Poisson-Lie duals of η-deformed superstrings

Ben Hoare

Based on arXiv:1709.01448 and arXiv:1807.04608 with FK Seibold ETH Zurich

Dualities and Generalised Geometries

September 2018

Integrability in the AdS/CFT correspondence

Type IIB superstring theory on $AdS_5 \times S^5$ is dual to $\mathcal{N} = 4$ super Yang-Mills

In the planar limit the two theories are integrable

- Spectrum of energies / Anomalous dimensions
- Minimal surfaces / Scattering amplitudes and Wilson loops
- Correlation functions and form factors

From 2002 onwards, ...

Are there are other superstring theories for which integrability can be of use?

Lower dimensional AdS backgrounds

$$\begin{array}{l} \mathsf{AdS}_4 \times \mathbb{C} \mathbf{P}^3 \\ \mathsf{AdS}_3 \times S^3 \times S^3 \times S^1 \\ \mathsf{AdS}_3 \times S^3 \times \mathsf{T}^4 \\ \mathsf{AdS}_2 \times S^2 \times S^2 \times \mathsf{T}^4 \\ \mathsf{AdS}_2 \times S^2 \times \mathsf{T}^6 \end{array}$$

and many more...

Number of supersymmetries decreases

- New features appear, for example,
 - massless modes,
 - extra parameters,
 - B field,
 - cubic terms,
 - long representations, ...

Deformed AdS backgrounds

- Deformations are a powerful tool in integrability
- Rich algebraic structure, including twists and *q*-deformations
- Well-studied example: the TsT transformation
- Combination of T dualities and coordinate shifts
- ➡ Can be explicitly implemented in the string worldsheet action
- Maps solutions of supergravity to solutions of supergravity
- Corresponds to introducing non-commutative structures in the dual theory

Deformed AdS backgrounds

- Deformations are a powerful tool in integrability
- Rich algebraic structure, including twists and *q*-deformations

More general deformations?

- Natural to construct from a 2-d worldsheet perspective
- How do deformations play with string theory?
- Are the models scale and Weyl invariant?
- What, if they exist, are the dual theories?

Yang-Baxter deformations

Yang-Baxter deformations

Integrable deformations of the ...

i) principal chiral model (plus WZ term)

ii) symmetric space sigma model

iii) semi-symmetric space sigma model

These are all (classically) integrable sigma models of interest in the context of the AdS/CFT correspondence

and more...

Yang-Baxter deformations

Integrable deformations of the ...

i) principal chiral model (plus WZ term)

ii) symmetric space sigma model

iii) semi-symmetric space sigma model

Sigma models on AdS_n , S^n , $\mathbb{C}\mathbf{P}^n$,...

Polyakov; Pohlmeyer; Eichenherr, Forger; ...

Green-Schwarz superstring on $AdS_5 \times S^5,...$

Metsaev, Tseytlin; Henneaux, Mezincescu; Metsaev; Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach; ... Bena, Roiban, Polchinski; ...

➡ and more...

The semi-symmetric space sigma model for \widehat{F}/G

 \Rightarrow \widehat{F} is a supergroup, whose Lie superalgebra $\widehat{\mathfrak{f}}$ is basic and admits a \mathbb{Z}_4 grading

 $\widehat{\mathfrak{f}} = \mathfrak{f}_0 \oplus \mathfrak{f}_1 \oplus \mathfrak{f}_2 \oplus \mathfrak{f}_3 \qquad \qquad [\mathfrak{f}_i, \mathfrak{f}_j\} \subset \mathfrak{f}_{i+j} \mod 4$

 \Rightarrow This should be such that \mathfrak{f}_0 and \mathfrak{f}_2 are even, while \mathfrak{f}_1 and \mathfrak{f}_3 are odd

 \Rightarrow \mathfrak{f}_0 forms a subalgebra that is identified with the Lie algebra of the group G

 \implies We introduce projectors P_i onto the spaces f_i

 \Rightarrow We also introduce the ad-invariant non-degenerate bilinear form on \hat{f} , denoted STr

Examples include

Zarembo; Wulff; ...

To write the action we take a supergroup-valued field, $f \in \widehat{F}$, and construct the left-invariant Maurer-Cartan form, $J = f^{-1}df \in \widehat{\mathfrak{f}}$

Introducing light-cone coordinates on the worldsheet, $\partial_{\pm} = \partial_0 \pm \partial_1$, the action in conformal gauge is

$$S = T \int d^2 x \operatorname{STr} \left[J_+ P J_- \right]$$
 $P = P_2 + \frac{1}{2} (P_1 - P_3)$

Metsaev, Tseytlin; Henneaux, Mezincescu; Metsaev; Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach; ...

$$S = T \int d^2 x \operatorname{STr} [J_+ P J_-]$$
 $P = P_2 + \frac{1}{2}(P_1 - P_3)$

Global
$$\widehat{\mathsf{F}}$$
 symmetry, $f \to f_0 f$

Local symmetries: G gauge symmetry and, on a curved worldsheet, diffeomorphisms, Weyl symmetry and fermionic κ-symmetry

Classical integrability via existence of Lax connection

Bena, Roiban, Polchinski; ...

$$S = T \int d^2 x \operatorname{STr} \left[J_+ P J_- \right]$$
 $P = P_2 + \frac{1}{2} (P_1 - P_3)$

The Yang-Baxter deformation depends on a linear operator

$$\left(S = T \int d^2 x \operatorname{STr} \left[J_+ P_\eta \frac{1}{1 - \frac{2}{1 - \sigma \eta^2}} R_f P_\eta J_- \right] \quad \begin{array}{l} P_\eta = P_2 + \frac{1 - \sigma \eta^2}{2} (P_1 - P_3) \\ R_f = \operatorname{Ad}_f^{-1} R \operatorname{Ad}_f \end{array} \right)$$

Global \widehat{F} symmetry is broken: the residual symmetry depends on R

Local symmetries: G gauge symmetry and, on a curved worldsheet, diffeomorphisms, Weyl symmetry and fermionic κ-symmetry

The deformation preserves classical integrability when R is an antisymmetric solution to the (modified) classical Yang-Baxter equation

$$\begin{aligned} \mathsf{STr}[X(RY)] + \mathsf{STr}[(RX)Y] &= 0 \\ [RX,RY] - R([RX,Y] + [X,RY]) &= \sigma \eta^2 [X,Y] \end{aligned} \qquad X,Y \in \{$$

Restricting to real deformations we take $\eta \in \mathbb{R}$ and $\sigma \in \{-1, 0, 1\}$

We take *R* to scale as
$$\eta$$
, $R \sim \eta$

 \blacktriangleright Taking $\eta
ightarrow$ 0 we recover the undeformed model

Ben Hoare

Three classes of YB deformations, characterised by $\sigma \in \{-1, 0, 1\}$ with deformation parameter η

 $\Rightarrow \sigma \in \{-1, 1\}$ correspond to *q*-deformations of the symmetry algebra

Inhomogeneous Yang-Baxter (iYB) deformations

Delduc, Magro, Vicedo; Vicedo;

 $\phi \sigma = 0$ corresponds to twists of the symmetry algebra

Homogeneous Yang-Baxter (hYB) deformations

Matsumoto, Yoshida; van Tongeren; Vicedo;

ETH Zurich

iYB deformation of
$$S^2 = \frac{SO(3)}{SO(2)}$$

$$ds^{2} = \frac{1}{1 + \eta^{2}r^{2}} \left[\frac{dr^{2}}{1 - r^{2}} + (1 - r^{2})d\varphi^{2} \right]$$

Deformation of the O(3) sigma model, known as the 2-d sausage model

Fateev, Onofri, Zamolodchikov;

iYB deformation of
$$S^3 = \frac{SO(4)}{SO(3)}$$

$$ds^{2} = \frac{1}{1 + \eta^{2}r^{2}} \left[\frac{dr^{2}}{1 - r^{2}} + (1 - r^{2})d\varphi^{2} \right] + d\phi^{2}$$

Contained within Fateev's 2-parameter deformation of the O(4) sigma model

Fateev;

Poisson-Lie duals of η-deformed superstrings

ETH Zurich

- The YB deformations define deformations of the Green-Schwarz string on AdS₅ × S⁵, AdS₄ × $\mathbb{C}P^3$, AdS₃ × S³(×T⁴), AdS₂ × S²(×T⁶), ...
- The local symmetries of the model are preserved, and hence also the counting of degrees of freedom

Are these superstring theories themselves? Is Weyl invariance preserved?

The trace of the structure constants of the *R*-bracket should vanish, i.e. the corresponding algebra is unimodular

$$[X, Y]_R = [RX, Y] + [X, RY] \qquad \tilde{f}_{ab}{}^b = 0$$

Borsato, Wulff;

ETH Zurich

Lessons from hYB deformations

Can we say something more?

Adding a total derivative and dualising wrt to the subalgebra \mathfrak{h}

BH, Tseytlin; Borsato, Wulff; BH, Thompson;

Sakatani, Uehara, Yoshida; Baquet, Magro, Samtleben;

Sakamoto, Sakatani, Yoshida;

Lüst, Osten; Sakamoto, Sakatani;

Recent developments in the context of generalised geometry, generalised fluxes, T folds, etc. Fernández-Melgarejo, Sakamoto, Sakatani, Yoshida;

Ben Hoare

Lessons from hYB deformations

The structure constants of the subalgebra \mathfrak{h} are also given by the *R*-bracket

For the duality transformation to preserve Weyl invariance the trace of these structure constants should vanish, i.e. the subalgebra \mathfrak{h} is unimodular

$$[X, Y]_R = [RX, Y] + [X, RY] \qquad \tilde{f}_{ab}{}^b = 0$$

Álvarez, Álvarez-Gaumé, Lozano; Elitzur, Giveon, Rabinovici, Schwimmer, Veneziano;

This is the same condition as before, providing a path integral explanation for the Weyl anomaly of the hYB deformation when $\tilde{f}_{ab}{}^b \neq 0$

iYB deformation of $AdS_2 \times S^2 \times T^6$ and its Poisson-Lie duals

iYB deformation of $\text{AdS}_2 \times \text{S}^2 \times \text{T}^6$

Consider the iYB deformation of the $AdS_2 \times S^2 \times T^6$ superstring with $\sigma = 1$

$$S = T \int d^2 x \operatorname{STr} \left[J_+ P_\eta \frac{1}{1 - \frac{2}{1 - \eta^2} R_f P_\eta} J_- \right] \qquad \begin{array}{c} P_\eta = P_2 + \frac{1 - \eta^2}{2} (P_1 - P_3) \\ R_f = \operatorname{Ad}_f^{-1} R \operatorname{Ad}_f \end{array}$$

$$\label{eq:F_star} \widehat{\frac{\mathsf{F}}{\mathsf{G}}} = \frac{\mathsf{PSU}(1,1|2)}{\mathsf{SO}(1,1)\times\mathsf{SO}(2)} \sim \mathsf{AdS}_2\times\mathsf{S}^2 + 8 \text{ fermions}$$

The torus and remaining fermions go along for the ride

iYB deformation of $\text{AdS}_2 \times \text{S}^2 \times \text{T}^6$

$$S = T \int d^2 x \operatorname{STr} \left[J_+ P_\eta \frac{1}{1 - \frac{2}{1 - \eta^2}} R_f P_\eta J_- \right] \qquad \begin{array}{c} P_\eta = P_2 + \frac{1 - \eta^2}{2} (P_1 - P_3) \\ R_f = \operatorname{Ad}_f^{-1} R \operatorname{Ad}_f \end{array}$$

Take R to be the standard Drinfel'd-Jimbo solution of the modified classical Yang-Baxter equation

- \Rightarrow The residual global symmetry algebra is the Cartan subalgebra of $\widehat{\mathfrak{f}}$
- The Poisson brackets of the conserved charges now satisfy the relations of the q-deformed Poisson-Hopf algebra $\mathcal{U}_q(\widehat{\mathfrak{f}})$, associated to a Poisson-Lie symmetry

Delduc, Magro, Lacroix, Vicedo; Klimčík;

ETH Zurich

iYB deformation of $\text{AdS}_2\times\text{S}^2\times\text{T}^6$

The resulting deformation of the AdS₂ × S² × T⁶ superstring has a Weyl anomaly

Arutyunov, Borsato, Frolov; BH, Tseytlin; Arutyunov, Frolov, BH, Roiban, Tseytlin; Borsato, Wulff;

 \Rightarrow The background fields do not satisfy the type II supergravity equations

There are (at least) three ways to reach a supergravity background by dualities:

→ via T dualities to a theory with a dilaton linear in the dual coordinates (shown indirectly)

BH, Tseytlin;

ETH Zurich

→ via Poisson-Lie duality wrt the bosonic subalgebra (shown directly)

➡ via Poisson-Lie duality wrt the full superalgebra (conjectured)

Sfetsos; Hollowood, Miramontes, Schmidtt; Sfetsos, Thompson; Demulder, Sfetsos, Thompson; Borsato, Tseytlin, Wulff;

> Vicedo; BH, Tseytlin; Sfetsos, Siampos, Thompson; Klimčík; BH, Seibold;

iYB deformation of $\text{AdS}_2 \times \text{S}^2 \times \text{T}^6$

Undeformed model	Deformed model
T dualities wrt the Cartan subalgebra of $\widehat{\mathfrak{f}}$	T dualities wrt the Cartan subalgebra of $\mathcal{U}_q(\widehat{\mathfrak{f}})$
Non-abelian duality wrt the bosonic subalgebra of $\widehat{\mathfrak{f}}$	Poisson-Lie duality wrt the bosonic "subalgebra" of $\mathcal{U}_q(\widehat{\mathfrak{f}})$
Non-abelian duality wrt the full superalgebra $\widehat{\mathfrak{f}}$	Poisson-Lie duality wrt the full "superalgebra" $\mathcal{U}_q(\widehat{\mathfrak{f}})$
T duality and non-abelian duality wrt other subalgebras of $\widehat{\mathfrak{f}}$???

Can these different dualisations be unified in a single framework?

> What are the possible dualities that give Weyl-invariant theories?

Ben Hoare

Our starting point is the first-order action of Klimčík and Ševera on the Drinfel'd double

Klimčík, Ševera; Sfetsos; Squellari; Tseytlin; Giveon, Roček, Hull; Hull, Reid-Edwards;

For the iYB deformation with $\sigma = 1$ the relevant "doubled" space is the complexification of the Lie algebra

$$\widehat{\mathfrak{f}}^{\mathbb{C}} = \mathfrak{psl}(2|2;\mathbb{C})$$

Vicedo; Klimčík; Klimčík, Ševera; Sfetsos;

Our starting point is the first-order action of Klimčík and Ševera on the Drinfel'd double
Klimčík, Ševera; Sfetsos; Squellari;

$$S = \frac{1}{2} \int d\tau d\sigma \left[\langle I^{-1} \partial_{\sigma} I, I^{-1} \partial_{\tau} I \rangle - \mathcal{H} (I^{-1} \partial_{\sigma} I) \right] + \mathsf{WZ}(I) \qquad I \in \widehat{\mathsf{F}}^{\mathbb{C}}$$

The non-degenerate ad-invariant bilinear form on $\hat{f}^{\mathbb{C}}$ is $\langle X, Y \rangle = - \operatorname{Im} \operatorname{STr}[XY]$

 \mathcal{H} is a bilinear form that characterises the model: we consider a specific choice that depends on the operator *R* and ensures G gauge symmetry

Given a maximally isotropic subalgebra $\tilde{\mathfrak{k}} \subset \hat{\mathfrak{f}}^{\mathbb{C}}$, $\langle \tilde{\mathfrak{k}}, \tilde{\mathfrak{k}} \rangle = 0$, dim $\tilde{\mathfrak{k}} = \dim \hat{\mathfrak{f}}$, we parametrise

$$I = \tilde{k}k \qquad \tilde{k} \in \tilde{\mathsf{K}}, \ k \in \tilde{\mathsf{K}} \backslash \widehat{\mathsf{F}}^{\mathbb{C}}/\mathsf{G}$$

The first-order action then only depends on \tilde{k} through $p = \tilde{k}^{-1} \partial_{\sigma} \tilde{k}$

Integrating out p gives a second-order Lorentz-invariant model on

Klimčík; Klimčík, Ševera;

We denote by \hat{b} the particular Borel subalgebra picked out by the operator *R*, whose structure constants are given by the *R*-bracket

We have the following vector space decomposition

The two real subalgebras are isotropic wrt the ad-invariant bilinear form

$$\widehat{\left\langle \widehat{\mathfrak{f}}, \widehat{\mathfrak{f}} \right\rangle} = \left\langle \widehat{\mathfrak{b}}, \widehat{\mathfrak{b}} \right\rangle = \mathbf{0}$$

Vicedo; Klimčík; Klimčík, Ševera; Sfetsos;

ETH Zurich

Take a subalgebra \mathfrak{h} of $\widehat{\mathfrak{f}}$ associated to a sub-Dynkin diagram, possibly plus additional Cartan generators

rightarrow In this case $\mathcal{U}_q(\mathfrak{h})$ is a sub-Hopf algebra of $\mathcal{U}_q(\widehat{\mathfrak{f}})$

 \Rightarrow There exists $\tilde{\mathfrak{m}} \subset \hat{\mathfrak{b}}$ such that $\tilde{\mathfrak{k}} = \mathfrak{h} \oplus \tilde{\mathfrak{m}}$ is a maximally isotropic subalgebra

We can Poisson-Lie dualise wrt $\mathcal{U}_q(\mathfrak{h})$

Adding in additional Cartan generators corresponds to additional T dualities

BH, Seibold;

These are certain explicit elements of the general Poisson-Lie duality group

Osten, Lüst;

We use the following Dynkin diagram of PSU(1, 1|2)

$$\bigcirc - \oslash - \bigcirc$$

$$\varkappa = \frac{2\eta}{1 - \eta^2}$$

Arutyunov, Borsato, Frolov;

ETH Zurich

Poisson-Lie duals of iYB deformed $AdS_2 \times S^2 \times T^6$ $\mathfrak{h} = \emptyset$

Case 1: The iYB deformation

Klimčík; Vicedo;

- \Rightarrow The algebra $\tilde{\mathfrak{k}} = \hat{\mathfrak{b}}$ is not unimodular
- The deformed background has the 3-form and 5-form R-R fluxes turned on, but does not solve the type II supergravity equations

BH, Tseytlin; Arutyunov, Frolov, BH, Roiban; Tseytlin; Araujo, Ó Colgáin, Yavartanoo;

Poisson-Lie duals of iYB deformed $AdS_2 \times S^2 \times T^6$ $\mathfrak{h} = \widehat{\mathfrak{f}}$

Case 2: Poisson-Lie dual wrt the full "superalgebra"

 \Rightarrow The algebra $\tilde{\mathfrak{k}} = \hat{\mathfrak{f}}$ is unimodular

 \Rightarrow Conjectured to give an analytic continuation of the λ-deformation of AdS₂ × S² × T⁶

Sfetsos; Hollowood, Miramontes, Schmidtt;

Assuming this conjecture is correct, the deformed background solves the type II / II* supergravity equations

Vicedo; BH, Tseytlin; Sfetsos, Siampos, Thompson; Klimčík; BH, Seibold;

Borsato, Tseytlin, Wulff;

Case 3: Poisson-Lie dual wrt the bosonic "subalgebra"

ightarrow The algebra $ilde{\mathfrak{k}}$ is unimodular

The deformed background solves the type II / II* supergravity equations

BH, Seibold; Sfetsos, Thompson;

Case 3: Poisson-Lie dual wrt the bosonic "subalgebra"

$$ds^{2} = \eta_{ab}e^{a}e^{b} + dx_{i}dx_{i} \qquad \Phi = \text{const} - \frac{1}{2}\log(y^{2} + z^{2} - 1)(p^{2} + q^{2} - 1)$$
$$e^{\Phi}F_{5} = i\sqrt{1 + \varkappa^{2}}(1 + \varkappa)e^{2} \wedge e^{1} \wedge \text{Re}\,\Omega$$
$$e^{0} = \frac{\varkappa^{-1}dy}{\sqrt{y^{2} + z^{2} - 1}} \quad e^{1} = \frac{dz}{\sqrt{y^{2} + z^{2} - 1}} \quad e^{2} = \frac{\varkappa^{-1}dp}{\sqrt{p^{2} - q^{2} - 1}} \quad e^{3} = \frac{dq}{\sqrt{p^{2} - q^{2} - 1}}$$

BH, Seibold;

 $rightarrow \Omega$ is the holomorphic 3-form on T⁶

The imaginary R-R flux is a consequence of T duality in a timelike direction

Solution of type II* supergravity equations

Hull; ...

ETH Zurich

Case 3: Poisson-Lie dual wrt the bosonic "subalgebra"

 $ds^{2} = \eta_{ab}e^{a}e^{b} + dx_{i}dx_{i} \qquad \Phi = \text{const} - \frac{1}{2}\log(y^{2} + z^{2} - 1)(p^{2} + q^{2} - 1)$ $e^{\Phi}F_{5} = i\sqrt{1 + \varkappa^{2}}(1 + \star)e^{2} \wedge e^{1} \wedge \text{Re}\,\Omega$ $e^{0} = \frac{\varkappa^{-1}dy}{\sqrt{y^{2} + z^{2} - 1}} \quad e^{1} = \frac{dz}{\sqrt{y^{2} + z^{2} - 1}} \quad e^{2} = \frac{\varkappa^{-1}dp}{\sqrt{p^{2} - q^{2} - 1}} \quad e^{3} = \frac{dq}{\sqrt{p^{2} - q^{2} - 1}}$

BH, Seibold;

Related by analytic continuation to alternative known and simpler embedding of the bosonic λ-deformation of $AdS_2 \times S^2 \times T^6$ into type II / II* supergravity

Sfetsos, Thompson;

Proves the integrability of the superstring on this background

➡ Mechanism giving different R-R fluxes and dilaton supporting the same metric and B field

Poisson-Lie duals of η-deformed superstrings

ETH Zurich

Ševera:

Case 4: T dual wrt the Cartan subalgebra

 $\mathfrak{h} = \{ih_i\}$

 \Longrightarrow The algebra $\tilde{\mathfrak{k}}$ is unimodular

The deformed background solves the type II / II* supergravity equations

 \Rightarrow Can be recovered as a scaling limit of cases 2 and 3:

$$\begin{cases} \{y, z, p, q\} \to \gamma\{y, z, p, q\} & \gamma \to \infty \\ y = e^{\varkappa \hat{t}} & z = \rho e^{\varkappa \hat{t}} & p = e^{\varkappa \hat{\varphi}} & q = r e^{\varkappa \hat{\varphi}} \end{cases}$$

BH, Tseytlin; Borsato, Wulff, Tseytlin;

BH. Seibold:

Case 4: T dual wrt the Cartan subalgebra

$$ds^{2} = \eta_{ab}e^{a}e^{b} + dx_{i}dx_{i} \qquad \Phi = \text{const} - \varkappa(\hat{t} + \hat{\varphi}) - \frac{1}{2}\log(1 + \rho^{2})(1 - r^{2})$$
$$e^{\Phi}F_{5} = i\sqrt{1 + \varkappa^{2}}(1 + \varkappa)e^{2} \wedge e^{1} \wedge \text{Re}\,\Omega$$
$$e^{0} = \frac{d\hat{t}}{\sqrt{1 + \rho^{2}}} \quad e^{1} = \frac{d\rho + \varkappa\rho d\hat{t}}{\sqrt{1 + \rho^{2}}} \quad e^{2} = \frac{d\hat{\varphi}}{\sqrt{1 - r^{2}}} \quad e^{3} = \frac{dr + \varkappa rd\hat{\varphi}}{\sqrt{1 - r^{2}}}$$

BH, Tseytlin;

The imaginary R-R flux is a consequence of T duality in a timelike direction

Hull; ...

Solution of type II* supergravity equations

 \Rightarrow In the $\varkappa \rightarrow 0$ limit we recover the 2-fold T dual of the AdS₂ × S² × T⁶ supergravity background

Poisson-Lie duals of η-deformed superstrings

ETH Zurich

Bertotti, Robinson;

Concluding remarks

Concluding remarks

For these four cases the vanishing of the trace of the structure constants corresponds to the background being a solution of type II / II* supergravity

Weyl anomaly associated to integrating out the degrees of freedom associated to a non-unimodular algebra

Tyurin, von Unge; Bossard, Mohammedi; Von Unge; Hlavatý, Šnobl; Valent, Klimčík, Squellari; Hassler; Jurčo, Vysoký; ...

Concluding remarks

Remains to explain the Weyl anomaly of the iYB deformation in the path integral (as for hYB deformations based on non-unimodular *r*-matrices)

How do we implement PL duality starting from the iYB deformation, or its duals, in a systematic way?

How do we justify starting from the first-order action on the Drinfel'd double and demonstrate its Weyl invariance?

Thank you!

Start from classical antisymmetric *r*-matrix that solves the (modified) classical Yang-Baxter equation

$$r = r^{AB}T_A \wedge T_B \in \widehat{\mathfrak{f}} \otimes \widehat{\mathfrak{f}}$$
$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = \sigma \eta^2 \Omega$$

 $\implies \Omega \text{ is the canonical invariant element of } \widehat{\mathfrak{f}} \wedge \widehat{\mathfrak{f}} \wedge \widehat{\mathfrak{f}}$

Construct the associated solution of the operator form of the (modified) classical Yang-Baxter equation

$$RX \equiv \mathrm{STr}_2[r(1 \otimes X)]$$

Examples

iYB deformation of $S^2 = \frac{SO(3)}{SO(2)}$

$$r = i\eta e \wedge f$$

$$ds^{2} = \frac{1}{1 + \eta^{2}r^{2}} \left[\frac{dr^{2}}{1 - r^{2}} + (1 - r^{2})d\varphi^{2} \right]$$

Deformation of the O(3) sigma model, known as the 2-d sausage model

Fateev, Onofri, Zamolodchikov;

Ben Hoare

Poisson-Lie duals of η -deformed superstrings

ETH Zurich

Examples

iYB deformation of $S^3 = \frac{SO(4)}{SO(3)}$

$$r = i\eta \left(e_1 \wedge f_1 + e_2 \wedge f_2 \right)$$

$$ds^{2} = \frac{1}{1 + \eta^{2}r^{2}} \left[\frac{dr^{2}}{1 - r^{2}} + (1 - r^{2})d\varphi^{2} \right] + d\phi^{2}$$

Contained within Fateev's 2-parameter deformation of the O(4) sigma model

Fateev;

ETH Zurich

Examples

A hYB deformation of
$$S^3 = \frac{SO(4)}{SO(3)}$$

$$r = \frac{1}{2}\eta h_1 \wedge h_2$$

$$\left(ds^{2} = \frac{(1-r^{2})d\varphi^{2} + r^{2}d\phi^{2}}{1+\eta^{2}r^{2}(1-r^{2})} + \frac{dr^{2}}{1-r^{2}} \qquad B = \frac{\eta r^{2}(1-r^{2})}{1+\eta^{2}r^{2}(1-r^{2})}d\varphi \wedge d\phi \right)$$

TsT transformation of the original model

Giveon, Roček; Klimčík, Tseytlin; Kiritsis, Kounnas; Tseytlin; Russo, Tseytlin; ...

> Matsumoto, Yoshida, et al.; Osten, van Tongeren;

Lessons from hYB deformations

Models that come from dualising wrt non-unimodular h are related by T duality to Weyl-invariant theories with a dilaton linear in the dual coordinate BH, Tsevilin:

This implies that these hYB deformed backgrounds solve a generalisation of the type II supergravity equations

Arutyunov, Frolov, BH, Roiban, Tseytlin; Wulff, Tseytlin;

Caveat: there are exceptions to these general statements when $n_a = \tilde{f}_{ab}^{\ b}$ is associated to a null direction

Wulff;

We use the following Dynkin diagram of PSU(1, 1|2)

AdS₂ \times S² \times T⁶ supergravity background in global coordinates

$$\begin{aligned} ds^2 &= -(1+\rho^2)dt^2 + \frac{d\rho^2}{1+\rho^2} + (1-r^2)d\varphi^2 + \frac{dr^2}{1-r^2} + dx_i dx_i \\ e^{\Phi}F_5 &= (1+\star)(dt \wedge d\rho \wedge \operatorname{Re}\Omega) & \Phi = \operatorname{const} \end{aligned}$$

 $rightarrow \Omega$ is the holomorphic 3-form on T⁶

The deformation parameter \varkappa is related to η by

$$\varkappa = \frac{2\eta}{1-\eta^2}$$

Bertotti, Robinson;

ETH Zurich

Arutyunov, Borsato, Frolov;

Ben Hoare

Poisson-Lie dual wrt the bosonic "subalgebra"

$$ds^{2} = \eta_{ab}e^{a}e^{b} + dx_{i}dx_{i} \qquad \Phi = \text{const} - \frac{1}{2}\log(y^{2} + z^{2} - 1)(p^{2} + q^{2} - 1)$$
$$e^{\Phi}F_{5} = i\sqrt{1 + \varkappa^{2}}(1 + \star)e^{2} \wedge e^{1} \wedge \text{Re}\,\Omega$$
$$e^{0} = \frac{\varkappa^{-1}dy}{\sqrt{y^{2} + z^{2} - 1}} \quad e^{1} = \frac{dz}{\sqrt{y^{2} + z^{2} - 1}} \quad e^{2} = \frac{\varkappa^{-1}dp}{\sqrt{p^{2} - q^{2} - 1}} \quad e^{3} = \frac{dq}{\sqrt{p^{2} - q^{2} - 1}}$$

BH, Seibold;

ETH Zurich

⇒ In the $\varkappa \to 0$ limit we recover the non-abelian dual of the AdS₂ × S² × T⁶ supergravity background wrt the bosonic "subalgebra"

$$egin{array}{ccc} y
ightarrow 1 + arkappa^2 y & z
ightarrow arkappa z \ p
ightarrow 1 + arkappa^2 p & q
ightarrow arkappa q
ightarrow arkappa q$$

Sfetsos; Sfetsos, Thompson;

Ben Hoare