Corfu Summer Institute 2018: Workshop on the Standard Model and Beyond (Sep 2018, Greece)

Dark Matter Searches in ATLAS and CMS

Bingxuan Liu Argonne National Laboratory On behalf of ATLAS and CMS collaborations

www.anl.gov

Dark Matter Searches in ATLAS and CMS

- Dark Matter (DM) has been thoroughly probed in both ATLAS and CMS collaborations
 - Covering a large amount of models, final states and parameter space....

• This offers critical complementarities to direct and indirect DM detection as DM is generated in a controlled experiment

Categorize the Searches

 If DM particles or mediators are produced at the LHC, ATLAS and CMS have many approaches to detect them. We will discuss the following three in this talk:

Important But not Covered Here: SUSY Searches

- R-parity Conserving (RPC) SUSY provides a natural DM candidate
 - Lightest Supersymmetric Particle (LSP) can not decay to SM particles and has to be a weakly interacting massive particle (WIMP)

Important But not Covered Here: The SM Higgs Portal

- The SM Higgs Boson is the biggest discovery at the LHC so far
 - Higgs (\rightarrow inv) branching ratio is well constrained in SM
 - A powerful tool to perform DM searches if $m_{\chi} < = \frac{m_H}{2}$
- Very similar signatures as many searches to discuss today
 - But with a known mass of 125 GeV

- CMS Higgs to Invisible public results
- ATLAS Higgs to Invisible public results

See Albert's Talk

DM with Initial State Radiation: Mono-X Searches

Eur. Phys. J. C 77 (2017) 393

- Mono-X Signature:
 - DM particles do not leave traces in the detector
 - ATLAS and CMS can still trigger on them if they are produced with energetic initial state radiation
 - Jet, Photon, Vector Bosons
 - Momenta have to be balanced in the transverse plane
 - There is an imbalance in the measured transverse momenta

Mono Jet/Hadronically Decaying W/Z

 DM is recoiled against transverse momentum from an ISR jet or W/Z boson

Major Irreducible background: Jet + Z (W) --> Inv (nv + I)

Simultaneous Fit in Control Regions

Note: DM + Leptonically Decaying W/Z is also done in both CMS (Eur. Phys. J. C 78 (2018) 291) and ATLAS (PLB 776 (2017) 318)

Sep 8th, 2018

Bingxuan Liu

Mono Photon

DM is recoiled against an energetic ISR photon

- Main backgrounds from $W/Z + \gamma$ and $\gamma + jet$ are estimated by a simultaneous fit in control regions
- Fake photons from electrons and jets are estimated separately using control region mis-identification scaling and sidebands counting methods

Visible Mediator Decays: Resonance Searches

Phys. Rev. D 96 (2017) 052004

- Resonance Signature:
 - Heavy mediator decays to visible energetic objects
 - Jets, Photons, Leptons
 - The decay products form a peak in the invariant mass spectra
 - The SM processes yield smoothly falling invariant mass spectrum
 - If the resonance is narrow, there will be a bump!
 - m_{jj} or similar variables

Observables!

Di-jet Searches I: Inclusive Search

- Di-jet resonance search is very inclusive and powerful!
 - Collect events with energetic hadronic activities (Jet or H_T)
 - Fit the m_{jj} spectrum in data (narrow)
 - See if there are significant deviations

- For contact interaction that yields broad resonances, an angular variable χ is used $\chi = e^{2|y^*|}$ ($|y^*|$ is the rapidity difference)
- New physics populates at small χ

Phys. Rev. D 96 (2017) 052004

Di-jet Searches II: Trigger Farm Analysis

arxiv:1806.00843 Saving only the information at 27 fb⁻¹ (13 TeV) trigger level (a significantly reduced dơ/dm_{ii} [pb/TeV] 10⁶ **CMS** Data Fit 10 subset of higher level objects) ----- gg (0.75 TeV) qg (1.20 TeV) qq (1.60 TeV) allows ATLAS and CMS to record 10 10 events at much higher rates χ^2 / NDF = 20.3 / 21 Wide Calo-jets 0.49 < m_{ii} < 2.04 TeV Lower the thresholds 10 $|\eta| < 2.5, |\Delta \eta| < 1.3$ (Data-Fit) Jncertainty arxiv:1804.03496 **Trigger Level** Bin 10^{8} VS ATLAS Events / 0.6 0.8 1.2 1.4 1.6 1.8 Offline √s=13 TeV, 29.3 fb⁻¹ 10' Dijet mass [TeV] |y*| < 0.6 10^t Bin ATLAS Data, 29.3 fb⁻¹, |y*| < 0.6 Events / 10⁸ Background fit BumpHunter interval 10⁵ Z', σ x 500 $m_{7} = 750 \text{ GeV}, g_{n} = 0.1$ BH *p*-value = 0.44 10⁴ 10 BH *p*-value = 0.6Trigger-level jets arxiv: $\gamma^2 p$ -value = 0.42 Offline jets, single-jet triggers 10^{3} 10^t Data, 3.6 fb⁻¹, |y^{*}| < 0.3 Offline jets, single-jet triggers, prescale-corrected 804.0 Background fit BumpHunter interval 10^{4} 4000 600 2000 3000 1000 🗕 Ζ', σ΄x 500 m_{ii} [GeV] <u>3496</u> $m_{z} = 550 \text{ GeV}, g = 0.1$ Significanc∈ Terminology: CMS: Data-Scouting ATLAS: Trigger Level Analysis 500 600 700 800 1000 2000 m_{ji} [GeV]

Sep 8th, 2018

Bingxuan Liu

Di-jet Searches III: Resonance with ISR

- Another way to reach lower mass region is to target the resonance produced with initial state radiation
 - Trigger on the ISR objects
- The two jets can be resolved or merged

Di-jet Searches IV: B-tagged Di-jet

- The new mediator may have larger couplings to bottom quarks
 - Apply b-tagging increases the sensitivity and lowers the trigger thresholds
 - CMS 8 TeV Result
 - Low mass via tight b-jet trigger; High mass via loose b-jet trigger
 - ATLAS 13 TeV Result
 - High mass via jet trigger, >=1 b-jet or 2 b jets; Low mass via b-jet trigger, 2 b jets

CMS: Phys. Rev. Lett. 120 (2018) 201801

ATLAS: arxiv:1805.0929

Resonance Summary

 Di-jet resonance searches via various techniques cover a wide mediator mass range

Resonance vs Mono-X

 Resonance and Mono-X searches complements each other

Associated Production: DM with Heavy Flavor Quarks/Higgs

Internet Preliminary

so we know what is missing exactly

- Signatures:
 - DM produced associated with objects with unique signatures
 - Top, Bottom, Higgs,
 - Lower production rates but much higher background rejection
 - E_T^{miss} ($\overrightarrow{p}_T^{miss}$)
 - Other variables specific for the spectators

Observables!

DM Produced with SM Higgs

- SM Higgs has unique signatures that provide us a good opportunity to probe DM
- Many channels are available:

- Several of the channels have been searched
 - $b\overline{b}$, $\gamma\gamma$, $au\overline{ au}$

$E_T^{miss} + H$	ATLAS	CMS
$H(b\overline{b})$	ATLAS-CONF-2018-039	
$H(b\overline{b} \text{ or } \gamma\overline{\gamma})$		<u>JHEP 10 (2017) 180</u>
$H(\gamma\overline{\gamma})$	PhysRevD.96.112004	<u>PAS-EXO-16-054</u>
$H(\gamma\overline{\gamma} \text{ or } \tau\overline{\tau})$		<u> PAS-EXO-16-055</u>

$\mathsf{MET} + \mathsf{Higgs} \ (\rightarrow b\overline{b})$

- Higgs Boson produced with DM is highly boosted when the DM particle is massive
 - Two bottom jets can be merged
 - Benefit from a dedicated boosted Higgs ($\rightarrow b\overline{b}$) Boson tagger (<u>ATLAS-CONF-2016-039</u>)

ATLAS-CONF-2018-039

- Four signal regions to cover a large E_T^{miss} range
- A binned likelihood fit to the m_H observable

DM Produced with A Top Quark Pair

- Simultaneous fit in control regions and checked in validation regions
- Three signal regions optimized for top associated production (SRt3 is shown)
- Limits on spin-independent DMnucleon are compared with direct detection experiments

DM Produced with A Bottom Quark Pair

- Simultaneous fit in control regions and checked in validation regions
- Two signal regions optimized for bottom associated production (SRb1 is shown)
- Limits are compared with the bottom squark pair search and b-FDM search

Sep 8th, 2018

DM Produced with A Top Quark

<u>Arxiv: 1801.08427</u>

Other CMS top + DM Results: Arxiv:1807.06522 and CMS-PAS-EXO-18-010

Conclusion and Outlook

- The Run 2 programs at both ATLAS and CMS have searched for a large variety of DM models in a rich set of final states
 - No significant deviations from SM are found so far :(
- The LHC has a lot more data to deliver :)
 - Rare channels will be probed
- We have learned great lessons from the past
 - New directions in both theory and experiment sides to overcome the bottlenecks encountered
 - Theory uncertainties on Mono+X searches
 - Data-driven background modeling in Resonance searches
 - Innovative bottom/top/Higgs tagging techniques
 - Talk with each other more often Dark Matter Forum
- Stay tuned!

Thank you!!