

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik

- **1. Motivation for plasma wakefield acceleration**
- 2. How it works & challenges
- **3. The AWAKE project: evolution and current status**
- 4. Long-term perspectives

Even larger Accelerators ?

The Future Circular Collider Study (FCC) is developing designs for a higher performance particle collider to extend the research currently being conducted at the Large Hadron Collider (LHC), once the latter reaches the end of its lifespan.

COLLISION COURSE

Energy limit of circular proton collider

 $P\propto B\cdot R$

Particle physicists around the world are designing colliders that are much larger in size than the Large Hadron Collider at CERN, Europe's particle-physics laboratory.

Linear Colliders are expensive with today's gradients

e⁺e⁻ collisions at 500–1000 GeV

In metallic structures surfaces break down if fields too high \rightarrow electric discharges. Current practical limit (CLIC): order of 100 MV/m accelerating field.

A plasma: collection of free positive and negative charges (ions and electrons). Material is already broken down. A plasma can therefore **sustain very high fields.**

E. Adli, Oslo

An intense **particle beam**, or intense **laser beam**, can be used to drive the plasma electrons.

Electron Trailing pulse Acceleration Plasma Electron bubble Electron bubble

C. Joshi, UCLA

Plasma frequency depends only on density:

$$\omega_p^2 = \frac{4\pi n_p e^2}{m} \qquad \lambda_p = \frac{2\pi}{k_p} = 1mm \sqrt{\frac{1 \cdot 10^{15} \text{ cm}^{-3}}{n_p}}$$

Ideas of ~100 GV/m electric fields in plasma, using 10¹⁸ W/cm² lasers: 1979 T.Tajima and J.M.Dawson (UCLA), Laser Electron Accelerator, Phys. Rev. Lett. 43, 267–270 (1979). Using partice beams as drivers: P. Chen et al. Phys. Rev. Lett. 54, 693–696 (1985)

Laser Wakefield Acceleration

Acceleration is <u>DEPLETION-LIMITED</u>

i.e., the lasers do not have enough energy to accelerate a bunch of particles to very high energies

e.g.,

$$10^{10} \text{ electrons} \cdot 10^{12} \text{ eV} \cdot 1.6 \cdot 10^{-19} \text{ J/eV} = kJ$$

This is orders of magnitude larger than laser energy today¹.

If use several lasers – need to have relative timing in the 10's of fs range, scheme for getting rid of spent laser beam, introducing new beam, etc ...

¹ with useful repetition rate; i.e., not the NIF laser

Strawman Design of a TeV LPA Collider

Leemans & Esarey, Physics Today, March 2009

.....

Laser Wakefield Acceleration

The situation could change.

There are very interesting developments ongoing in the Laser community that could have great impact on a future Laser Driven PWA.

IZEST/ICAN – coherent amplification network. Many fiber lasers in phase could bring needed energy, rep rate and efficiency.

outhampton

Fraunhofer

Electron driven PWA

50 GeV/m gradients have been demonstrated with electron beam drivers.

Are electrons the obvious drivers ???

There is a limit to the energy gain of a trailing bunch in the plasma:

$$R = \frac{\Delta T^{\text{witness}}}{\Delta T^{\text{drive}}} \le 2 \quad \text{T is the kinetic energy}$$

(for longitudinally symmetric bunches).

See e.g. SLAC-PUB-3374, R.D. Ruth et al.

This means many stages required to produce a 1TeV electron beam from known electron beams (SLAC had 45 GeV)

Proton Drivers for PWFA

Proton bunches as drivers of plasma wakefields are interesting because of the very large energy content of the proton bunches.

X, mm

Drivers:

PW lasers today, ~40 J/Pulse

FACET (e beam, SLAC), 30J/bunch

SPS@CERN 20kJ/bunch LHC@CERN 300 kJ/bunch

Witness: 10¹⁰ particles @ 1 TeV ≈ few kJ

A. Caldwell, K. Lotov, A. Pukhov, F. Simon, Nature Physics 5, 363 (2009).

Basic Aspects Small beam dimensions required !

Feynman Lectures, CalTech

Summy E', B'in moving system $E'_{1} = E_{2}$ Electric field from a charge moving at const. velocity V: Field lines Radial coulomb pecture squashed by JI-V/22 Present position B=VxE/c2 - stronger by -Weaken by 1- Vez $E_{z,\max} \approx 2 \text{ GeV/m} \cdot \left(\frac{N_b}{10^{10}}\right) \cdot \left(\frac{100 \ \mu\text{m}}{\sigma}\right)^2$ -4 -2 0 $\sigma_z \approx 10 - 30 \text{ cm}$ Today's proton beams have **Z**, mm

Basic Aspects

Phase slippage (protons 2000 times heavier than electrons) ?

Basic Aspects

LHCb event display

$$\lambda = \frac{1}{n\sigma}$$
 $n = 1 \cdot 10^{15} \text{ cm}^{-3} \Rightarrow \lambda > 1000 \text{ km}$

Fundamental issue: **proton bunch length**. Can we squeeze the protons together to increase the electric field strength & plasma Wakefield ?

To compress a bunch longitudinally, trajectory in dispersive region must be shorter for tail of the bunch than it is for the head.

It works - but it takes a lot of space & expensive

See A. Caldwell, G. Xia et al., Preliminary study of proton driven plasma wakefield acceleration, Proceedings of PAC09, May 3-8, 2009, Vancouver, Canada

Modulated Proton Beam

Solution ! microbunches are generated by the interaction between the bunch and the plasma. The microbunches are naturally spaced at the plasma wavelength, and act constructively to generate a strong plasma wake. Investigated both numerically and analytically.

N. Kumar, A. Pukhov, and K. V. Lotov, Phys. Rev. Lett. 104, 255003 (2010)

Propagation of a 'cut' proton bunch in a plasma. From Wei Lu, Tsinghua University

The self-modulation instability

The **radial fields** of the wake modulate the beam density, creating m**icrobunches** spaced at the plasma wavelength.

The microbunches leads to **resonant build-up** of strong wake fields (of order GV/m).

Graphics: E. Adli, Olso

Seeded self-modulation

The self-modulation can be seeded by a sharp start of the beam (or beam-plasma interaction).

History

2009 driven

First workshop at CERN to discuss potential of proton-PWA.

2011 June meeting of the SPSC – Letter of Intent to perform experiment (TT4/5 area).

2012 June meeting in Lisbon – AWAKE Collaboration officially formed

2013 April meeting of the SPSC – Design Report. Use CNGS area

Significant reduction in cost from re-using existing facility ! Positive recommendation from SPSC. Approval from Research Board August 2013.

Experimental program started end 2016.

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam (Single bunch 3e11 protons at 400 GeV)
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven plasma wakefield experiment worldwide
- AWAKE Collaboration: 16 Institutes world-wide:

John Adams Institute for Accelerator Science Budker INP & Novosibirsk State University CERN

Cockcroft Institute Heinrich Heine University, Düsseldorf Instituto Superior Tecnico, Lisbon Imperial College UNIST, Korea Ludwig Maximilian University Philipps-Universität Marburg Max Planck Institute for Physics Max Planck Institute for Physics Max Planck Institute for Plasma Physics Rutherford Appleton Laboratory TRIUMF University College London University of Oslo + 3 Associate members:

Swiss Plasma Center, EPFL Wigner Institute, Hungary University of Wisconsin

AWAKE at CERN

A. Caldwell et al., "Path to AWAKE: Evolution of the concept", Nucl. Instrum. Meth. A829 (2016) 3-16; E. Gschwendtner et al. [AWAKE Collaboration], "AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN," Nucl. Instrum. Meth. A829, 76 (2016). AWAKE is installed in CNGS Facility (CERN Neutrinos to Gran Sasso)

- \rightarrow CNGS physics program finished in 2012

750m proton beam line

AWAKE: Experimental Program

Success !

fields !

Observation of Seeded SMI

Streak camera Images

Streak camera Images

10 events each

Summary of OTR and CTR results

of plasma densities.

AWAKE Experimental Program

- Phase 1: Understand the physics of self-modulation instability.
- Phase 2: Probe the accelerating wakefields with externally injected electrons.

Electron Line

Electron Acceleration Results II

- Consecutive electron injection events at n_{pe} = 1.8 x 10¹⁴cm⁻³.
- **Quadrupole scan** performed over this period.
- Stability crucial for further development.

Electron Acceleration Results III

Run II (2021-2024)

Goals:

- stable acceleration of bunch of electrons with high gradients over long distances
- 'good' electron bunch emittance at plasma exit

Require:

- Compressed proton beam in SPS
- Short electron bunch with higher energy for loading wakefield
- Density step in plasma for freezing modulation
- Alternative plasma cell developments

O. Grülke, IPP O. Schmitz, Wisconsin

Particle Physics Perspectives

Started considering:

- Physics with a high energy electron beam
 - E.g., search for dark photons
- Physics with an electron-proton or electron-ion collider
 - Low luminosity version of LHeC
 - Very high energy electron-proton, electron-ion collider

Are there fundamental particle physics topics for high energy but low luminosity colliders ?

I believe – yes ! Particle physicists will be interested in going to much higher energies, even if the luminosity is low.

In general – start investigating the particle physics potential of an AWAKE-like acceleration scheme.

VHEeP

(Very High Energy electron-Proton collider)

Choose $E_e = 3$ TeV as a baseline for a new collider

with $E_p = 7$ TeV yields $\sqrt{s} = 9$ TeV. Can vary.

Centre-of-mass energy ~30 higher than HERA.
Reach in (high) Q² and (low) Bjorken x
extended by ~1000 compared to HERA.

- Opens new physics perspectives

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

One proton beam used for electron acceleration to then collide with other proton beam

Luminosity ~ $10^{28} - 10^{29}$ cm⁻² s⁻¹ gives ~ 1 pb–1 per year.

Electron energy from wakefield acceleration by LHC bunch

A. Caldwell, K. V. Lotov, Phys. Plasmas **18**, 13101 (2011)

LHeC-like

Focus on QCD:

- Large cross sections low luminosity (HERA level) enough
- Many open physics questions !
- Consider high energy ep collider with Ee up to O(50 GeV), colliding with LHC proton; e.g. Ee = 10 GeV, Ep = 7 TeV, Vs = 530 GeV already exceeds HERA cm energy.

G. Xia et al., Nucl. Instrum. Meth. A 740 (2014) 173.

Create ~50 GeV beam within 50–100 m of plasma driven by SPS protons and have an LHeC-type experiment.

Clear difference is that luminosity currently expected to be < 10³⁰ cm⁻² s⁻¹.

Summary

Proton-driven plasma wakefield acceleration interesting because of large energy content of driver.

Modulation process means existing proton machines can be used.

Goal for AWAKE run I: demonstrate modulation process (done) and proton-driven acceleration of electrons before LS2 of the LHC (done).

Run II proposal developing: goals are demonstration of stable acceleration and good electron bunch properties.

Long term prospects for proton-driven PWA exciting ! Starting to develop particle physics program that could be pursued with an AWAKE-like beam.