Measurement of the Higgs-Boson cross sections in the diphoton channel using 80 fb⁻¹ of 13 TeV of ppcollisions with ATLAS

Ahmed Tarek

on behalf of the ATLAS collaboration

2018 Corfu Summer Institute : Workshop on the Standard Model and Beyond 02/09/2018

U^S**PC** Université Sorbonne Paris Cité

Introduction

- Differential and fiducial cross section measurement using the 13 TeV data is a key measurement to probe the properties of the Higgs boson
- Performed with 80 fb⁻¹ of pp collision data collected between 2015-2017
- 43.6 fb⁻¹ of new data collected in 2017 compared to the previous ATLAS publication (36 fb⁻¹)
- A measurement with minimal SM assumption
 - Similar particle and detector level event selection to avoid extrapolation across the phase space
 - Allows reinterpretations using different theory models (Effective field theory)
- Measurement in the $\gamma\gamma$ channel has low BR (0.2%) but have excellent resolution and high photon reconstruction and identification efficiencies

Event selection and categorisation

simplified **Event Selection**

- Two photons with $p_T/m_{\gamma\gamma} >$ 0.35(0.25) for leading(sub-leading)
- within **|η**|<2.37
- Pass photon identification criteria
- Low hadronic activity around the photons (Isolated)
- invariant mass within Higgs mass window [105-160] GeV
- Signal appears as a narrow peak on top of a uniformly decreasing background of irreducible γγ (+fakes) in the m_{yy} spectrum

m_H m_{νν}

Measurement performed in the following fiducial and different regions

- The inclusive fiducial region : matching the detector acceptance
- Transverse momentum of the diphoton system $p_T^{\, \prime}$
- Absolute rapidity separation of the diphoton system $\left|y_{\gamma\gamma}
 ight|$
- Transverse momentum of the leading jet $p_{T,j1}$
- New Measurement Number of b-jets $N_{
 m b-jets}$

2017 Run Conditions

- In 2017 pileup has increased
 <μ>~38 compared to <μ>~24 in
 2015+2016
 - Photon identification and isolation performs well at high pileup <u>EGAM-2018-007</u>
 - Sample composition was found stable with the high pileup

Inclusive fiducial region

- Signal yield is extracted from a signal + background fit on data
- The fitted signal yields are corrected for detector effects (unfolded to particle level) using a **bin-by-bin correction factor** $C_i = \frac{N_{reco}^i}{N_{true}^i}$

Measured cross section : 60.4 ± 6.1 (stat.) ± 6.0 (exp.) ± 0.3 (theo.) fb Standard Model prediction : 63.5 ± 3.3 fb ggF : POWHEG NNLOPS with N3LO(QCD)+NLO(EW) normalisation

Breakdown of uncertainties

	Source	Uncertainty (%)
Experimental uncertainties on signal and background modelling	Fit (stat.)	10
	Fit (syst.)	8.3
	Photon energy scale & resolution	4.0
	Background modeling (spurious signal)	7.3
	Correction factor	5.2
Experimental uncertainties on the correction factor	Photon isolation efficiency	4.6
	Pileup	1.9
	Photon ID efficiency	1.3
	Trigger efficiency	0.7
Theoretical uncertainties		0.4
	Theoretical modeling	$^{+0.3}_{-0.4}$
Experimental uncertainties on the correction factor	\int Diphoton vertex selection	0.1
	Photon energy scale & resolution	0.1
	Luminosity	2.0
	Total	14

$|p_T^{\gamma\gamma}, |y_{\gamma\gamma}|$ and $p_{T,j1}$

Uncertainty dominated by the statistical component for all the differential cross-sections

Agreement with the default Standard Model prediction $p(\chi^2)$

$p^{T}_{\gamma\gamma}$	32%
$ \mathbf{y}_{\mathbf{\gamma}\mathbf{\gamma}} $	56%
ртj1	88%

very good agreement with the SM !

Number of b-jets N_{b-jets}

- New measurement aiming at measuring Higgs with associated heavy flavour
 - poorly constrained theoretically for ttH and HH

Fiducial region for this measurement

- Requires at least one central jet with $p_T>30~GeV$
- A veto on electrons and muons to reduce ttH
- Probed with $N_{bjet} = 1$
- Compatibility with SM $p(\chi^2) = 84\%$

ATLAS-CONF-2018-028

- Measurement of the fiducial and differential cross sections in the $H \rightarrow \gamma \gamma$ channel using 80 fb⁻¹ of data
 - Better statistical precision with respect to previous publication (16% \rightarrow 10% for the inclusive cross-section)
 - Systematic error is of the same order as statistical error for the inclusive cross-section
 - Statistical error remains larger than the systematic error for the differential distributions
- Excellent agreement with standard model predictions
 Outlook : Performing the measurements using the full run-2 data
 + working on reducing systematic uncertainties

Backup

Diphoton system transverse moment

- default MC: PowHeg NNLOPS, normalisation: N3LO(QCD) and NLO(EW) + XH
 - Compatibility with data $p(\chi^2) = 32\%$
- NNLOjet⊕SCET : NNLO+N3LL
 resummation + XH

Diphoton system absolute rapidity

13

• SCET_{LIB}+MCFM8 : NNLO+NNLL' $_{\phi}$ accuracy

• Compatibility with data $p(\chi^2) = 56\%$

Transverse moment of leading jet

- NNLO_{JET}: a parton level fixed-order NNLO prediction in QCD for inclusive H +1-jet production
- SCET_{LIB}(STWZ) : NNLL' +NNLLO₀ accuracy
- Compatibility with data $p(\chi^2) = 88\%$

