found in [1].
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�����2 + �Y � [2 + 3xW + 3xW (2� xW ) f(xW )] +
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xt [1 + (1� xt) f(xt)]

����
2

.

(3.6)

Here, the contributions to the decay, beside the anomaly term, come from the W and
the fermion (top) loops. �2(= 19/6) and �Y (= �41/6) are the SU(2) and U(1) � functions,
while the xi’s are proportional to the ratios between the mass of each particle in the loops
mi and the ⇢ mass.

xi =
4m2

i

m2
⇢

, (3.7)

with the index "i" labelling the corresponding massive particle, and xt denoting the con-
tribution from the top quark, which is the only massive fermion running in the loop.
The function f(x) is given by

f(x) =

8
<

:
arcsin2( 1p

x
) , if x � 1

�1
4

h
ln 1+

p
1�x

1�
p
1�x

� i⇡
i2

, if x < 1.
(3.8)

which originates from the scalar three-point master integral through the relation

C0(s,m
2) = �2

s
f(

4m2

s
) . (3.9)
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One loop expressions for decays into ��, �Z and ZZ pairs are expressed in terms of a set
of form factors whose explicit expressions can be found in [1].
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Here, the contributions to the decay, beside the anomaly term, come from the W and
the fermion (top) loops. �2(= 19/6) and �Y (= �41/6) are the SU(2) and U(1) � functions,
while the xi’s are proportional to the ratios between the mass of each particle in the loops
mi and the ⇢ mass.

xi =
4m2

i

m2
⇢

, (3.7)

with the index "i" labelling the corresponding massive particle, and xt denoting the con-
tribution from the top quark, which is the only massive fermion running in the loop.
The function f(x) is given by
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8
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x
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(3.8)

which originates from the scalar three-point master integral through the relation

C0(s,m
2) = �2

s
f(

4m2

s
) . (3.9)
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Figure 6. The mass bounds on the dilaton from heavy scalar decays to (a) ZZ [14], (b) W±W⌥

[15], (c) ⌧̄ ⌧ [16] and (d) to hh [17] for three different choices of conformal scale, ⇤ = 1, 5, 10 TeV
respectively.

corresponding bound presented, in this case, by the ATLAS collaboration. Both the ATLAS
and CMS data completely exclude the ⇤ = 1 TeV case whereas the ⇤ = 5 TeV case has
only a small tension with the CMS analysis of the W±W⌥ channel if m⇢ ⇠ 160 GeV. Any
value of ⇤ � 5 TeV is not ruled out by the current data.
In Table 1 we report the values of the gluon fusion cross-section for three benchmark points
(BP) that we have used in our phenomenological analysis. We have chosen ⇤ = 5 TeV, and
the factorization in the evolution of the parton densities has been performed in concordance
with those of the Higgs working group [22]. In the following subsection we briefly discuss
some specific features of the dilaton phenomenology at the LHC, which will be confronted
with a PYTHIA based simulation of the SM background.
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and CMS data completely exclude the ⇤ = 1 TeV case whereas the ⇤ = 5 TeV case has
only a small tension with the CMS analysis of the W±W⌥ channel if m⇢ ⇠ 160 GeV. Any
value of ⇤ � 5 TeV is not ruled out by the current data.
In Table 1 we report the values of the gluon fusion cross-section for three benchmark points
(BP) that we have used in our phenomenological analysis. We have chosen ⇤ = 5 TeV, and
the factorization in the evolution of the parton densities has been performed in concordance
with those of the Higgs working group [22]. In the following subsection we briefly discuss
some specific features of the dilaton phenomenology at the LHC, which will be confronted
with a PYTHIA based simulation of the SM background.
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the	coupling	 to	the	anomaly	
is	introduced	"by	hand"

what	kind	of	interactions	
should	we	include?

SUMMARY/	PERSPECTIVES



rewind:

not	all	the	dilaton	interactions	are	functionally	 independent	 since	there	are	some	conformal	trace	relations	which	
constrain	those	of	order	higher	 than	4

(Delle	Rose,	Marzo,	Serino,	C.C)



Marzo,	Delle	Rose,	Serino	C.C.
Weyl	gauging

Noether	method

WZ	action

by

or	by	the

quartic	action	

Marzo,	Delle	Rose,	Serino,	C.C

higher	order	interactions	exactly	fixed	by	the	quartic	expansion

the	quartic	nature	of	the
WZ	action		

This	is	in	agreement	with	the	quartic	nature	of	the	dilaton	Lagrangian



Weyl	tensor	squared Euler-Poincare'	density

d=4

d=6

EP	density	 in	d=6
F.	Bastianelli	et	al,	
L.	Delle	Rose,	Carlo	Marzo,	M.	Serino,	C.C.

quadratic	in	the	curvature

cubic



higher	order	dilaton	 interactions	determined	by	the	
first	6	traces

D=6

WZ	action



There	is	not	a	unique	viewpoint,	 since	anomaly	actions	are	not		not	unique,	 if	we	just	want	to	
reproduce	an	anomaly	functional

Can	we	describe	the	breaking	of	the	conformal	dynamics	without	 introducting	 an	asymptotic	dilaton	 field	?

one	example:	the	nonlocal	Riegert	action

Which	action?



TVV	result	in	the	SM

Riegert's	action

E.	Mottola,	
M.	Giannotti

Armillis,	Delle	rose,	C.C.

mediation	by	an	anomaly	pole	

TJJ

nonlocal		anomaly	action

for	instance,	this	action	shows	that	the	anomaly	is	mediated	by	
the	emergence	of	an	effective	massless	pole	

This	action	generates	the	anomaly	contribution	 to	TT,	TTT,	TTTT	etc	(with	open	indices)	but	also	
the	corresponding	 traces	(	dilaton	interactions),	without	 introducting	an	symptotic	dilaton

shares	the	same	features



and	in	the	Standard	Model	

is the usual 1/m expansion, where m is a large electroweak mass, valid below the electroweak scale. The second

has been first discussed in a previous work [12] and is characterized by the isolation of the anomalous massless

pole contribution from the remaining subleading O(m2/s) corrections. These can be extracted from a complete

computation.

The goal of this work is to discuss the role of the interactions mediated by the conformal anomaly using as a

realistic example the Lagrangian of the SM, by focusing our investigation on the neutral currents sector. A similar

analysis will be presented for the charged current sector in a forthcoming separate work. These contributions play a

role, in general, also in scenarios of TeV gravity and as such are part of the radiative corrections to graviton-mediated

processes at typical LHC energies.

1.1 Organization of this work

Our work is organized as follows. In section 2 we will provide the basic definition of the energy momentum tensor

in a curved spacetime, followed by a direct computation of all of its components according to the Lagrangian of

the SM (section 3). We then move to briefly summarize some important issues which concern the structure of

the effective action, highlighting its perturbative properties, first among them the appearance of massless (scalar)

effective degrees of freedom (anomaly poles) in the QED and QCD cases. In sections 5 and 6 we derive the

fundamental Ward and Slavnov-Taylor identites which define the structure of the TV V ′ vertex, expanded in terms

of its TAA, TAZ and TZZ contributions, where T couples to the graviton and A and Z are the photon and the

neutral massive gauge boson, respectively. Complete results for all the amplitudes are given in section 7, expressed

in terms of a small set of form factors. As we are going to show, the contribution to the anomaly comes from a

single form factor in each amplitude, multiplying a unique tensor structure. These form factors are characterized by

the appearance of a massless pole with a residue that can be related to the beta function of the theory and which

is the signature of the anomaly [13]. We have extensively elaborated in previous works on the significance of such

contributions in the ultraviolet region (UV) [5].

In the presence of spontaneous symmetry breaking the perturbative expansion of these form factors can be

still arranged in the form of a 1/s contribution, with s being the invariant mass of the graviton line, plus mass

corrections of the form v2/s, with v being the electroweak vev. The computation shows that the trace part of the

amplitude is then clearly dominated at large energy (i.e for s ≫ v2) by the pole contribution, as we will discuss in

section 9. Our conclusions and perspectives are given in section 10. Several technical points omitted from the main

sections have been included in the appendices to facilitate the reading of those more involved derivations.

2 The EMT of the Standard Model: definitions and conventions

The expression of a symmetric and conserved EMT for the SM, as for any field theory Lagrangian, may be obtained,

more conveniently, by coupling the corresponding Lagrangian to the gravitational field, described by the metric gµν
of the curved background

S = SG + SSM + SI = − 1

κ2

∫
d4x

√
−g R+

∫
d4x

√
−gLSM +

1

6

∫
d4x

√
−g RH†H , (1)

where κ2 = 16πGN , with GN being the four dimensional Newton’s constant and H is the Higgs doublet. We recall

that Einstein’s equations take the form

δ

δgµν(x)
SG = − δ

δgµν(x)
[SSM + SI ] (2)

and the EMT in our conventions is defined as

Tµν(x) =
2√

−g(x)

δ[SSM + SI ]

δgµν(x)
, (3)
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sections have been included in the appendices to facilitate the reading of those more involved derivations.

2 The EMT of the Standard Model: definitions and conventions

The expression of a symmetric and conserved EMT for the SM, as for any field theory Lagrangian, may be obtained,

more conveniently, by coupling the corresponding Lagrangian to the gravitational field, described by the metric gµν
of the curved background

S = SG + SSM + SI = − 1
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−g R+
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d4x

√
−gLSM +

1

6
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d4x
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−g RH†H , (1)

where κ2 = 16πGN , with GN being the four dimensional Newton’s constant and H is the Higgs doublet. We recall

that Einstein’s equations take the form

δ

δgµν(x)
SG = − δ

δgµν(x)
[SSM + SI ] (2)

and the EMT in our conventions is defined as

Tµν(x) =
2√

−g(x)

δ[SSM + SI ]

δgµν(x)
, (3)

3

or, in terms of the SM Lagrangian, as

1

2

√
−gTµν≡

∂(
√
−gL)

∂gµν
− ∂

∂xσ

∂(
√
−gL)

∂(∂σgµν)
, (4)

which is classically covariantly conserved (gµρTµν;ρ = 0). In flat spacetime, the covariant derivative is replaced by

the ordinary derivative, giving the ordinary conservation equation (∂µT µν = 0).

We use the convention ηµν = (1,−1,−1,−1) for the metric in flat spacetime, parameterizing its deviations from

the flat case as

gµν(x) = ηµν + κhµν(x) , (5)

with the symmetric rank-2 tensor hµν(x) accounting for its fluctuations.

In this limit, the coupling of the Lagrangian to gravity is given by the term

Lgrav(x) = −κ
2
T µν(x)hµν (x). (6)

The corrections to the effective action describing the coupling of the SM to gravity that we will consider in our work

are those involving one external graviton and two gauge currents. These correspond to the leading contributions

to the anomalous breaking of scale invariance of the effective action in a combined expansion in powers of κ and of

the electroweak coupling (g2) (i.e. of O(κ g22)).

Coming to the fermion contributions to the EMT, we recall that the fermions are coupled to gravity using the

spin connection Ω induced by the curved metric gµν . This allows to define a spinor derivative D which transforms

covariantly under local Lorentz transformations. If we denote with a, b the Lorentz indices of a local free-falling

frame, and denote with σab the generators of the Lorentz group in the spinorial representation, the spin connection

takes the form

Ωµ(x) =
1

2
σabV ν

a (x)Vbν;µ(x) , (7)

where we have introduced the vielbein V µ
a (x). The covariant derivative of a spinor in a given representation (R) of

the gauge symmetry group, expressed in curved (Dµ) coordinates is then given by

Dµ =
∂

∂xµ
+ Ωµ +Aµ, (8)

where Aµ ≡ Aa
µ T

a(R) are the gauge fields and T a(R) the group generators, giving a Lagrangian of the form

L =
√
−g

{
i

2

[
ψ̄γµ(Dµψ)− (Dµψ̄)γ

µψ

]
−mψ̄ψ

}
. (9)

3 Contributions to Tµν

In this section we proceed with a complete evaluation of the EMT for the SM Lagrangian coupled to gravity. We

will do so for the entire quantum Lagrangian of the SM, which includes also the contributions from the ghosts and

the gauge-fixing terms. Details on our conventions for this section have been collected in appendix (A).

The full EMT is given by a minimal tensor TMin
µν (without improvement) and a term of improvement, T I

µν , generated

by the conformal coupling of the scalars

Tµν = TMin
µν + T I

µν , (10)

where the minimal tensor is decomposed into

TMin
µν = T f.s.

µν + T ferm.
µν + THiggs

µν + T Y ukawa
µν + T g.fix.

µν + T ghost
µν . (11)
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Gravity and the Neutral Currents:

Effective Interactions from the Trace Anomaly

Claudio Corianò, Luigi Delle Rose and Mirko Serino
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Abstract

We present a complete study of the one graviton-two neutral gauge bosons vertex at 1-loop level in the

electroweak theory. This vertex provides the leading contribution to the interaction between the Standard

Model and gravity, mediated by the trace anomaly, at first order in the inverse Planck mass and at second order

in the electroweak expansion. At the same time, these corrections are significant for precision studies of models

with low scale gravity at the LHC. We show, in analogy with previous results in the QED and QCD cases,

that the anomalous interaction between gravity and the gauge current of the Standard Model, due to the trace

anomaly, is mediated, in each gauge invariant sector, by effective massless scalar degrees of freedom. We derive

the Ward and Slavnov-Taylor identities characterizing the vertex. Our analysis includes the contributions from

the improvements of the scalar sector, induced by a conformally coupled Higgs sector in curved space.

1claudio.coriano@unisalento.it, luigi.dellerose@le.infn.it, mirko.serino@le.infn.it

1

f

f

f

(a)

W±

W±

W±

(b)

φ±

φ±

φ±

(c)

W±

W±

φ±

(d)

φ±

φ±

W±

(e)

η+

η+

η+

(f)

η−

η−

η−

(g)

Figure 8: Amplitudes with the triangle topology for the three correlators TAA, TAZ and TZZ.

We recall, from a previous study [4], that the number of original tensor structures which can be built out of the

metric and of the two momenta p and q of the two gauge lines is 43 before imposing the Ward and the STI’s of

the theory. These have been classified in [4] and [1]. In particular, the form factors appearing in the fermion sector

can be expressed (in the off-shell case) in terms of 13 tensor structures for the case of vector currents and of 22

structures for the axial-vector current, as shown in [3].

In the on-shell case, the fermion loops with external photons are parameterized just by 3 independent form

factors. This analysis has been generalized more recently to QCD, with the computation of the graviton-gluon-

gluon (hgg) vertex in full generality [1]. The entire vertex in the on-shell QCD case - which includes fermion and

gluon loops - is also parameterized just by 3 form factors. A similar result holds for the TAA in the electroweak case.

On the other hand the TZZ and the TAZ correlators have been expressed in terms of 9 form factors. A special

comment deserves the handling of the symbolic computations. These have been performed using some software

entirely written by us and implemented in the symbolic manipulation program MATHEMATICA. This allows the

reduction to scalar form of tensor integrals for correlators of rank-4 with the triangle topology. The software alllows

to perform direct tests of all the Ward and Slavnov-Taylor identities on the correlator, which are crucial in order

to secure the correctness of the result.

7.1 Γµναβ(p, q) and the terms of improvement

Before giving the results for the anomalous correlators, we pause for some comments.

In our computations the gravitational field is non-dynamical and the analysis of the Ward and STI’s shows that

these can be consistently solved only if we include the graviton-Higgs mixing on the graviton line. In other words,

the graviton line is uncut. We will denote with ∆µναβ(p, q) these extra contributions and with Σµναβ(p, q) the

completely cut vertex. These two contributions appear on the right-hand-side of the expression of the correlation

function Γµναβ(p, q)

Γµναβ(p, q) = Σµναβ(p, q) +∆µναβ(p, q). (136)

Finally, we just mention that we have excluded from the final expressions of the vertices all the contributions at

tree-level. For this reason our results are purely those responsible for the generation of the anomaly.
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Figure 13: Amplitudes with the t-bubble topology for the correlator TZZ.
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Figure 14: Amplitudes with the s-bubble topology for the correlator TZZ.

of the SM. In this second case, the scaleless contribution associated with the exchange of a massless state (i.e. the

1/s term) is corrected by other terms which are suppressed as powers of m2
f/s. This pattern, as we are going to

show, is general.

The other gauge-invariant sector of the TAA vertex is the one mediated by the exchange of bosons and ghosts

in the loop. In this sector the form factors are given by

Φ1B(s, 0, 0, M
2
W ) = −i

κ

2

α

π s

{
5

6
− 2M2

W

s
+ 2M2

W C0(s, 0, 0,M2
W ,M2

W ,M2
W )

[
1− 2M2

W

s

]}
,

(147)

Φ2B(s, 0, 0, M
2
W ) = −i

κ

2

α

π s

{
1

24
+

M2
W

2 s
+

3M2
W

2 s
D0(s, 0, 0,M

2
W ,M2

W )

+
M2

W

2
C0(s, 0, 0,M2

W ,M2
W ,M2

W )

[
1 +

2M2
W

s

]}
, (148)

Φ3B(s, 0, 0, M
2
W ) = −i

κ

2

α

π s

{
− 15 s

8
− 3M2

W

2
− 1

2
D0(s, 0, 0,M

2
W ,M2

W )
[
5M2

W + 7 s
]

− 3

4
sB0(0,M

2
W ,M2

W )− C0(s, 0, 0,M2
W ,M2

W ,M2
W )
[
s2 + 4M2

W s+ 3M4
W

]}
. (149)

As in the previous case, we focus our attention on Φ1B, which multiplies the tensor structure φ1, responsible for

the generation of the anomalous trace. In this case the contribution of the anomaly pole is isolated in the form

Φ1B,pole ≡ −i
κ

2

α

π s

5

6
. (150)

It is clear, also in this case, that in the massless limit (MW = 0), i.e. in the symmetric phase of the theory, this pole

is completely responsible for the generation of the anomaly. At the same time, at high energy (i.e. for s ≫ M2
W )

the massless exchange can be easily exposed as a dominant contribution to the trace part of the correlator. Notice

that, in general, the correlator has other 1/s singularities in the remaining form factors and even constant terms

which are unsuppressed for a large s, but these are not part of the trace.

The contributions coming from the term of improvement are characterized just by two form factors

Φ1 I(s, 0, 0, M
2
W ) = −i

κ

2

α

3π s

{
1 + 2M2

W C0(s, 0, 0,M
2
W ,M2

W ,M2
W )

}
, (151)

Φ4 I(s, 0, 0, M
2
W ) = i

κ

2

α

6π
M2

W C0(s, 0, 0,M
2
W ,M2

W ,M2
W ) . (152)
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Abstract

We discuss the signature of the anomalous breaking of the superconformal symmetry in N = 1 super

Yang Mills theory, mediated by the Ferrara-Zumino hypercurrent (J ) with two vector (V) supercurrents
(JVV) and its manifestation in the anomaly action, in the form of anomaly poles. This allows to inves-

tigate in a unified way both conformal and chiral anomalies. The analysis is performed in parallel to the

Standard Model, for comparison. We investigate, in particular, massive deformations of the N = 1 theory

and the spectral densities of the anomaly form factors which are extracted from the components of this

correlator. In this extended framework it is shown that all the anomaly form factors are characterized by

spectral densities which flow with the mass deformation. In particular, the continuum contributions from

the two-particle cuts of the intermediate states turn into into poles in the zero mass limit, with a single

sum rule satisfied by each component. Non anomalous form factors, instead, in the same anomalous corre-

lators, are characterized by non-integrable spectral densities. These tend to uniform distributions as one

moves towards the conformal point, with a clear dual behaviour. As in a previous analysis of the dilaton

pole of the Standard Model, also in this case the poles can be interpreted as signaling the exchange of a

composite dilaton/axion/dilatino (ADD) multiplet in the e↵ective Lagrangian. The pole-like behaviour

of the anomaly form factors is shown to be a global feature of the correlators, present at all energy scales,

due to the sum rules. A similar behaviour is shown to be present in the Konishi current, which identifies

additional composite states. We conclude that global anomalous currents characterized by a single flow in

the perturbative picture always predict the existence of composite interpolating fields. In case of gauging

of these currents, as in superconformal theories coupled to gravity, we show that the cancellation of the

corresponding anomalies requires either a vanishing � function or the inclusion of an extra gravitational

sector which e↵ectively sets the residue at the anomaly poles of the gauged currents to vanish.
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N=1	SYM	theory	shares	a	similar	behaviour.	it	is	clearly	universal

where the symbol | on the right indicates that the quantity is evaluated at ✓ = ✓̄ = 0.

Notice that in the above equations the F - and D-terms have been removed exploiting their equations of

motion. Having defined the model, we can introduce the Ferrara-Zumino hypercurrent

J
AȦ

= Tr
⇥
W̄

Ȧ
eV WAe

�V ⇤� 1

3
�̄

 
r̄

Ȧ
eV rA � eV D̄

Ȧ
rA+

 
r̄

Ȧ

 
DA eV

�
� , (21)

where rA is the gauge-covariant derivative in the superfield formalism whose action on chiral superfields is

given by

rA� = e�V DA

�
eV �

�
, r̄

Ȧ
�̄ = eV D̄

Ȧ

�
e�V �̄

�
. (22)

The conservation equation for the hypercurrent J
AȦ

is

D̄ȦJ
AȦ

=
2

3
DA


� g2

16⇡2
(3T (A)� T (R)) TrW 2 � 1

8
� D̄2(�̄eV �) +

✓
3W(�)� �

@W(�)

@�

◆�
, (23)

where � is the anomalous dimension of the chiral superfield.

The first two terms in Eq. (23) describe the quantum anomaly of the hypercurrent, while the last is of

classical origin and it is entirely given by the superpotential. In particular, for a classical scale invariant

theory, in which W is cubic in the superfields or identically zero, this term identically vanishes. If, on

the other hand, the superpotential is quadratic the conservation equation of the hypercurrent acquires a

non-zero contribution even at classical level. This describes the explicit breaking of the conformal symmetry.

We can now project the hypercurrent J
AȦ

defined in Eq.(21) onto its components. The lowest component

is given by the Rµ current, the ✓ term is associated with the supercurrent Sµ

A
, while the ✓✓̄ component con-

tains the energy-momentum tensor Tµ⌫ . In the N = 1 super Yang-Mills theory described by the Lagrangian

in Eq. (17), these three currents are defined as

Rµ = �̄a�̄µ�a +
1

3

⇣
��̄i�̄

µ�i + 2i�†
i
Dµ

ij
�j � 2i(Dµ

ij
�j)

†�i

⌘
, (24)

Sµ

A
= i(�⌫⇢�µ�̄a)AF

a

⌫⇢ �
p
2(�⌫ �̄

µ�i)A(D⌫

ij�j)
† � i

p
2(�µ�̄i)W†

i
(�†)

� ig(�†
i
T a

ij�j)(�
µ�̄a)A + Sµ

I A
, (25)

Tµ⌫ = �F aµ⇢F a ⌫
⇢ +

i

4


�̄a�̄µ(�ac

!
@⌫ �g tabcAb ⌫)�c + �̄a�̄µ(��ac

 
@⌫ �g tabcAb ⌫)�c + (µ $ ⌫)

�

+ (Dµ

ij
�j)

†(D⌫

ik
�k) + (D⌫

ij�j)
†(Dµ

ik
�k) +

i

4


�̄i�̄

µ(�ij
!
@⌫ +igT a

ijA
a ⌫)�j

+ �̄i�̄
µ(��ij

 
@⌫ +igT a

ijA
a ⌫)�j + (µ $ ⌫)

�
� ⌘µ⌫L+ Tµ⌫

I
, (26)

where L is given in Eq.(17) and Sµ

I
and Tµ⌫

I
are the terms of improvement in d = 4 of the supercurrent and

of the EMT respectively. As in the non-supersymmetric case, these terms are necessary only for a scalar

field and, therefore, receive contributions only from the chiral multiplet. They are explicitly given by

Sµ

I A
=

4
p
2

3
i
h
�µ⌫@⌫(�i�

†
i
)
i

A

, (27)

Tµ⌫

I
=

1

3

�
⌘µ⌫@2 � @µ@⌫

�
�†
i
�i . (28)

11

th	supercurren	combines	a	stress	energy	tensor,	a	chiral	and	a	susy	anomaly

The terms of improvement are automatically conserved and guarantee, for W(�) = 0, upon using the

equations of motion, the vanishing of the classical trace of Tµ⌫ and of the classical gamma-trace of the

supercurrent Sµ

A
.

The anomaly equations in the component formalism, which can be projected out from Eq. (23), are

@µR
µ =

g2

16⇡2

✓
T (A)� 1

3
T (R)

◆
F aµ⌫F̃ a

µ⌫ , (29)

�̄µS
µ

A
= �i

3 g2

8⇡2

✓
T (A)� 1

3
T (R)

◆�
�̄a�̄µ⌫

�
A
F a

µ⌫ , (30)

⌘µ⌫T
µ⌫ = � 3 g2

32⇡2

✓
T (A)� 1

3
T (R)

◆
F aµ⌫F a

µ⌫ . (31)

The first and the last equations are respectively extracted from the imaginary and the real part of the ✓

component of Eq.(23), while the gamma-trace of the supercurrent comes from the lowest component.

5 The perturbative expansion in the component formalism

In this section we will present the one-loop perturbative analysis of the one-particle irreducible correlators,

built with a single current insertion contributing - at leading order in the gauge coupling constant - to the

anomaly equations previously discussed.

We define the three correlation functions, �(R), �(S) and �(T ) as

�ab �µ↵�

(R) (p, q) ⌘ hRµ(k)Aa↵(p)Ab�(q)i hRV V i ,

�ab �µ↵

(S)AḂ
(p, q) ⌘ hSµ

A
(k)Aa↵(p) �̄b

Ḃ
(q)i hSV F i ,

�ab �µ⌫↵�

(T ) (p, q) ⌘ hTµ⌫(k)Aa↵(p)Ab�(q)i hTV V i , (32)

with k = p+ q and where we have factorized, for the sake of simplicity, the Kronecker delta on the adjoint

indices. These correlation functions have been computed at one-loop order in the dimensional reduction

scheme (DRed) using the Feynman rules listed in Appendix E. We recall that in this scheme the tensor

and scalar loop integrals are computed in the analytically continued spacetime while the sigma algebra is

restricted to four dimensions.

In order to provide more details, we will present the results for the matter chiral and gauge vector multiplets

separately, for on-shell external gauge lines. The chiral contribution will be discussed first, and the result

will be given with the inclusion of the corresponding mass corrections.

Notice that the matter chiral superfield belongs to a certain representation R of the gauge group. If the

representation is complex, for instance the fundamental of SU(N), then the superfield must be accompanied

by another superfield (eventually with the same mass) belonging to the complex-conjugate representation

R̄. In this case, the generator T̄ a of R̄ are related to those of R by the equation T̄ a = �(T a)T = �(T a)⇤. For

simplicity, in the following we will consider just the case of a single chiral superfield in a real representation

of the gauge group. The extension to a complex representation amounts just to a factor of 2 in front of

12
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Figure 2: The one-loop perturbative expansion of the hRV V i correlator with a massless chiral multiplet

running in the loops.
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Figure 3: The one-loop perturbative expansion of the hSV F i correlator with a massless chiral multiplet

running in the loops.

-Three-point function of the Rµ current

The diagrams defining the one-loop expansion of the �(R) correlator are shown in Fig. (2). They consist of

triangle and bubble topologies with fermions, since the scalars do not contribute. The explicit result for a

massless chiral multiplet with on-shell external gauge bosons is given by

�µ↵�

(R) (p, q) = �i
g2 T (R)

12⇡2

kµ

k2
"[p, q,↵,�] , (43)

The correlator in Eq.(43) satisfies the vector current conservation constraints given in Eq.(41) and the

anomalous equation of Eq.(29)

ikµ �
µ↵�

(R) (p, q) =
g2 T (R)

12⇡2
"[p, q,↵,�] . (44)

There is no much surprise, obviously, for the anomalous structure of Eq. (43) which is characterized by a

pole 1/k2 term, since in the on-shell case and for massless fermions (which are the only fields contributing

to the hRV V i at this perturbative order), we recover the usual structure of the hAV V i diagram.

-Three-point function of the Sµ

A
current

The perturbative expansion of the �µ↵

(S)AḂ
correlation function is depicted in Fig. (3). For simplicity we

will remove, from now on, the spinorial indices from the corresponding expressions. The explicit result for
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Ḃ
(q)

Aa↵(p)

(d)

Figure 3: The one-loop perturbative expansion of the hSV F i correlator with a massless chiral multiplet

running in the loops.

-Three-point function of the Rµ current

The diagrams defining the one-loop expansion of the �(R) correlator are shown in Fig. (2). They consist of

triangle and bubble topologies with fermions, since the scalars do not contribute. The explicit result for a
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There is no much surprise, obviously, for the anomalous structure of Eq. (43) which is characterized by a

pole 1/k2 term, since in the on-shell case and for massless fermions (which are the only fields contributing

to the hRV V i at this perturbative order), we recover the usual structure of the hAV V i diagram.
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Figure 4: The one-loop perturbative expansion of the hTV V i correlator with a massless chiral multiplet

running in the loops. The last diagram, being a massless tadpole, is identically zero in dimensional regular-

ization.

a massless chiral supermultiplet with on-shell external gauge and gaugino lines is then given by

�µ↵

(S)(p, q) = �i
g2T (R)

6⇡2 k2
sµ↵1 + i

g2T (R)

64⇡2
�2(k

2, 0) sµ↵2 , (45)

where the form factor �2(k2, 0) is defined as

�2(k
2, 0) = 1� B0(0, 0) + B0(k

2, 0) , (46)

and the two tensor structures are

sµ↵1 = �µ⌫k⌫ �
⇢k⇢ �̄

↵�p� ,

sµ↵2 = 2p� �
↵��µ . (47)

The B0 function appearing in Eq.(46) is a two-point scalar integral defined in Appendix A. Notice that

the form factor multiplying the second tensor structure s2 is ultraviolet finite, due to the renormalization

procedure, but has an infrared singularity inherited by the counterterms in Eq. (34).

It is important to observe that the only pole contribution comes from the anomalous structure sµ↵1 , which

shows that the origin of the anomaly has to be attributed to a unique fermionic pole (�⇢k⇢/k2) in the

correlator, in the form factor multiplying sµ↵1 . It is easy to show that Eq. (45) satisfies the vector current

and EMT conservation equations. Moreover, the anomalous equation reads as

�̄µ �
µ↵

(S)(p, q) =
g2T (R)

4⇡2
�̄↵�p� , (48)
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Figure 10: The collinear diagrams corresponding to the exchange of a composite axion (top right), a dilatino

(top left) and the two sectors of an intermediate dilaton (bottom). Dashed lines denote intermediate scalars.

We recall that in the N = 4 theory the spectrum contains a gauge field Aµ, four complex fermions �i

(i = 1, 2, 3, 4) and six real scalars �ij = ��ji (i, j = 1, 2, 3, 4). All fields are in the adjoint representation of

the gauge group.

From the point of view of the N = 1 SYM, this theory can be interpreted as describing a vector and

three massless chiral supermultiplets, all in the adjoint representation. Therefore the hTV V i correlator in

N = 4 can be easily computed from the general expressions in Eqs (51) and (59) which give

�µ⌫↵�

(T ) (p, q) =
g2 T (A)

16⇡2

⇥
V (k2) + 3�2(k

2, 0)
⇤
tµ⌫↵�2S (p, q) = �g2 T (A)

8⇡2
k2 C0(k2, 0) tµ⌫↵�2S (p, q) . (161)

One can immediately observe from the expression above the vanishing of the anomalous form factor propor-

tional to the tracefull tensor structure tµ⌫↵�1S . The partial contributions to the same form factor, which can

be computed using Eqs. (51) and (59) for the various components, are all a↵ected by pole terms, but they

add up to give a form factor whose residue at the pole is proportional to the � function of the N = 4 theory.

It is then clear that the vanishing of the conformal anomaly, via a vanishing � function, is equivalent to the

cancellation of the anomaly pole for the entire multiplet.

Notice also that the only surviving contribution in Eq. (161), proportional to the traceless tensor structure

tµ⌫↵�2S , is finite. This is due to the various cancellations between the UV singular terms from V (k2) and

�2(k2, 0) which give a finite correlator without the necessity of any regularization.

We recall that the cancellation of infinities and the renormalization procedure, as we have already seen

in the N = 1 case, involves only the form factor of tensor tµ⌫↵�2S , which gets renormalized with a counterterm

proportional to that of the two-point function hAAi, and hence to the gauge coupling. For this reason the

finiteness of the second form factor and then of the entire hTV V i in N = 4 is directly connected to the

vanishing of the anomalous term, because its non-renormalization naturally requires that the � function has

to vanish.
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A	nonlocal	action	
is	responsible	 for	this	behaviour

In	each	sector,	only	1	form	factor	is	responsible	 for	the	anomaly.	

Dispersion	 relation	for	the	anomaly	for	factor,	away	from	the	
conformal	 limit.	As	mà0,	the	branch	cut	turns	into	a	pole.	

0 2 4 6 8
s

0.2

0.4

0.6

0.8

1.0

ΡΧ!Π

Figure 6: Representatives of the family of spectral densities ⇢�
(n)

⇡
(s) plotted versus s in units of m2. The

family ”flows” towards the s = 0 region becoming a �(s) function as m2 goes to zero.

From the two branches encountered with the ±i✏ prescriptions, the discontinuity is then present only for

k2 > 4m2, as expected from unitarity arguments, and the result for the discontinuity, obtained using the

definition in Eq. (76), clearly agrees with Eq. (77), computed instead by the cutting rules.

The dispersive representation of C0(k2,m2) in this case is written as

C0(k2,m2) =
1

⇡

Z 1

4m2
ds

⇢(s,m2)

s� k2
, (79)

which, for k2 < 0 gives the identity

Z 1

4m2

ds

(s� k2)s
log

 
1 +

p
⌧(s,m2)

1�
p

⌧(s,m2)

!
= � 1

2k2
log2

p
⌧(k2,m2) + 1p
⌧(k2,m2)� 1

, (80)

with ⇢(s,m2) given by Eqs. (75) and (77). The identity in Eq. (80) allows to reconstruct the scalar integral

C0(k2,m2) from its dispersive part.

Having determined the spectral function of the scalar integral C0(k2,m2), we can extract the spectral

density associated with the anomaly form factors in Eqs. (61), (62), (63) and (74), which is given by

�(k2,m2) ⌘ �1(k
2,m2)/k2, (81)

and which can be computed as

Disc�(k2,m2) = �(k2 + i✏,m2)� �(k2 � i✏,m2) = �Disc

✓
1

k2

◆
� 2m2Disc

✓
C0(k2,m2)

k2

◆
. (82)
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we are going to show next, share a similar behaviour. We would expect, though, that the breaking of a

symmetry should manifest in the apperance of a massless state in the spectrum of the e↵ective theory, and in

this respect the saturation of the spectral density with a single resonance in an anomaly form factor acquires

a special status. Elaborating on Eq. (1), one can show that the e↵ect of the anomaly is, in general, related

to the behaviour of the spectral density at any values of s, although, in some kinematical limits, it is the

region around the light cone (s ⇠ 0) which dominates the sum rule, and amounts to a resonant contribution.

In fact, the combination of the scaling behaviour of the corresponding form factor F (Q2) (equivalently of

its density ⇢) with the requirement of integrability of the spectral density, essentially fix f to be a constant

and the sum rule (1) to be saturated by a single massless resonance. Obviously, a superconvergent sum rule,

obtained for f = 0, would not share this behaviour. At the same time, the absence of subtractions in the

dispersion relations guarantees the significance of the sum rule, being this independent of any ultraviolet

cuto↵.

It is quite straightforward to show that Eq. (1) is a constraint on asymptotic behaviour of the related

form factor. The proof is obtained by observing that the dispersion relation for a form factor in the spacelike

region (Q2 = �k2 > 0)

F (Q2,m2) =
1

⇡

Z 1

0
ds

⇢(s,m2)

s+Q2
, (2)

once we expand the denominator in Q2 as 1
s+Q2 = 1

Q2 � 1
Q2 s

1
Q2 + . . . and make use of Eq. (1), induces the

following asymptotic behaviour on F (Q2,m2)

lim
Q2!1

Q2F (Q2,m2) = f. (3)

The F ⇠ f/Q2 behaviour at large Q2, with f independent of m, shows the pole dominance of F for

Q2 ! 1. The UV/IR conspiracy of the anomaly, discussed in [31, 32, 20], is in the reappearance of the pole

contribution at very large value of the invariant Q2, even for a nonzero mass m. In fact, as we are going

to show in the following sections, the spectral density has support around the s = 0 region (⇢(s) ⇠ �(s)),

as in the massless (m = 0) case. This point is quite subtle, since the flows of the spectral densities with

m show the decoupling of the anomaly pole for a nonzero mass. Here, the term decoupling will be used

to refer to the non resonant behaviour of ⇢. Therefore, the presence of a 1/Q2 term in the anomaly form

factors is a property of the entire flow which a) converges to a localized massless state (i.e. ⇢(s) ⇠ �(s))

as m ! 0, while b) the presence of a non vanishing sum rule guarantees the validity of the asymptotic

constraint illustrated in Eq. (3). Notice that although for conformal deformations driven by a single mass

parameter the independence of the asymptotic value f on m is a simple consequence of the scaling behaviour

of F (Q2,m2), it holds quite generally even for a completely o↵-shell kinematics [19].

In summary, in complete agreement with a previous analysis by Giannotti and Mottola [19], we are going

to verify that for a generic supersymmetric N = 1 theory, the two basic features of the anomalous behaviour

of a certain form factor responsible for chiral or conformal anomalies are: 1) the existence of a spectral flow

which turns a dispersive cut into a pole as m goes to zero and 2) the existence of a sum rule which relates

the asymptotic behaviour of the anomaly form factor to the strength of the pole resonance.
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(a)

Figure 7: 3-D Plot of the spectral density ⇢� in the variables s and m2.

which is the analogue of Eq. (80).

As we have anticipated above, a crucial feature of these spectral densities is the existence of a sum rule.

In this case it is given by
1

⇡

Z 1

4m2
ds⇢�(s,m

2) = 1. (92)

At this point, to show the convergence of the family of spectral densities to a resonant behaviour, it is

convenient to extract a discrete sequence of functions, parameterized by an integer n and let n go to infinity.

⇢(n)� (s) ⌘ ⇢�(s,m
2
n) with m2

n =
4m2

n
. (93)

One can show that this sequence {⇢(n)� } then converges to a Dirac delta function

lim
m!0

⇢�(s,m
2) = lim

m!0

2⇡m2

s2
log

 
1 +

p
⌧(s,m2)

1�
p
⌧(s,m2)

!
✓(s� 4m2) = ⇡�(s) (94)

in a distributional sense. We have shown in Fig. (6), on the left, the sequel of spectral densities which

characterize the flow as we turn the mass parameter to zero. The area under each curve is fixed by the
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This	action	predicts	a	certain	structure	for	multiple	correlators	of	stress	energy	tensors	
TTT in CFT: Trace Identities and the Conformal Anomaly Effective Action.
Matteo Maria Maglio, Emil Mottola, C.C.

[arXiv:1703.08860 [hep-th]].



These	effective	interactions	
mediated	by	"anomaly	poles"
are	now	used	in	the	theory	
os	topological	 insulators	and	in	Weyl	
semimetals	

Mottola,	GIannotti
Armillis,	Delle	Rose,	C.C.

QED

Maglio,	C.C.



The	nonlocal	action	is	part	of	a	general	construct	which	is	the	"true"	anomaly	action.	

To	define	such	a	"true"	action,	we	should	change	our	perspective	and	not	simply	solve	a	variational	problem	
either	with	or	without	a	dilaton,	but	compute	– as	far	as	we	can	– directly	from	CFT's	
the	correlation	function	of	multiple	 stress-energy	tensors.

Use	conformal	Ward	
identities.



Studies	of	the	exact	Conformal	Anomaly	Action

Renormalization, Conformal Ward 
Identities and the Origin of a Conformal 
Anomaly Pole.
Matteo Maria Maglio, C.C.

[arXiv:1802.01501 [hep-th]].
10.1016/j.physletb.2018.04.003.

Exact	Correlators	from	Conformal	Ward	Identities	in	Momentum	Space	and	the	PerturbativeTJJ Vertex
Matteo	Maria	Maglio ,	C.C. e-Print: arXiv:1802.07675 to	appear	on	Nucl. Phys.	B

Maglio,	C.C.

Maglio,	C.C.

Maglio,	C.C.

COMPUTE				TT,	TTT,	TTTT	vertices	exactly!



Anomalous	breakings	are	controlled	by	a	limited	number	of	constants,	at	least	for	
correlators	of	lower	orders	(up to	3	point	functions).	

Reconstruction	in	momentum	space	for	tensor	correlators,		
Bzowski,	McFadden,	Skenderis 2014-2017

Osborn	and	Petkou

in	the	scalar	case	investigated	by Delle	Rose,Mottola,	Serino,	C.C.

use	the	transverse	traceless	sector	to	build	the	entire	correlator



transverse-traceless	+		local	terms.	This	introduces	a	minimal	number	of	 form	factors	in	the	correlator.	
decomposition

the	formalism	is	
very	heavy

BMS

tensor	correlators

special	conformal	equations

dilatations



For	3-point	functions,	in	D=3	and	D=4	CFT's	
are	exactly	matched	by	free	field	theories	with	a	specific	numbers	of	
scalars,	fermions	and	spin	1	



Lorentz	Ward	identities	 	(Maglio,	C.C.)

Appell	
Campes	de	Feriet

Solutions	 expressed	in	terms	of	3K	integrals	(Bzowski,	McFadden,	Skenderis)
or	built	directly	using	 the	F4	(universality	of	 the	Fuchsian	points	of	such	systems	of	equations)	 	(Maglio,	C.C.)



Maglio,	C.C.

BMS

TTT 3-graviton	vertex



The	renormalization	program	 in	D=4	is	very	involved,	especially	in		either	formalism	
(3K	or	Fuchsian).	

But	is	can	be	bypassed

Use	different	free	field	theory	sectors	and	show	that	the	nonperturbative	 and	the	perturbative	solutons	
match	(Maglio,	C.C.)



Simplifications	

Free	field	 theory	in	d=4	can	be	used	to	simplify	 the	solutions

Maglio,	C.C.

All	the	form	 factors	take	a	lengthy	but	simple	form,	with	
renormalized	anomalous	CWI's	in	terms	of	the	free	field	content	

by	superimposing	3	sectors	(scalar,	fermion,	gauge)
one	generates	the	entire	nonperturbative	solution.



Result:	

One	derives	the	exact	renormalized	TTT		as	a	vertex		(before	any	trace)
in	a	simple	form,	expressed	uniquely	 in	terms	of	B0	and	C0	integrals		

It	is	given	by	the	anomaly	terms	+	one	traceless	contribution	

the	anomaly	(trace)	terms	are	in	agreement	with	those	predicted	by	Riegert's	action.	
The	trace-free	parts	are	associated	to	the	renormalized	 form	factors	in	terms	of	the	
scalar	2	and	3	point	 functions	B0	and	C0	

The	match	has	been	checled	in	d=3	and	d=5,	where	there	is	perfect	agreement



There	are	two	significant	version	of	the	anomaly	action

1.	WZ	for	with	an	asymptotic	dilaton	field.	This	is	introduced	 by	hand,	
enlarging	 the	number	of	degrees	of	freedom	

2.	The	exact,	computable	 form	(at	least	up	to	3-point	 functions)	
obtained	by	solving	 the	conformal	constraints.	

They	both	contain	information	 about	the	breaking	of	a	conformal	 symmetry.	

They	may	describe	two	phases		of	the	same	theory	(UV/IR)

in	d=4	free	field	 theory	saturates	the	exact	solution	by	adding	independent	 sectors
and	performing	 a	matching.	
The	approach	can	be	extended	to	TTTT.	This	will	give	a	new	perspective	on	the	
a-theorem	and	the	irreversibility	of	the	RG	flow,	which	has	been	discussed	
only	using	an	external	compensator.

Conclusions


