Exotic Branes in Extended Field Theories

Ray Otsuki

Queen Mary University of London

Dualities and Generalised Geometries 14th September 2018 Corfu, Greece

[1806.00430] David S. Berman, Edvard T. Musaev, RO [1710.09740] Ilya Bakhmatov, David S. Berman, Axel Kleinschmidt, Edvard T. Musaev, RO

Outline

- Exotic Branes
 - In string theory
 - In Extended Field Theories (ExFT)
- $ExFT = \{DFT, EFT\}$
 - Novel non-geometric solution in $E_{7(7)} \times \mathbb{R}^+$ EFT
- Mapping out all exotic states
- Speculation + Further Work

Exotic Branes in String Theory I

- Exotic Branes: Objects with non-trivial $G(\mathbb{Z})$ -monodromy [Obers, Pioline '98], [Hull '97]
- Include T-/U-folds [Hull '04]
 - **Globally** non-geometric: patched by duality transformations & fields not single-valued
- Also includes **locally** non-geometric objects [Bakhmatov, Kleinschmidt, Musaev '16]
 - Fields have dependence on coordinates not in the usual spacetime i.e. not even locally well-defined
- Obtainable from `supertube effect' (spontaneous polarisation) of regular brane configurations, puffing up into transverse space [de Boer, Shigemori '12]

Exotic Branes in String Theory II

• Low codimension \tilde{d} objects destroy spacetime asymptotics

$$-\tilde{d}=2$$
: Defect Brane $H\sim c_2+\sigma \ln |\mu/r|$

$$-\tilde{d}=1$$
: Domain Wall $H\sim c_1-|x|$

$$-\tilde{d}=0$$
: Space-filling Brane $H\sim c_0$

• Non-standard mass/tension scaling g_s^{α} :

$$-\alpha = 0$$
: Fundamental Branes e.g. F1, P

$$-\alpha = -1$$
: D-Branes e.g. D1, D4

$$-\alpha = -2$$
: Solitonic Branes e.g. NS5, KK5

$$\alpha \leq -3$$
: Exotic Branes e.g. $7_3, 9_4$

• $\tilde{d}=2$ states:

$$- M: 5^3, 2^6, 0^{(1,7)}, II: 5_2^2; p_3^{7-p}, 1_4^6, 0_4^{(1,6)}$$

Exotic Branes in String Theory III

Notation for (exotic) branes:

 $egin{aligned} oldsymbol{b}_{n}^{(\ldots,d,c)} & c: & ext{Mass depends quadratically on } c ext{ radii} \ d: & ext{Mass depends cubically on } d ext{ radii} \end{aligned}$

b: Mass depends linearly on b radii

n: Inverse g_s scaling; $n=-\alpha; n\geq 0$

- Coupling to mixed-symmetry potentials:
 - Each set of indices contained in all sets to the left

$$b_n^{(...,d,c)} \sim E_{1+b+c+d+...,c+d+...,d+...,..}$$

[Kleinschmidt '11], [Bergshoeff, Hohm, Penas, Riccioni '16], [Bergshoeff, Riccioni '17], [Lombardo, Riccioni, Risoli '17 + '18] ... etc.

NS5
$$\rightarrow$$
 KK5 \rightarrow Q-brane \rightarrow R-brane $(\rightarrow 5_2^4)$
 $5_2 \rightarrow 5_2^1 \rightarrow 5_2^2 \rightarrow 5_2^3 (\rightarrow 5_2^4)$

• Prototypical 5-brane chain, coupling to $\{H, f, Q, R\}$

NS5
$$\rightarrow$$
 KK5 \rightarrow Q-brane \rightarrow R-brane $(\rightarrow 5_2^4)$
 $5_2 \rightarrow 5_2^1 \rightarrow 5_2^2 \rightarrow 5_2^3 (\rightarrow 5_2^4)$

• Prototypical 5-brane chain, coupling to $\{H, f, Q, R\}$

E.g. 5_2^2 has two special isometric directions (r,θ) and is $\tilde{d}=2$ in d=10 [de Boer, Shigemori '12], [Kimura, Sasaki '13]

$$5_2^2: \begin{cases} ds^2 = dx_{012345}^2 + H(dr^2 + r^2 d\theta^2) + HK^{-1} dx_{89}^2 \\ e^{2\phi} = HK^{-1}, \qquad B_{(2)} = K^{-1}\theta\sigma dx^8 \wedge dx^9 \end{cases}$$

- More generally, 5_2^q are $\tilde{d} = 4 q$; increasingly problematic to describe in string/M-theory
 - Better description in ExFT?

NS5
$$\rightarrow$$
 KK5 \rightarrow Q-brane \rightarrow R-brane \rightarrow 5_2^4
 $5_2 \rightarrow 5_2^1 \rightarrow 5_2^2 \rightarrow 5_2^3 \rightarrow 5_2^4$

- 1) Unlike dualities in $G(\mathbb{Z})$, solution-generating transforms in $G(\mathbb{R})$ do not require an isometry
- 2) Rotate transverse coords into extended space
- 3) $\tilde{d} = 0$ states: entire transverse space rotated out of section
- 4) Such states require ExFT to be described
- GLSM gives interpretation:

[Tong '02], [Harvey, Jensen '05], [Kimura, Sasaki '14]

Winding-mode dependence

 \equiv

String worldsheet instanton effects

Examples of Solutions in ExFT

• Solutions:

- -5_2^q -brane chain [Berman, Rudolph '14], [Bakhmatov, Kleinschmidt, Musaev '16], [Kimura, Sasaki, Shiozawa '18]
- Wave-String [Berkeley, Berman, Rudolph '14]
- Self-dual (Geometric) solution [Berman, Rudolph '14]
- KK6 $6^{(3,1)}$ [Bakhmatov, Berman, Kleinschmidt, Musaev, RO '17]

• Actions:

- D-Brane [Albertsson, Dai, Wao, Lin '11]
- Doubled worldsheet action [Blair '16]
- 5-Brane DBI [Blair, Musaev '18]

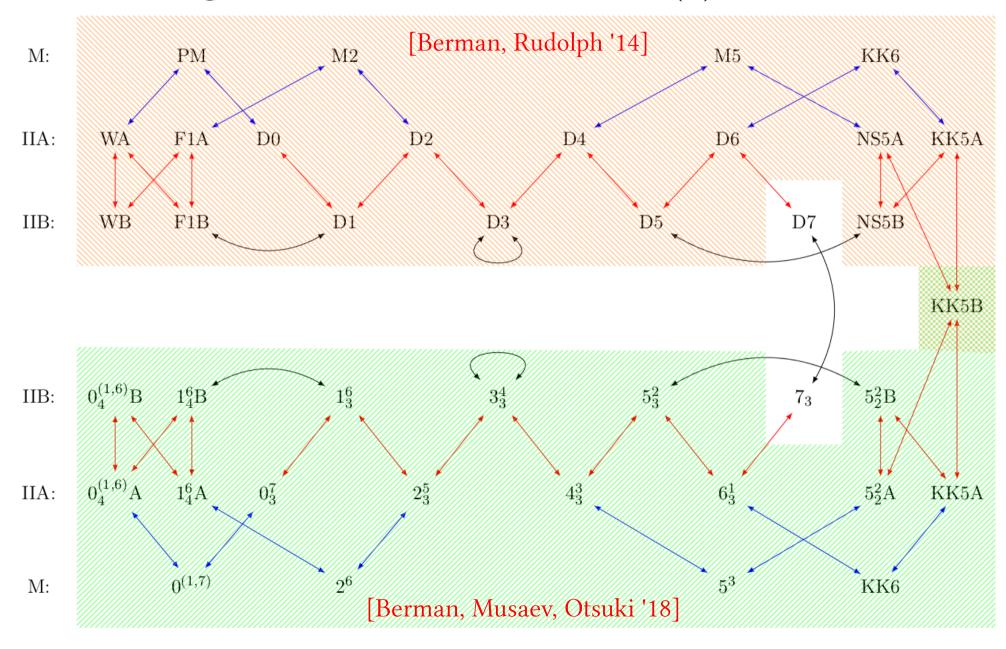
... etc.

$E_{7(7)} \times \mathbb{R}^+$ Exceptional Field Theory

- Representations: $\rho_1 = \mathbf{56}, \quad \rho_2 = \mathbf{133}$
- Fields: $\{g_{\mu\nu}, \mathcal{M}_{MN}, \mathcal{A}_{\mu}{}^{M}, \mathcal{B}_{\mu\nu\alpha}, \mathcal{B}_{\mu\nu}{}^{M}\},$ $\mathcal{F}_{\mu\nu}{}^{M} = \mathcal{F}_{\mu\nu}{}^{M}(\mathcal{A}_{\mu}{}^{M}, \mathcal{B}_{\mu\nu\bullet})$
- Section condition $Y^{MN}_{PQ}\partial_M \bullet \partial_N \bullet = 0$:
 - $M: E_{7(7)} \to GL(7)$
 - IIB: $E_{7(7)} \to \operatorname{GL}(6) \times \operatorname{SL}(2)$
- Equations:
 - E.O.M. for \mathcal{M}_{MN}
 - Bianchi and Self-duality for $\mathcal{F}_{\mu\nu}{}^{M}$

Non-geometric Solⁿ in $E_{7(7)} \times \mathbb{R}^+$ EFT

- Non-geometric counterpart to [Berman, Rudolph '14]
- Coordinates:
 - External: $x^{\mu} = (t, r, \theta, z)$
 - Internal: e.g. M section $Y^M = (y^m, y_{mn}, y^{mn}, y_m)$
- Ansatz:


$$\mathcal{M}_{MN} \sim \operatorname{diag} \left[H^{\pm \frac{1}{2}} \delta_{(27)}, H^{\pm \frac{3}{2}} \right]$$

$$g_{\mu\nu} = \operatorname{diag} \left[-(HK^{-1})^{-\frac{1}{2}}, (HK)^{\frac{1}{2}}, r^{2}(HK)^{\frac{1}{2}}, (HK^{-1})^{\frac{1}{2}} \right]$$

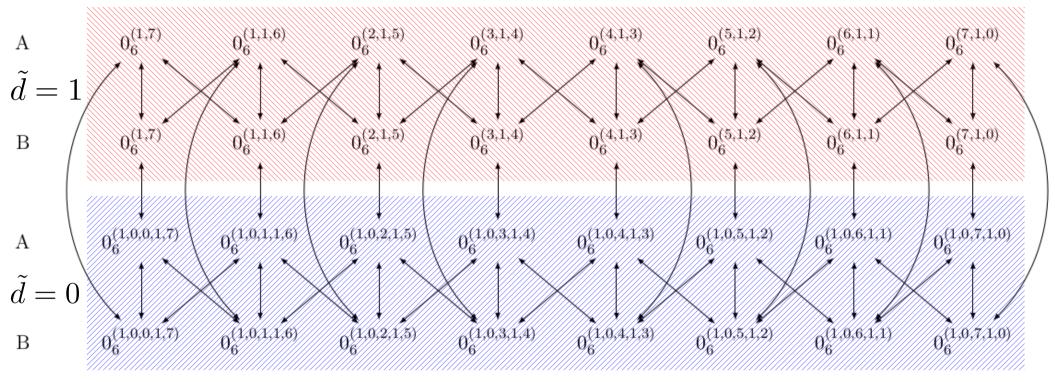
$$H(r) = h_{0} + \ln |\mu/r|, \qquad K = H^{2} + \sigma^{2} \theta^{2}$$

$$\mathcal{A}_{\mu}{}^{M} = \{ -H^{-1}K, -K^{-1}\theta\sigma \}, \quad \mathcal{B}_{\mu\nu, \bullet} = 0 \Rightarrow \mathcal{F}_{\mu\nu}{}^{M} = 2\partial_{[\mu}\mathcal{A}_{\nu]}{}^{M}$$

Non-geometric Solⁿ in $E_{7(7)} \times \mathbb{R}^+$ EFT

Transformations

 Apply the following transformations to generate all branes:


$$L/R: \quad l_p = g_s^{\frac{1}{3}} l_s, \qquad R_{\natural} = l_s g_s$$
 $S: \quad g_s \mapsto \frac{1}{g_s}, \qquad l_s \mapsto g_s^{\frac{1}{2}} l_s$ $T_y: \quad g_s \mapsto \frac{l_s}{R_y} g_s, \quad R_y \mapsto \frac{l_s^2}{R_y}$

Apply to mass formulae:

$$M: M \left[b^{(\dots,d,c)}\right] = \frac{\dots (R_{k_1} \dots R_{k_d})^3 (R_{j_1} \dots R_{j_c})^2 (R_{i_1} \dots R_{i_b})}{l_p^{1+b+2c+3d+\dots}}$$

$$II: M \left[b_n^{(\dots,d,c)}\right] = \frac{\dots (R_{k_1} \dots R_{k_d})^3 (R_{j_1} \dots R_{j_c})^2 (R_{i_1} \dots R_{i_b})}{g_s^n l_s^{1+b+2c+3d+\dots}}$$

T-duality Orbit e.g. @ g_s^{-6}

S-duals
$$-0_{6}^{(1,7)}B \leftrightarrow 0_{3}^{(1,7)}B$$

$$-0_{6}^{(1,1,6)}B \leftrightarrow 0_{4}^{(1,1,6)}B$$

$$-0_{6}(2,1,5)B \leftrightarrow 0_{5}^{(2,1,5)}B$$

$$-0_{6}^{(3,1,4)}B \leftrightarrow 0_{6}^{(3,1,4)}B$$

M-theory Parent

$$-0_{6}^{(1,7)}A \rightarrow 0^{(1,7)}M$$

$$-0_{6}^{(1,1,6)}A \rightarrow 1^{(1,1,6)}M$$

$$-0_{6}^{(2,1,5)}A \rightarrow 0^{(2,1,6)}M$$

$$-0_{6}^{(3,1,4)}A \rightarrow 0^{(3,2,4)}M$$

Potentials for $\alpha \geq -7$

 $I_{10,7+p,4+n+p,2m,n+p,p}$

 $I_{10.6+n.6+n,2m+1,n,n}$

α	IIA	IIB	-
0		B_2	-
-1	C_{2n+1}	C_{2n}	
-2	D_{ϵ}	6+n,n	
-3	$E_{8+n,2m+1,n}$	$E_{8+n,2m,n}$	-
-4	F_{8+n}	6+m,m,n	-
	F_{9+n}	3+m,m,n	-
	$F_{10,2n+1,2n+1}$	$F_{10,2n,2n}$	
-5	$G_{9+p,6+n,2m,n,p}$	$G_{9+p,6+n,2m+1,n,p}$	
	$G_{10,4+n,2m+1,n}$	$G_{10,4+n,2m,n}$	-
			•

Many orbits have, at least partially, appeared in the literature

Not included in the analysis of [Bergshoeff, Riccioni '17] Not included in the analysis of [Fernandez-Melgarejo, Kimura, Sakatani '18]

α	IIA	IIB
-6	$H_{9+n,8+}$	-n, m+n, m+n-1, n, n
	H_{10}	,6+n,2+m,m,n
	H_{9+p}	7+n,4+m,m,n,p
-7	$I_{10,8+p,n+2,2m+1,n,p}$	$I_{10,8+p,2+n,2m,n,p}$

 $I_{9+p,8+p,5+n+p,2m,n+p,p,p}$

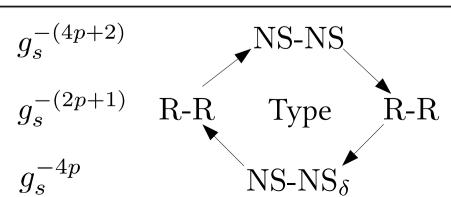
 $I_{9+p,p+n+7,p+n+7,2m+1,n+p,n+p,p}$

 $I_{10,7+p,4+n+p,2m+1,n+p,p}$

 $I_{10.6+n,6+n,2m,n,n}$

E.g. B_2 : NS-NS 2-form C_p : R-R forms

 D_6 : NS-NS 6-form


What Else To Expect? (New)

α	Number of Branes $N_{(\alpha)}$	Type	Breakdown $N_{(\alpha)} = A + B + 2C$								NS-NS Violation $A + B$	
0	4	(NS-NS)	4	=	0	+	0	+	2	×	2	0
-1	10	R-R	10	=	5	+	5					
-2	10	NS-NS	10	=	0	+	0	+	2	×	5	
-3	24	R-R	24	=	12	+	12					
- 4	46	NS-NS_{δ}	46	=	5	+	5	+	2	×	18	10
÷	÷ :	:					:					÷
-23	25320	R-R	25320	=	12660	+	12660					
-24	30374	NS-NS_{δ}	30374	=	471	+	471	+	2	×	14716	942
-25	38310	R-R	38310	=	19155	+	19155					
М	458124											

A: # branes in IIA

B: # branes in IIB

C: #branes in both IIA and IIB

Remarks

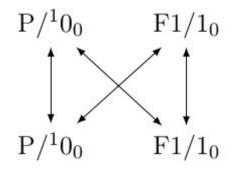
- Agreement with other works:
 - $E_{8(8)}$ multiplets [Fernandez-Melgarejo, Kimura, Sakatani '18]
 - E_{11} scheme [Kleinschmidt '11]
 - Exotic Potentials [Bergshoeff, Penas, Riccioni, Risoli '15] + related
- Unification of more and more states at larger $E_{n(n)}$?
 - One single orbit
 - One unique solution in E_{11} , unifying all states?
- Further work:
 - D-instanton? Tied to time-like transformations
 - Explanation of patterns amongst branes

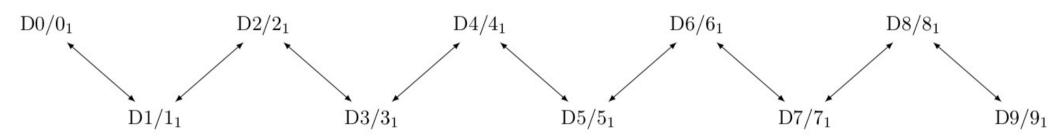
Conclusions

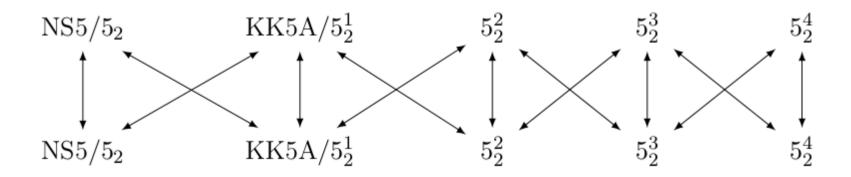
- Novel solution in $E_{7(7)} \times \mathbb{R}^+$ EFT covering $\tilde{d}=2$ exotic states
- Mapped out all duality orbits to g_s^{-7} and listed down to g_s^{-25}

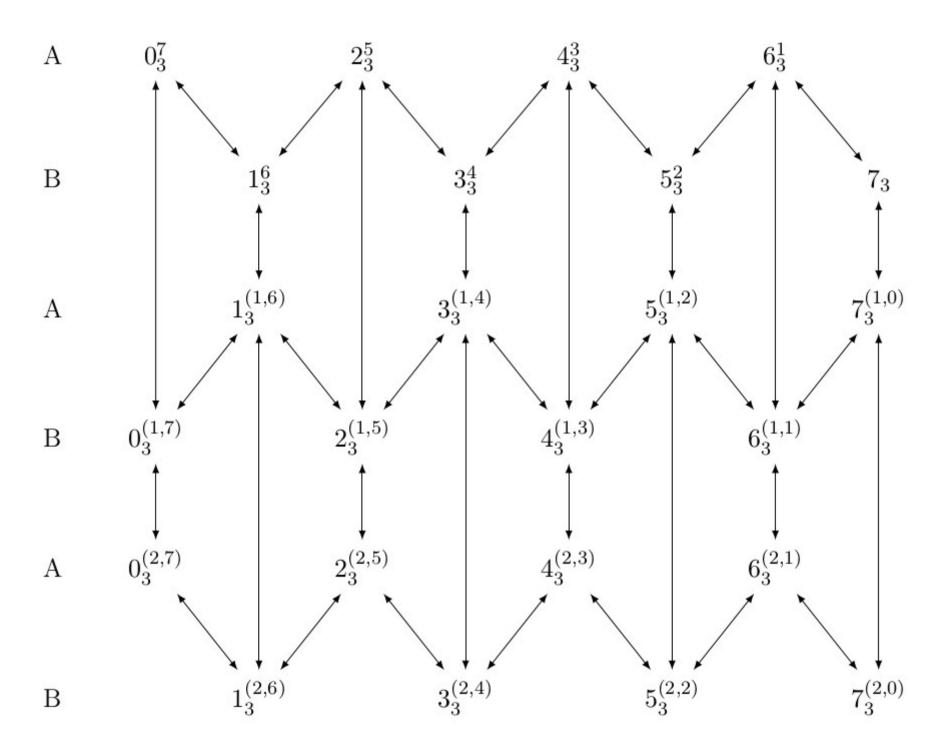
ExFT:

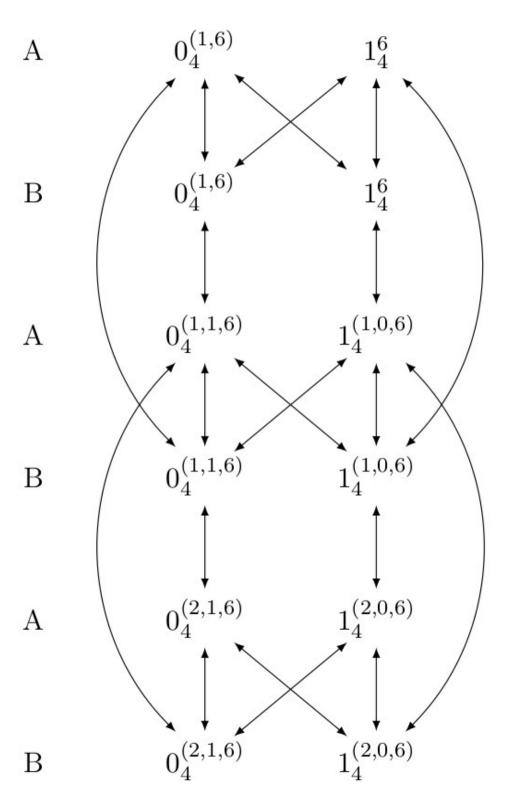
Solution-generating transformations can act on non-isometric directions


GLSM:


Dependence on dual coordinates \equiv string worldsheet instanton corrections


Novel $\tilde{d}=0$ solutions, which depending only on extended coordinates, **require** an ExFT description


Spare Slides


α	Number of Branes $N_{(\alpha)}$ Type Breakdown $N_{(\alpha)} = A + B + 2C$									NS-NS Violation $A + B$		
0	4	(NS-NS)	4	=	0	+	0	+	2	×	2	0
-1	10	R-R	10	=	5	+	5					
-2	10	NS-NS	10	=	0	+	0	+	2	\times	5	
-3	24	R- R	24	=	12	+	12					
- 4	46		46	=	5	+	5	+	2	\times	18	10
-5	72	R-R	72	=	36	+	36					
-6	104	NS-NS	104	=	0	+	0	+	2	\times	52	
-7	210	R- R	210	=	105	+	105					
-8	280		280	=	12	+	12	+	2	\times	128	24
-9	448	R-R	448	=	224	+	224					
-10	632	NS-NS	632	=	0	+	0	+	2	\times	316	
-11	942	R-R	942	=	471	+	471					
-12	1244		1244	=	36	+	36	+	2	\times	586	72
-13	1926	R-R	1926	=	963	+	963					
-14	2340	NS-NS	2340	=	0	+	0	+	2	\times	1170	
-15	3398	R- R	3398	=	1699	+	1699					
-16	4378		4378	=	105	+	105	+	2	\times	2084	210
-17	5942	R-R	5942	=	2971	+	2971					
-18	7316	NS-NS	7316	=	0	+	0	+	2	\times	3658	
-19	10050	R- R	10050	=	5025	+	5025					
-20	12252		12252	=	224	+	224	+	2	\times	5902	448
-21	16134	R-R	16134	=	8067	+	8067					
-22	19388	NS-NS	19388	=	0	+	0	+	2	\times	9694	
-23	25320	R-R	25320	=	12660	+	12660					
-24	30374		30374	=	471	+	471	+	2	\times	14716	942
-25	38310	R-R	38310	=	19155	+	19155					
	458124											

