Decoding the nature of Dark Matter

Alexander Belyaev

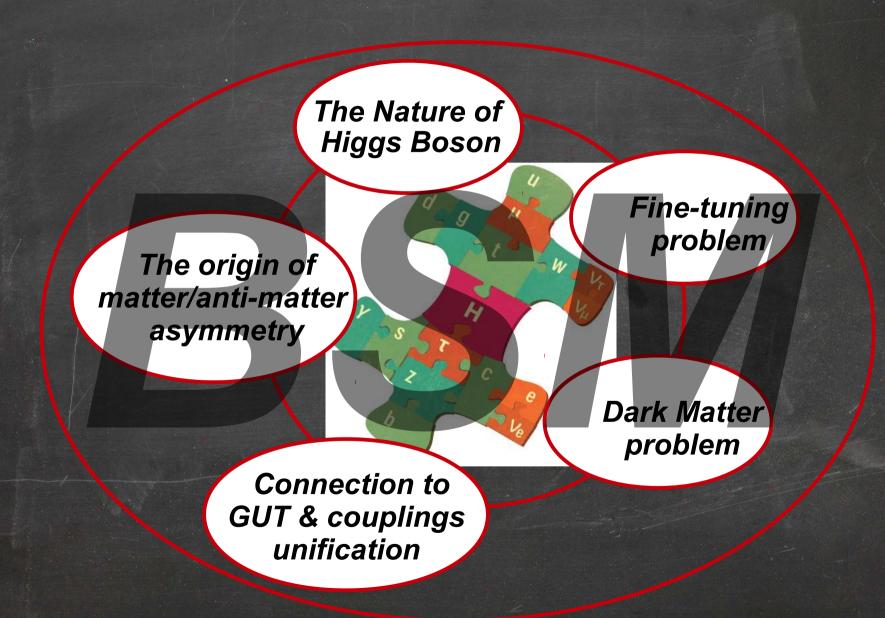
Southampton University & Rutherford Appleton Laboratory

Corfu Summer Institute: Workshop on the Standard Model and Beyond 31 August 2018 to 9 September 2018

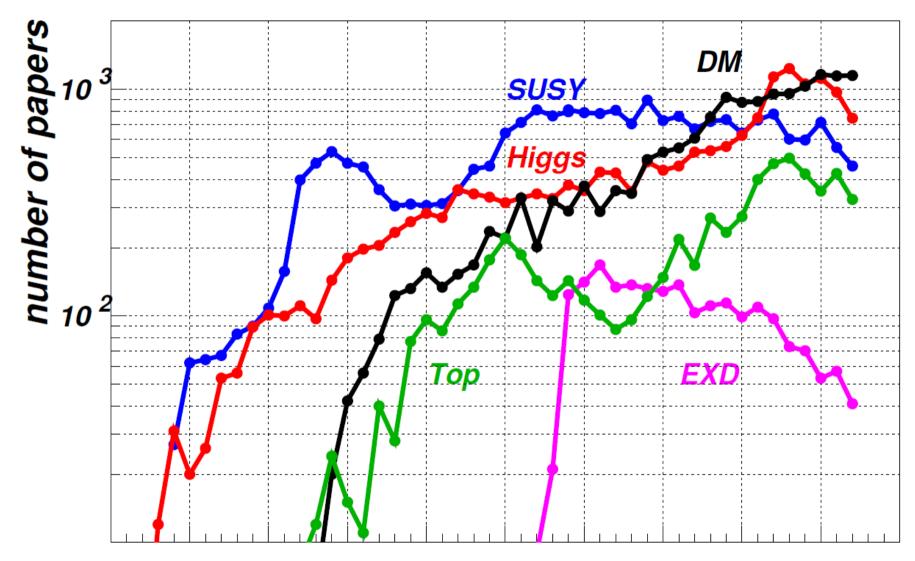
Decoding the nature of Dark Matter

Alexander Belyaev

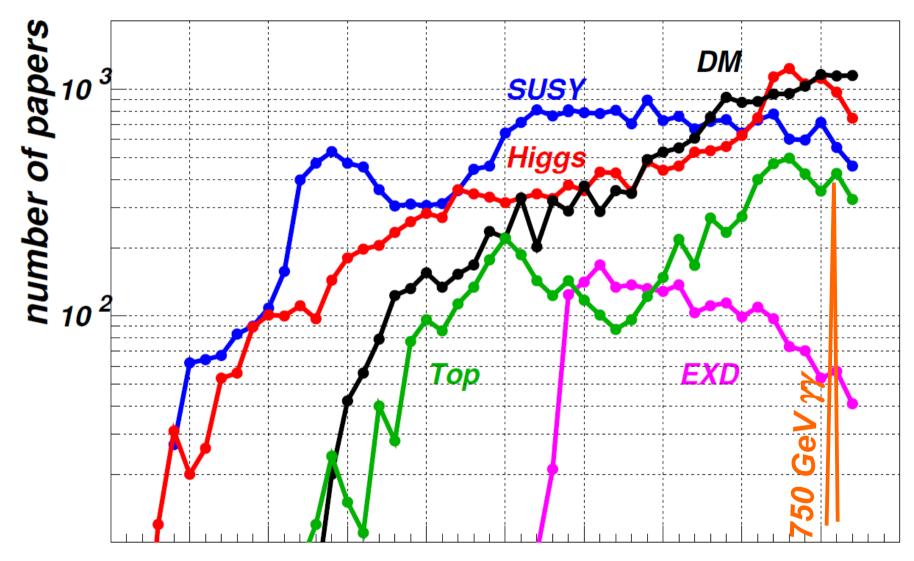
Southampton University & Rutherford Appleton Laboratory



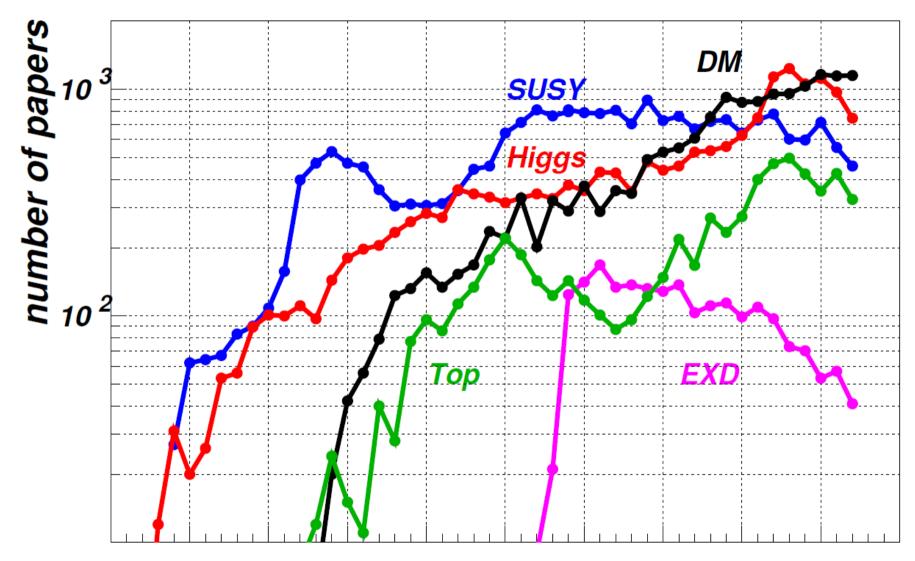
Corfu Summer Institute: Workshop on the Standard Model and Beyond 31 August 2018 to 9 September 2018


Higgs Boson Discovery has finished the SM puzzle

Higgs Boson Discovery has finished the SM puzzle, but it is just a piece of some (more) complete and consistent one!

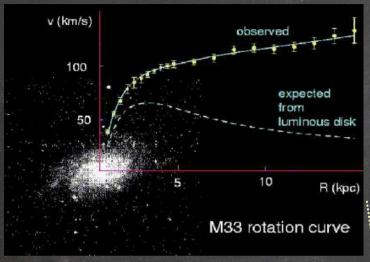


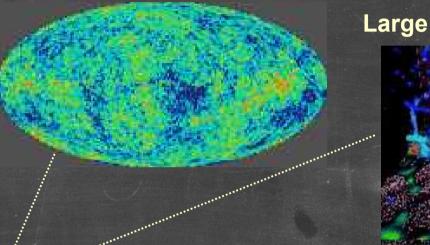
Why we are so keen to study DM?


1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 **year**

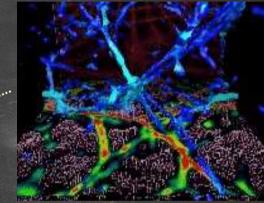
Why we are so keen to study DM?

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 **year**


Why we are so keen to study DM?

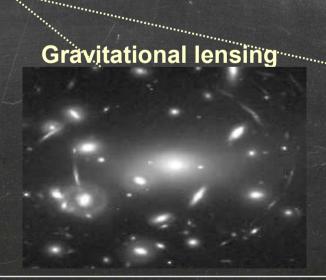

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 **year**

Because the existence of DM is the strongest evidence for BSM!


Galactic rotation curves

CMB: WMAP and PLANCK

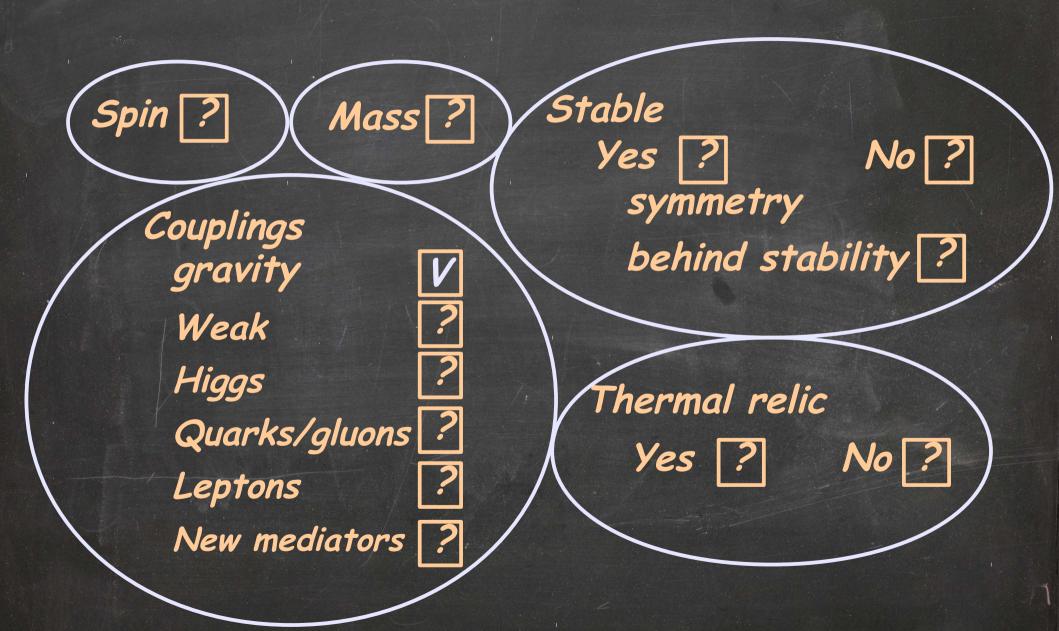
Large Scale Structures



DARK ENERGY
~72%

~23%

DARK MATTER


ordinary
matter

Bullet cluster

Even though we know almost nothing about it!

How we can decode the fundamental nature of Dark Matter?

How we can decode the fundamental nature of **Dark Matter?**

We need a DM signal first!

How we can decode the fundamental nature of Dark Matter?

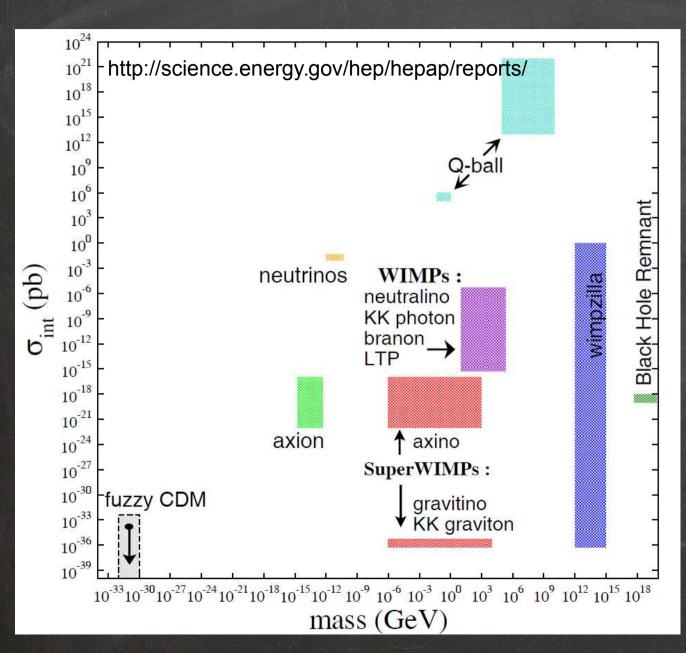
We need a DM signal first!

But at the moment we can:

- understand what kind of DM is already excluded
- explore theory space and prepare ourselves to discovery and decoding of DM

Collaborators & Projects

•	I.Ginzburg, D.Locke, A. Freegard, T. Hosken, AB	to appear
•	S.Novaes, P.Mercadante, C.S. Moon, T.Tomei,	
	S. Moretti, M.Tomas, L. Panizzi, AB	arXiv:1809.00933
•	G.Cacciapaglia, J.McKay, D. Marin, A.Zerwekh, AB	arXiv: 1808.10464
•	E.Bertuzzo, C.Caniu, G. di Cortona, O.Eboli,	
	F. Iocco, A.Pukhov, AB	arXiv: 1807.03817
•	T. Flacke, B. Jain, P. Schaefers, AB	arXiv: 1707.07000
•	G. Cacciapaglia, I. Ivanov, F. Rojas, M. Thomas, AB	arXiv: 1612.00511
•	I. Shapiro, M. Thomas, AB	arXiv:1611.03651


L. Panizzi, A. Pukhov, M.Thomas, AB

D. Barducci, A.Bharucha, W. Porod, V. Sanz, AB

arXiv:1610.07545

arXiv:1504.02472

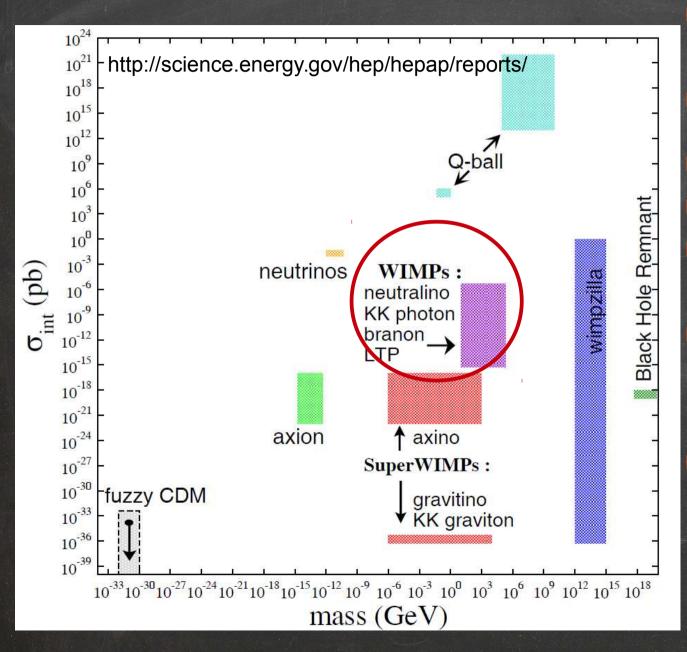
DM candidates: interaction vs mass

Planck mass BH remnants: tiny black holes protected by gravity effects [Chen '04] from decay via Hawking radiation

Wimpzillas: very massive nonthermal WIMPs [Kolb,Chung,Riotto'98]

Q-balls: topological solitons that occur in QFT [Coleman '86]

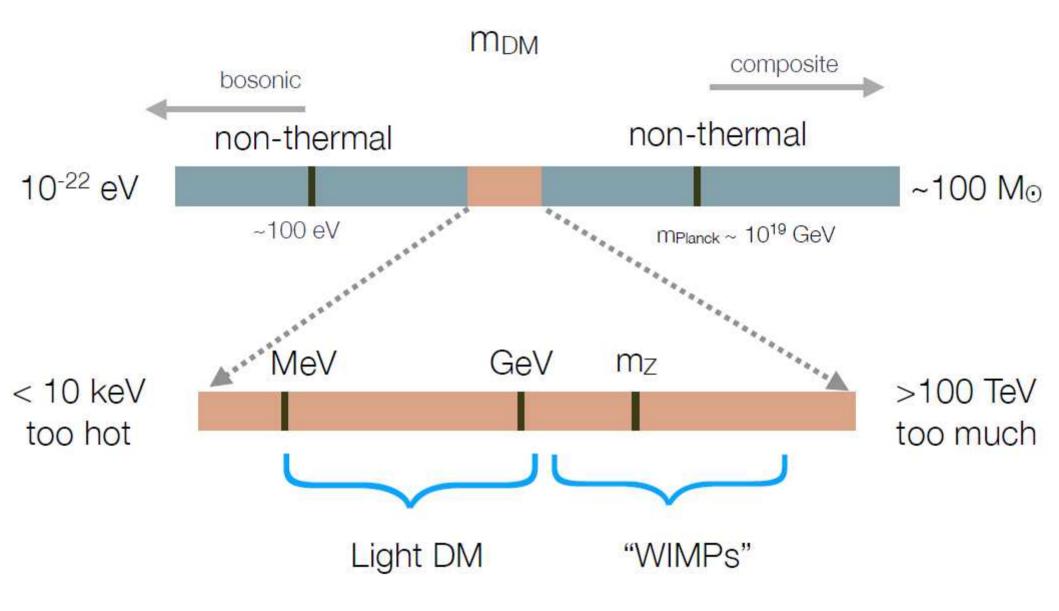
■ EW scale WIMPs, protected by parity – LSP, LKP, LTP particles

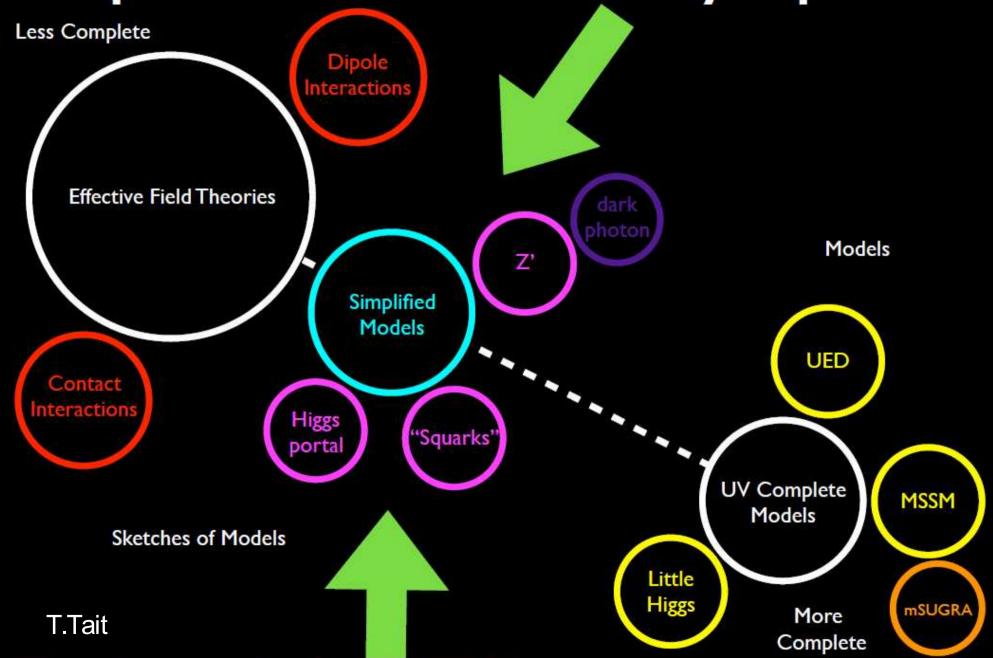

SuperWIMPs: electrically and color neutral DM interacting with much smaller strength (perhaps only gravitationally)

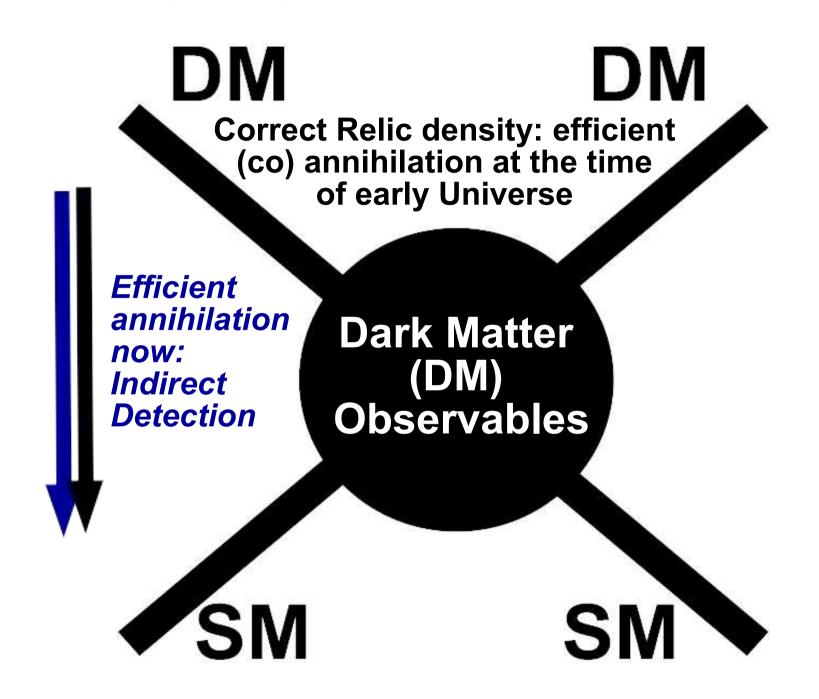
■ Neutrinos usual neutrinos are too light- HDM, subdominant component only (to be consistent with large scale structures); but heavier gauge singlet neutrinos can be CDM

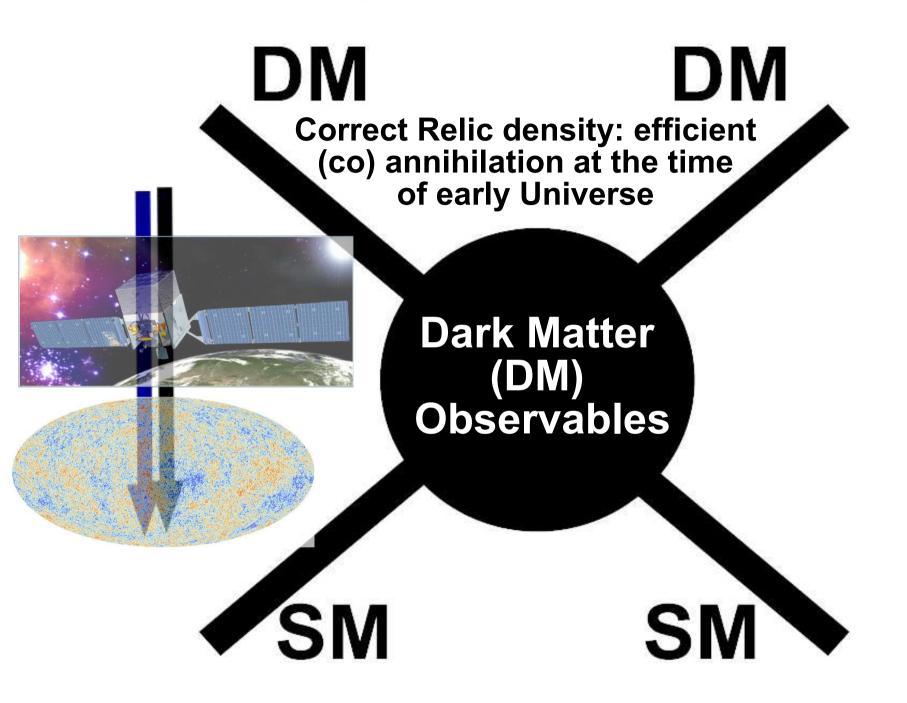
Axions: $rac{ heta_{QCD}}{32ni^2}F^{\mu
u} ilde{F}^{\mu
u}$

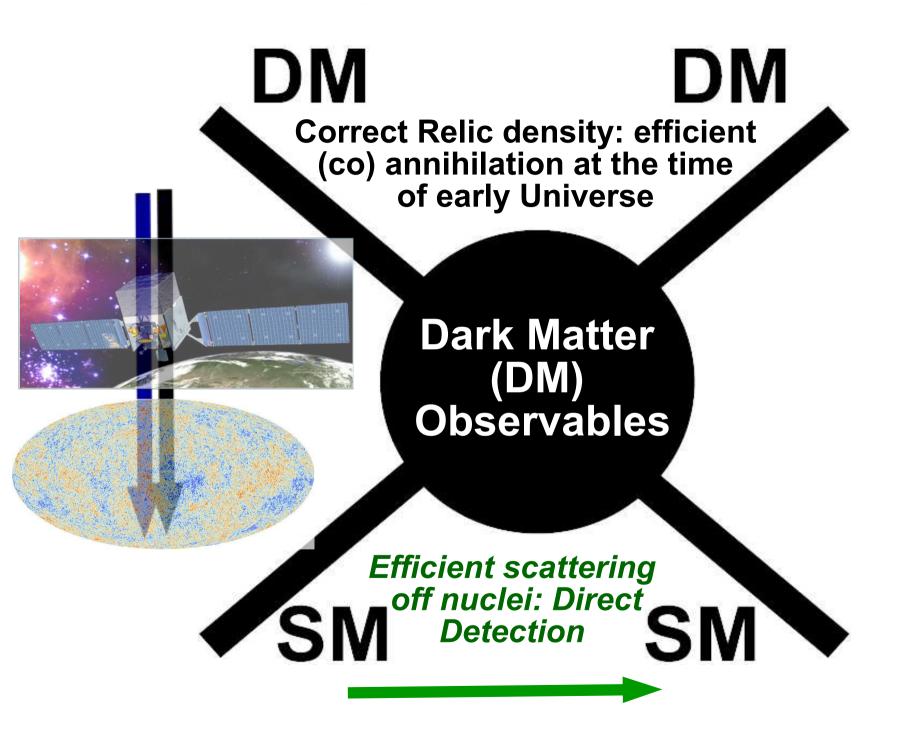
 θ_{QCD} is replaced by a quantum field, the potential energy allows the field to relax to near zero strength, axion as a consequence

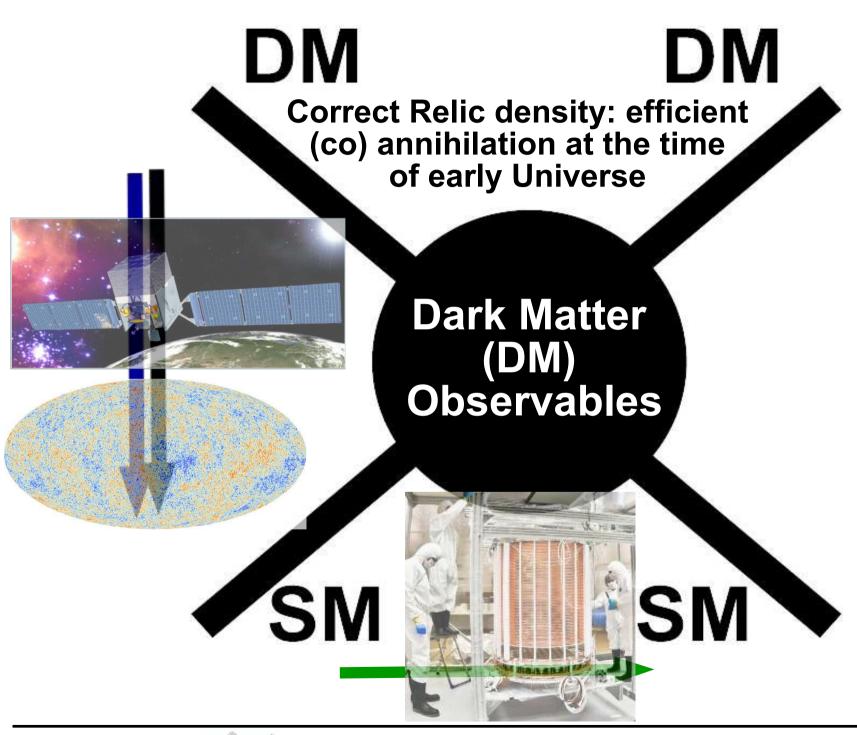

DM candidates: interaction vs mass

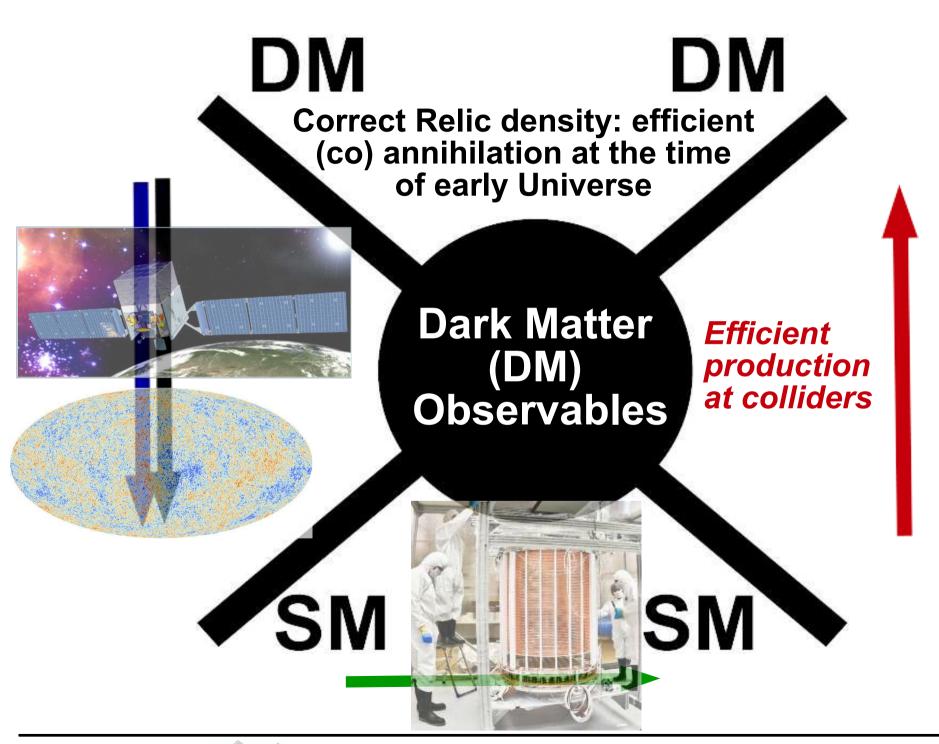

- Planck mass BH remnants: tiny black holes protected by gravity effects [Chen '04] from decay via Hawking radiation
- Wimpzillas: very massive nonthermal WIMPs [Kolb,Chung,Riotto'98]
- Q-balls: topological solitons that occur in QFT [Coleman '86]
- EW scale WIMPs, protected by parity LSP, LKP, LTP particles
- SuperWIMPs: electrically and color neutral DM interacting with much smaller strength (perhaps only gravitationally)
- Neutrinos usual neutrinos are too light- HDM, subdominant component only (to be consistent with large scale structures); but heavier gauge singlet neutrinos can be CDM
- Axions: $rac{ heta_{QCD}}{32pi^2}F^{\mu
 u} ilde{F}^{\mu
 u}$

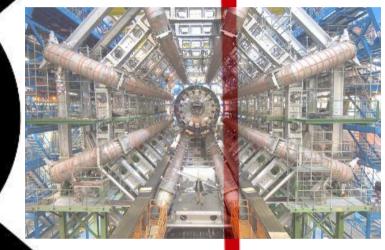

 θ_{QCD} is replaced by a quantum field, the potential energy allows the field to relax to near zero strength, axion as a consequence


Mass range for thermal DM

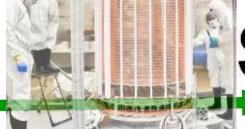


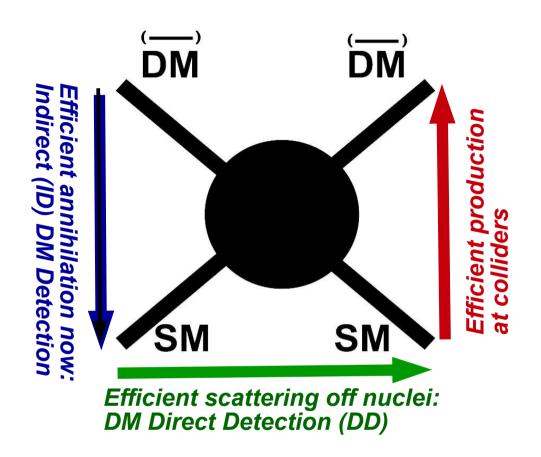

Spectrum of Theory Space



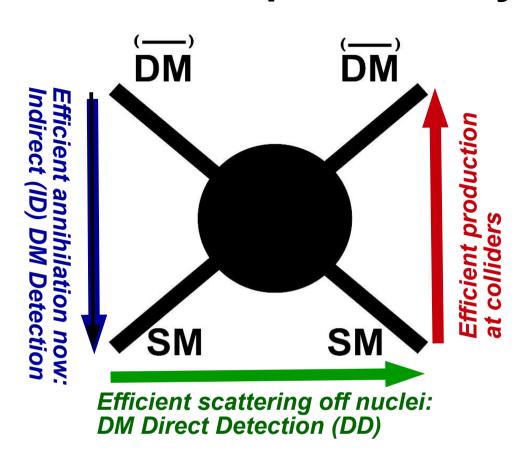


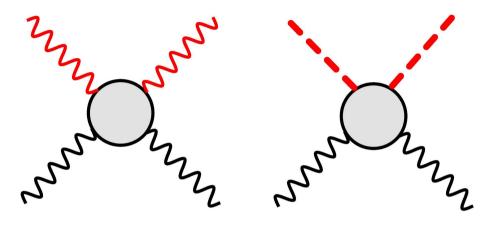
DM DM


Correct Relic density: efficient (co) annihilation at the time of early Universe


Dark Matter (DM)
Observables

Complementarity of DM searches


Important: there is no 100%correlation between signatures above. E.g. the high rate of annihilation does not always guarantee high rate for DD!


Actually there is a great complementarity in this:

- In case of NO DM Signal we can efficiently exclude DM models
- In case of DM signal we can efficiently determine the nature of DM

Complementarity of DM searches

Example of DM interactions with negligible/suppressed DD rates

Important: there is no 100%correlation between signatures above. E.g. the high rate of annihilation does not always guarantee high rate for DD!

Actually there is a great complementarity in this:

- In case of NO DM Signal we can efficiently exclude DM models
- In case of DM signal we can efficiently determine the nature of DM

Direct Dark Matter Detection

See also Maria Martinez' talk

recoiling

nucleus

 Search for the recoil energy of a nucleus in an underground detector after collision with a WIMP

Elastic recoil energy

$$E_R = \frac{2\mu_{\chi N}^2 v^2}{m_N} \cos^2 \theta$$

 Minimum WIMP speed required to produce a recoil energy

$$v_{\min} = \sqrt{\frac{m_N E_R}{2\mu_{\chi N}^2}}$$

DM

• The differential event rate (per unit detector mass):

$$\frac{dR}{dE_R} = \frac{\rho_{\chi}}{m_{\chi} m_N} \int_{v>v_{\rm min}} d^3 v \, \frac{d\sigma_{\chi N}}{dE_R} \, v \, f_{\rm det}(\mathbf{v}, t)$$

DM

Direct Dark Matter Detection

 Search for the recoil energy of a nucleus in an underground detector after collision with a WIMP

Elastic recoil energy

$$E_R = \frac{2\mu_{\chi N}^2 v^2}{m_N} \cos^2 \theta$$

 ullet Minimum WIMP speed required to produce $v_{\min} =$ a recoil energy

$$v_{\min} = \sqrt{rac{m_N E_R}{2 \mu_{\chi N}^2}}$$
 recoiling nucleus

DM

The differential event rate (per unit detector mass):

$$\frac{dR}{dE_R} = \underbrace{\frac{\sigma_0 F^2(E_R)}{2m_\chi \mu_{\chi N}^2}}_{\text{particle physics}} \underbrace{\frac{\text{astrophysics}}{\rho_\chi \eta(v_{\min}, t)}}_{\text{halo integral}}$$

DM

Direct Dark Matter Detection

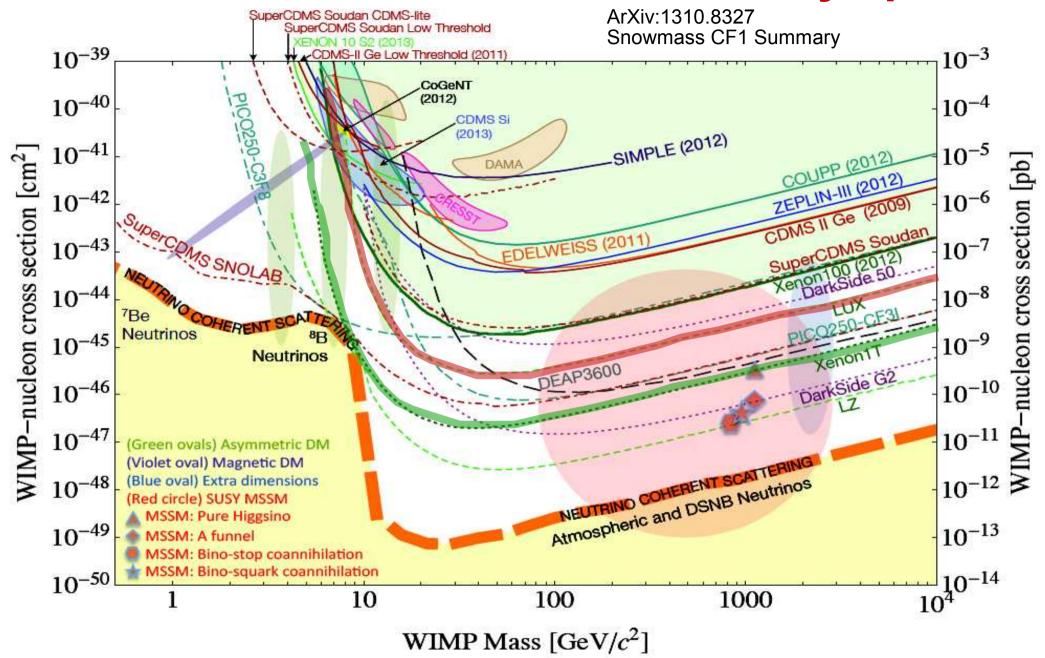
 Search for the recoil energy of a nucleus in an underground detector after collision with a WIMP

Elastic recoil energy

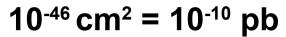
$$E_R = \frac{2\mu_{\chi N}^2 v^2}{m_N} \cos^2 \theta$$

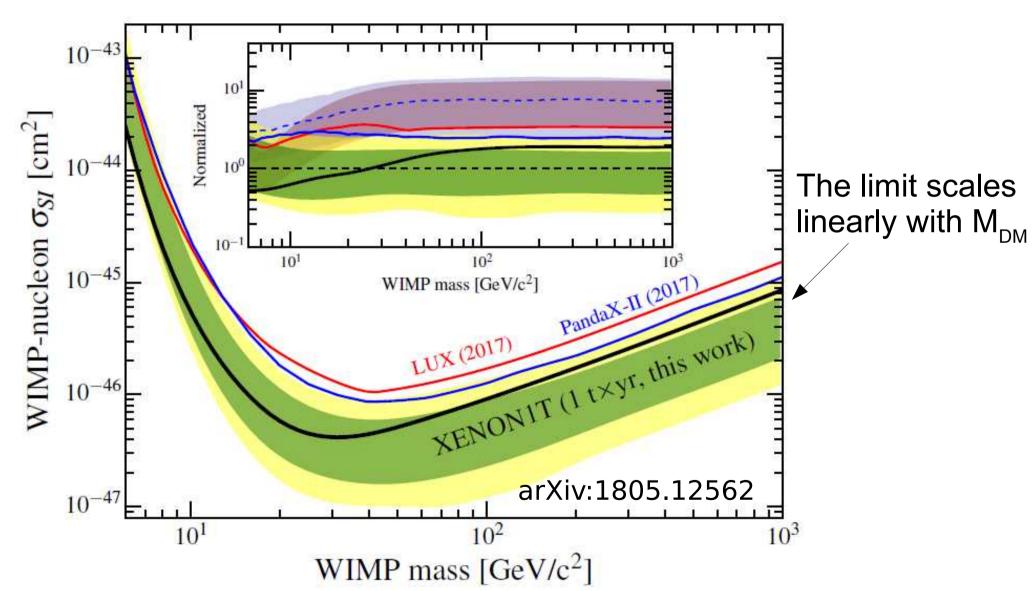
 Minimum WIMP speed required to produce a recoil energy

$$v_{
m min} = \sqrt{rac{m_N E_R}{2 \mu_{\chi N}^2}}$$
 recoiling nucleus


DM

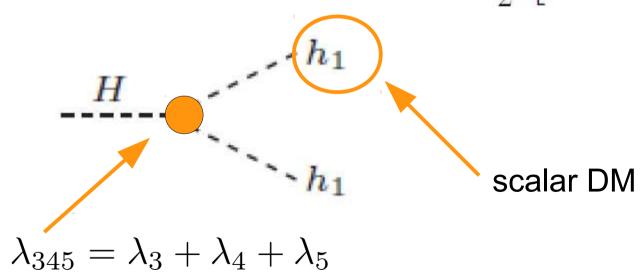
• The differential event rate (per unit detector mass):

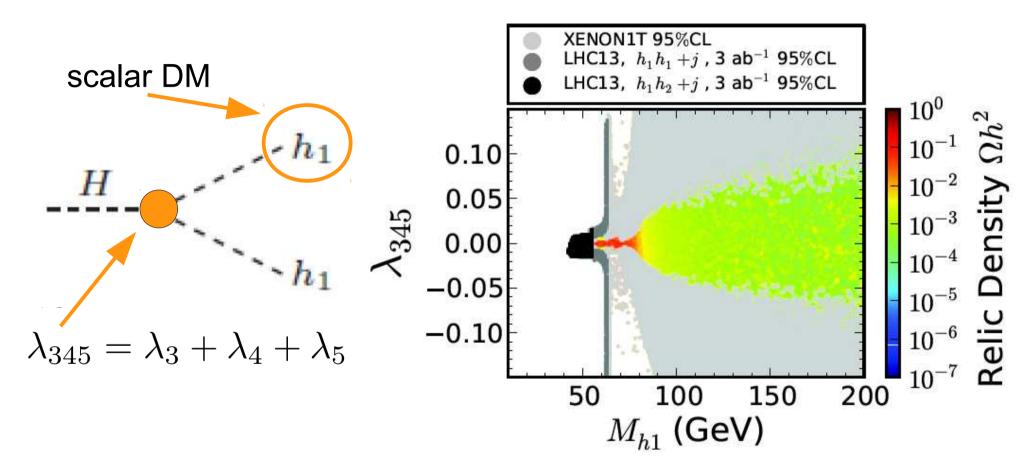

$$\frac{dR}{dE_R} = \underbrace{\frac{\sigma_0 F^2(E_R)}{2m_\chi \mu_{\chi N}^2}}_{\text{particle physics}} \underbrace{\frac{astrophysics}{\rho_\chi \eta(v_{\min},t)}}_{\text{astrophysics}} \text{the source of uncertainty!}$$


DM

Power of DM DD to rule out theory space

Latest XENON 1T results




Power of DM DD to rule out theory space Inert 2 Higgs Doublet Model

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} \qquad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}h^+ \\ h_1 + ih_2 \end{pmatrix}$$

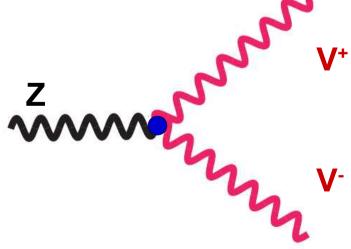
$$V = -m_1^2(\phi_1^{\dagger}\phi_1) - m_2^2(\phi_2^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_2^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \frac{\lambda_5}{2} \left[(\phi_1^{\dagger}\phi_2)^2 + (\phi_2^{\dagger}\phi_1)^2 \right]$$

Power of DM DD to rule out theory space Inert 2 Higgs Doublet Model

Cacciapaglia, Ivanov, Rojas, Thomas, AB arXiv:1610.07545 Novaes, Mercadante, Moon, Tomei, Moretti, Tomas, Panizzi, AB arXiv:1809.00933

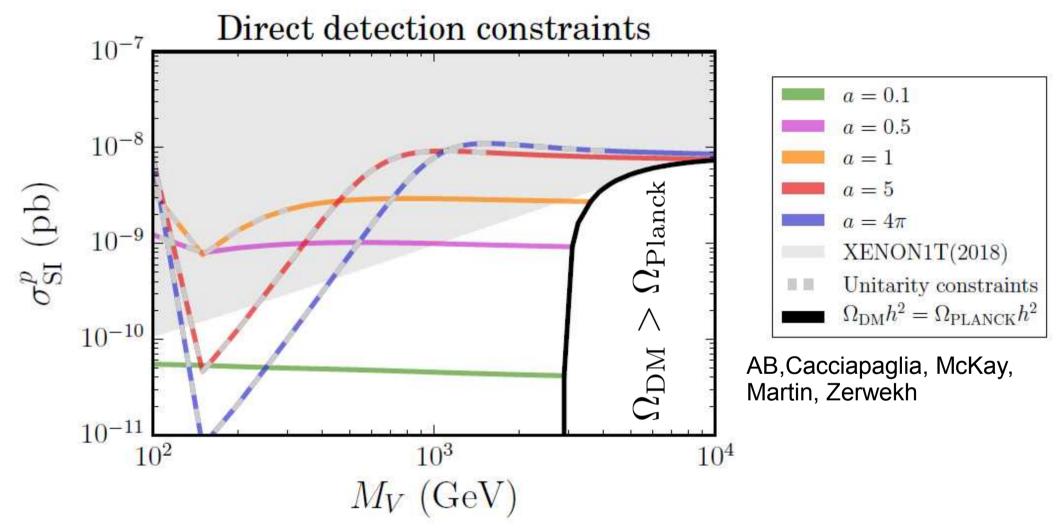
Power of DM DD to rule out theory space Vector DM Model

$$\mathcal{L} = \mathcal{L}_{SM} - Tr \left\{ D_{\mu} V_{\nu} D^{\mu} V^{\nu} \right\} + Tr \left\{ D_{\mu} V_{\nu} D^{\nu} V^{\mu} \right\}$$


$$- \frac{g^2}{2} Tr \left\{ [V_{\mu}, V_{\nu}] \left[V^{\mu}, V^{\nu} \right] \right\}$$

$$- ig Tr \left\{ W_{\mu\nu} \left[V^{\mu}, V^{\nu} \right] \right\} + \tilde{M}^2 Tr \left\{ V_{\nu} V^{\nu} \right\}$$

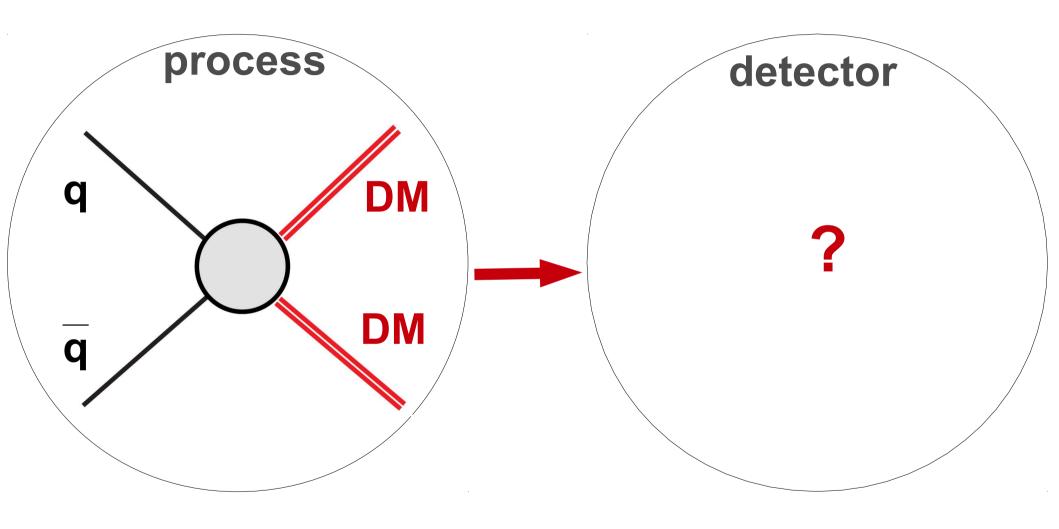
$$+ a \left(\Phi^{\dagger} \Phi \right) Tr \left\{ V_{\nu} V^{\nu} \right\}$$


$$+ a \left(\Phi^{\dagger} \Phi \right) Tr \left\{ V_{\nu} V^{\nu} \right\}$$
AB, Cacciapaglia, McKay,

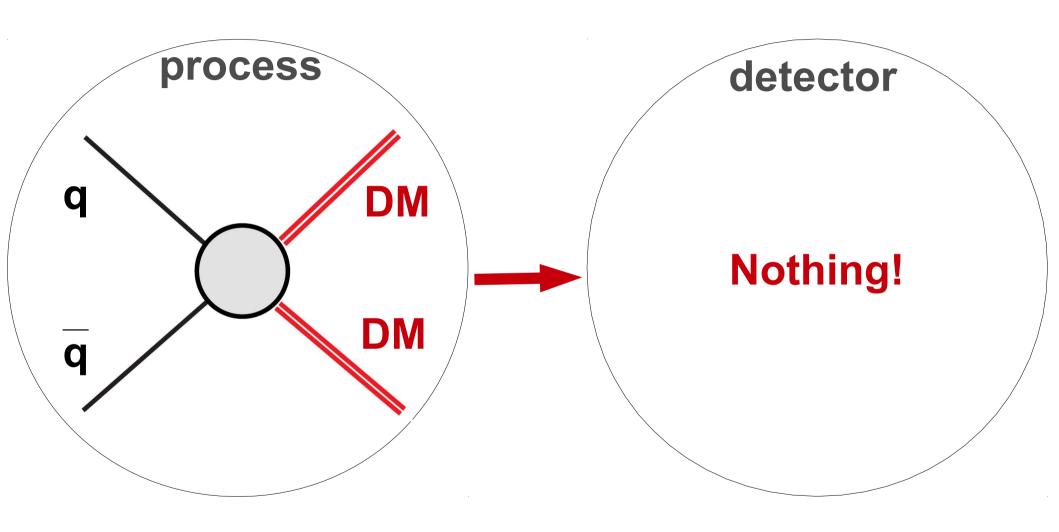
- DM from vector triplet
- SM gauge coupling
- V_{DM}V_{DM}H coupling is the only free parameter

Martin, Zerwekh

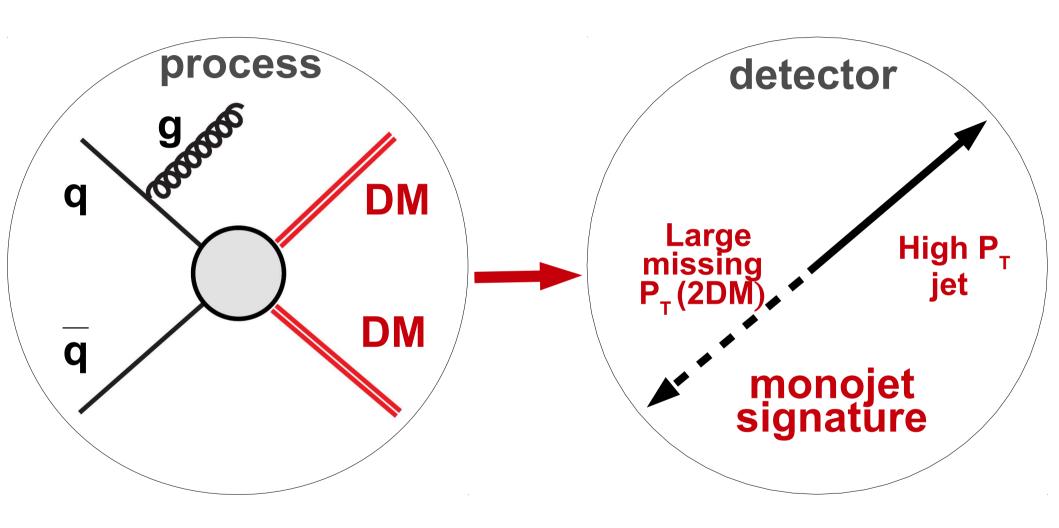
Power of DM DD to rule out theory space Vector DM Model



- ZENON 1T excludes both large HV_{DM}V_{DM} couplings and large M_{DM}
- The lower masses (rest of space) can be covered at future colliders

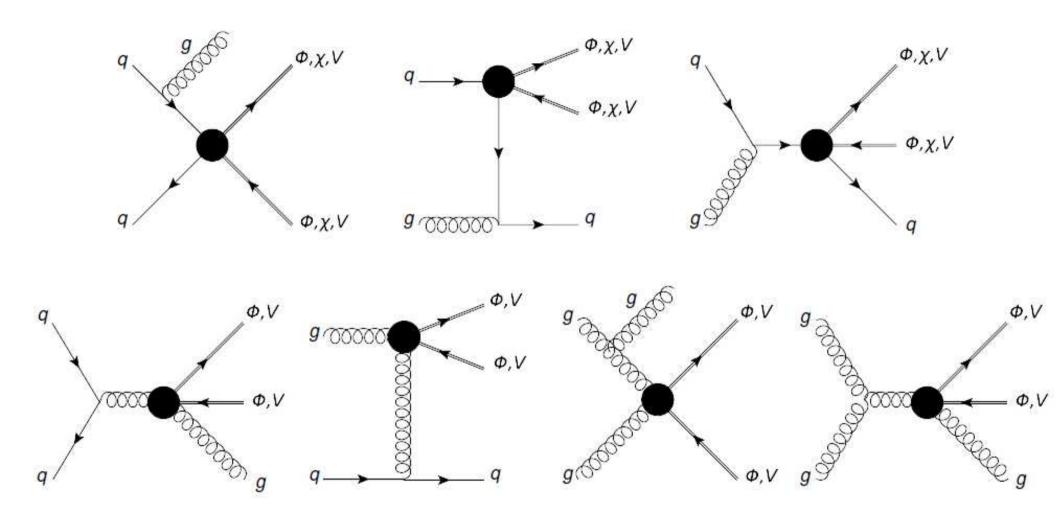

Power of DM DD to rule out theory space

- DM Interaction with SM particles is very limited, mainly from DM DD experiments
- E.g. coupling of Dirac Fermion DM interaction with Z-boson is excluded above 10⁻³ level with DM DD searches
- Majorana Fermion DM does not have this problem, the limit comes from Higgs interactions, the coupling above 0.1 is excluded


DM DD interplay with Collider Searches

Hunting for DM at Colliders

Hunting for DM at Colliders



Can we test DM properties at the LHC?

We explore the LHC potential to probe DM operators with different DM spin using the shape missing transverse momentum (MET)

- we use the EFT approach: simplicity and model independence
- explore the complete set of DIM5/DIM6 operators involving two
 SM quarks (gluons) and two DM particles
- consider DM with spin=0, 1/2, 1
- use mono-jet signature at the LHC

Mono-jet diagrams from EFT operators

DIM5/6 operators (spin 0,1/2,1)

Complex scalar DM[†]

$\frac{\tilde{m}}{\Lambda^2} \phi^{\dagger} \phi \bar{q} q$	[C1]*
$\frac{\hat{m}}{\Lambda^2}\phi^{\dagger}\phi\bar{q}i\gamma^5q$	[C2]*
$\frac{1}{\Lambda^2}\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi \bar{q}\gamma^{\mu}q$	[C3]
$\frac{1}{\Lambda^2}\phi^\dagger i \overleftrightarrow{\partial_\mu} \phi \bar{q} \gamma^\mu \gamma^5 q$	[<i>C</i> 4]
$\frac{1}{\Lambda^2} \phi^{\dagger} \phi G^{\mu\nu} G_{\mu\nu}$	[C5]*
$rac{\hat{\Pi}}{\Lambda^2}\phi^\dagger\phi ilde{G}^{\mu u}G_{\mu u}$	$[C6]^*$

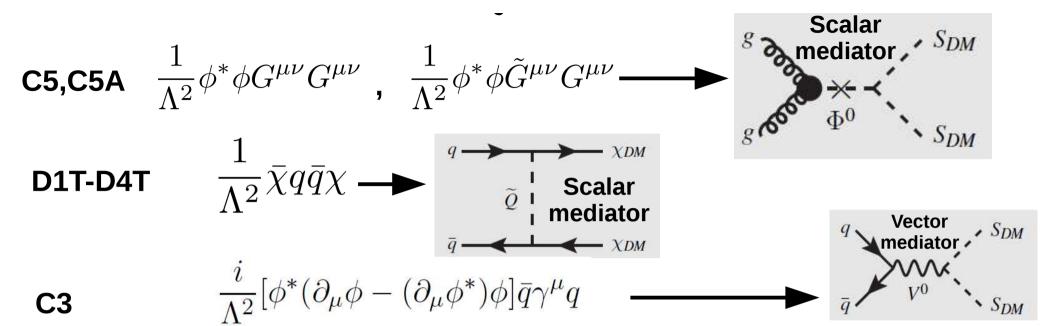
Dirac fermion DM[†]

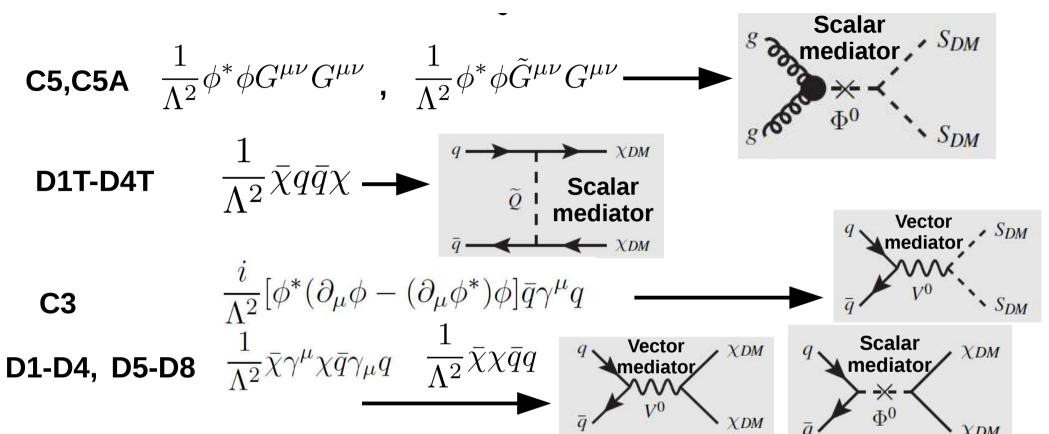
$\frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} q$	[D1]*
$\frac{1}{\Lambda^2}\bar{\chi}i\gamma^5\chi\bar{q}q$	[D2]*
$\frac{1}{\sqrt{2}}\bar{\chi}\chi\bar{q}i\gamma^5q$	[D3]*
$\frac{\gamma_1}{\Lambda^2} \bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q$	[D4]*
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$	[D5]
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} q$	[D6]
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} \gamma^5 q$	[D7]
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$	[D8]
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	[D9]*
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} i \gamma^5 \chi \bar{q} \sigma_{\mu\nu} q$	[D10]*

Complex vector DM[‡]

$\frac{\tilde{m}}{\Lambda^2}V^{\dagger}_{\mu}V^{\mu}\bar{q}q$	[V1]*
$rac{ ilde{m}}{\Lambda^2} V^\dagger_\mu V^\mu ar{q} q \ rac{ ilde{m}}{\Lambda^2} V^\dagger_\mu V^\mu ar{q} i \gamma^5 q$	[V2]*
$\frac{1}{2\lambda^2} (V^{\dagger}_{\nu} \partial_{\mu} V^{\nu} - V^{\nu} \partial_{\mu} V^{\dagger}_{\nu}) \bar{q} \gamma^{\mu} q$	[V3]
$rac{1}{2\Lambda^2}(V_ u^\dagger\partial_\mu V^ u - V^ u\partial_\mu V_ u^\dagger) \bar q i \gamma^\mu \gamma^5 q$	[V4]
$\frac{\tilde{m}}{\Lambda^2}V^{\dagger}_{\mu}V_{ u}\bar{q}i\sigma^{\mu u}q$	[V5]
$rac{\tilde{m}}{\Lambda^2}V^{\dagger}_{\mu}V_{ u}\bar{q}\sigma^{\mu u}\gamma^5q$	[V6]
$\frac{\Lambda_1}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} \gamma^{\mu} q$	[V7P]
$\frac{1}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} i \gamma^{\mu} q$	[V7M]
$\frac{2\Lambda}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} \gamma^{\mu} \gamma^5 q$	[V8P]
$\frac{1}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} i \gamma^{\mu} \gamma^5 q$	[V8M]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V_{\nu}^{\dagger} \partial_{\rho} V_{\sigma} + V_{\nu} \partial_{\rho} V_{\sigma}^{\dagger}) \bar{q} \gamma_{\mu} q$	[V9P]
$\frac{1}{2\lambda^2}\epsilon^{\mu\nu\rho\sigma}(V^{\dagger}_{\nu}\partial^{\nu}V_{\mu}-V^{\nu}\partial^{\nu}V^{\dagger}_{\mu})\bar{q}i\gamma_{\mu}q$	[V9M]
$\frac{1}{2\lambda^2} \epsilon^{\mu\nu\rho\sigma} (V_{\nu}^{\dagger} \partial_{\rho} V_{\sigma} + V_{\nu} \partial_{\rho} V_{\sigma}^{\dagger}) \bar{q} \gamma_{\mu} \gamma^5 q$	[V10P]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} i \gamma_{\mu} \gamma^5 q$	[V10M]
$\frac{1}{\Lambda^2}V^{\dagger}_{\mu}V^{\mu}G^{ ho\sigma}G_{ ho\sigma}$	$[V11]^*$
$\frac{1}{\Lambda^2}V^{\dagger}_{\mu}V^{\mu}\tilde{G}^{\rho\sigma}G_{\rho\sigma}$	[V12]*

^{*} operators applicable to real DM fields, modulo a factor 1/2


[†]Listed in J. Goodman *et al.*, Constraints on Dark Matter from Colliders, Phys.Rev. **D82** (2010) 116010, [arXiv:1008.1783]


[‡] All but V11 and V12 listed in Kumar et al., Vector dark matter at the LHC, Phys. Rev. **D92** (2015) 095027, [arXiv:1508.04466]

C5,C5A
$$\frac{1}{\Lambda^2}\phi^*\phi G^{\mu\nu}G^{\mu\nu}$$
, $\frac{1}{\Lambda^2}\phi^*\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$ — $\frac{1}{\Lambda^2}\phi^*\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$ $\frac{1}{\Lambda^2}\phi^*\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$ $\frac{1}{\Lambda^2}\phi^*\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$

C5,C5A
$$\frac{1}{\Lambda^2}\phi^*\phi G^{\mu\nu}G^{\mu\nu}$$
, $\frac{1}{\Lambda^2}\phi^*\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$ $\stackrel{g}{\longrightarrow} \chi_{DM}$

D1T-D4T $\frac{1}{\Lambda^2}\bar{\chi}q\bar{q}\chi$ $\stackrel{g}{\longrightarrow} \chi_{DM}$ $\stackrel{\chi_{DM}}{\longrightarrow} \chi_{DM}$

C5,C5A
$$\frac{1}{\Lambda^{2}}\phi^{*}\phi G^{\mu\nu}G^{\mu\nu}$$

$$\frac{1}{\Lambda^{2}}\phi^{*}\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}q\bar{q}\chi$$

$$\frac{1}{\tilde{\chi}^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$$

$$\frac{i}{\tilde{\chi}^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$$

$$\frac{1}{\tilde{\chi}^{2}}\bar{\chi}\chi\bar{q}q$$

$$\frac{1}{\tilde{\chi}^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}\gamma_{\mu}q$$

$$\frac{1}{\tilde{\chi}^{2}}\bar{\chi}\chi\bar{q}q$$

$$\frac{1}{\tilde{\chi}^{$$

C5,C5A
$$\frac{1}{\Lambda^{2}}\phi^{*}\phi G^{\mu\nu}G^{\mu\nu}$$

$$\frac{1}{\Lambda^{2}}\phi^{*}\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$$
D1T-D4T
$$\frac{1}{\Lambda^{2}}\bar{\chi}q\bar{q}\chi$$

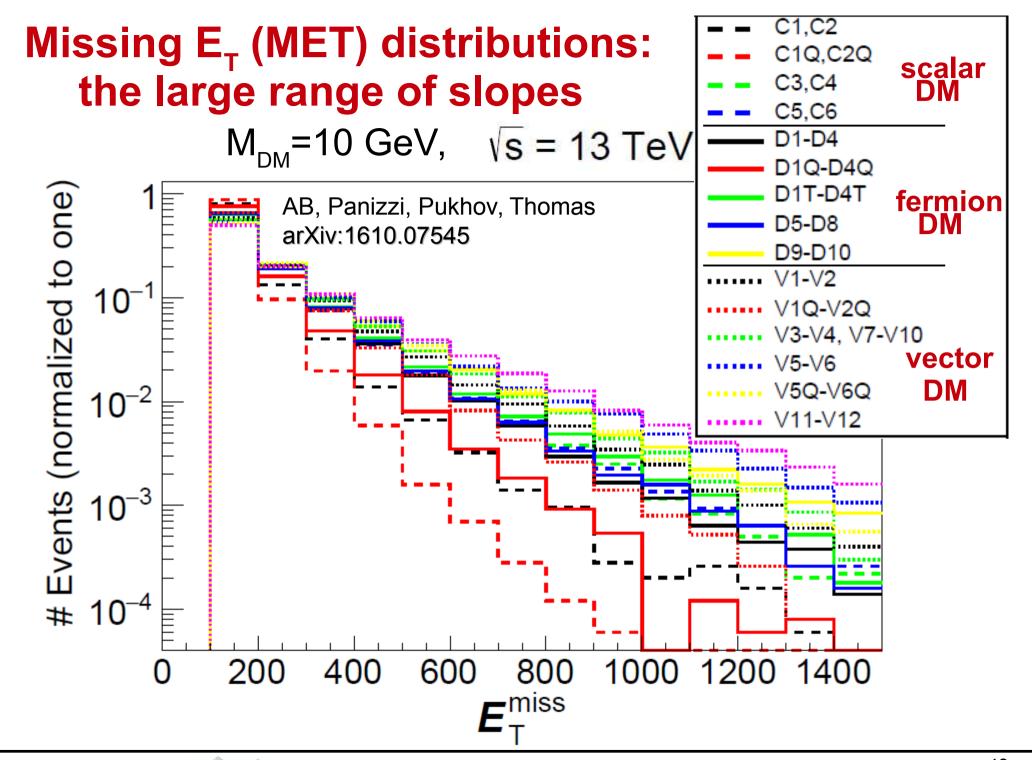
$$\frac{i}{\Lambda^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$$

$$\frac{i}{\Lambda^{2}}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}q$$

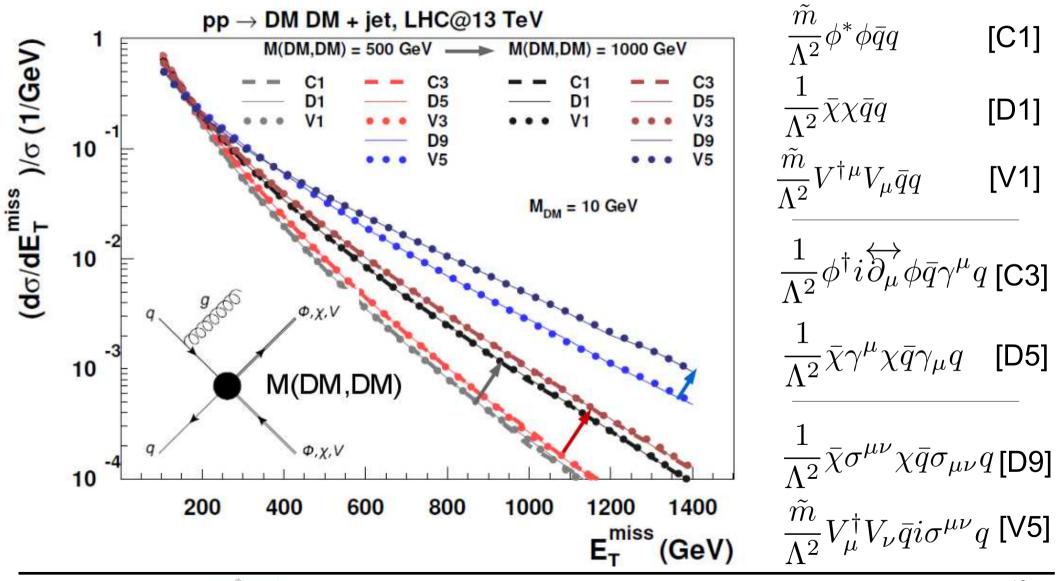
$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}q$$

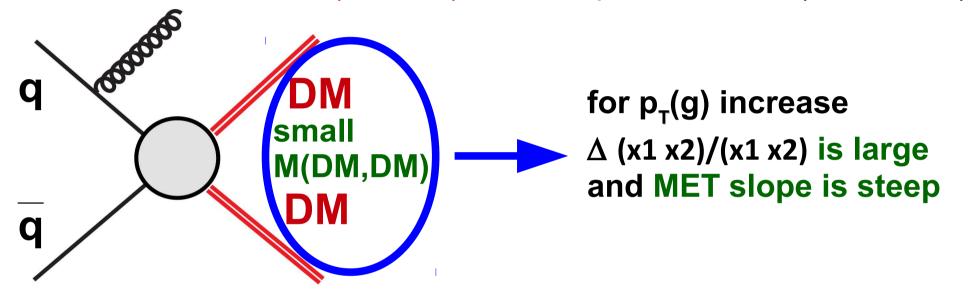

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}q$$

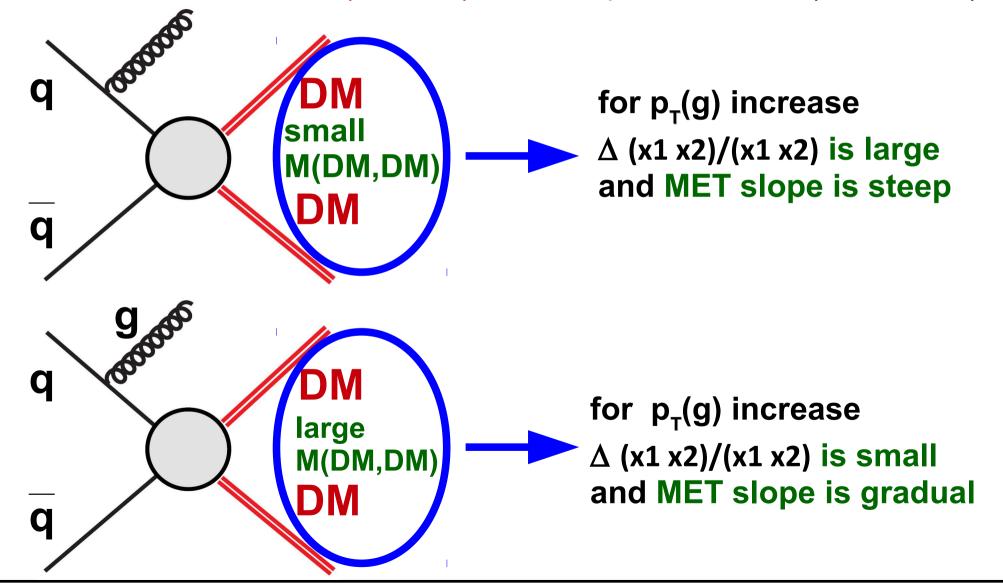
$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi^{\mu}\chi\bar{q}q$$


$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\bar{q}q$$

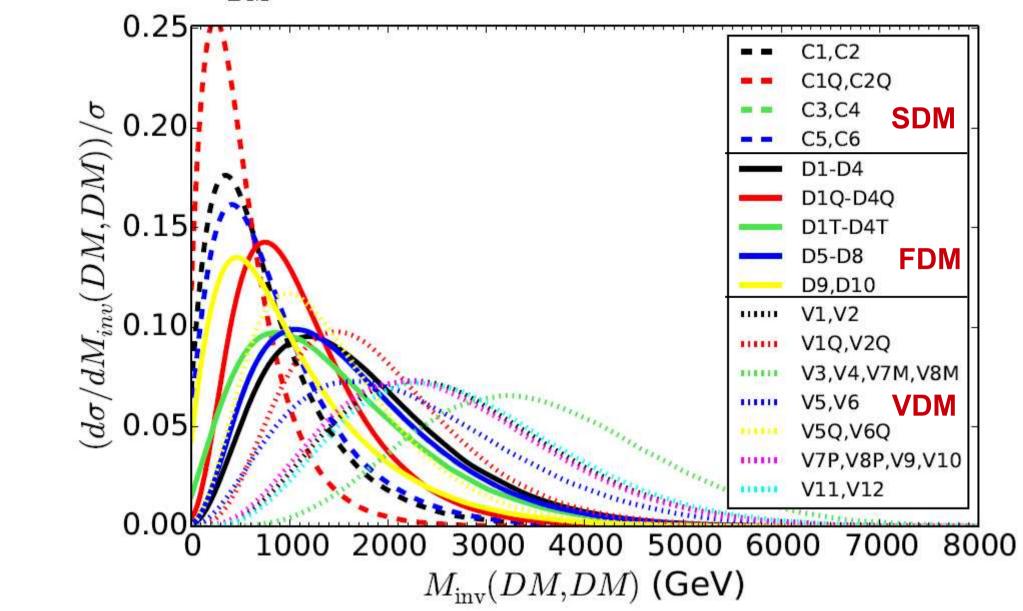
$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\bar{$$


Properties of MET distributions:

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)


Properties of MET distributions for small and large M(DM,DM)

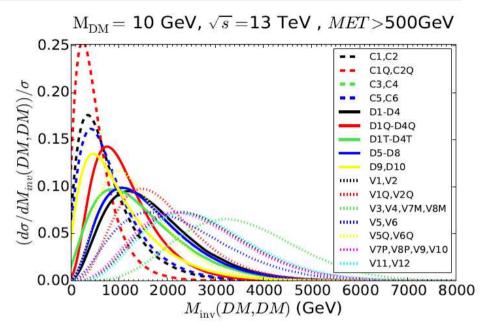
- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

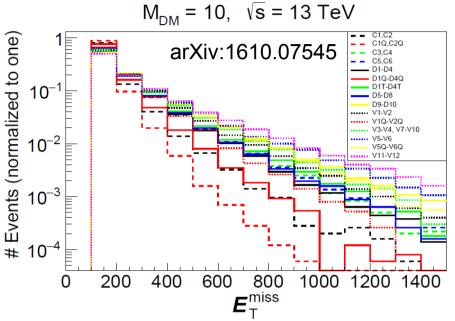

Properties of MET distributions for small and large M(DM,DM)

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

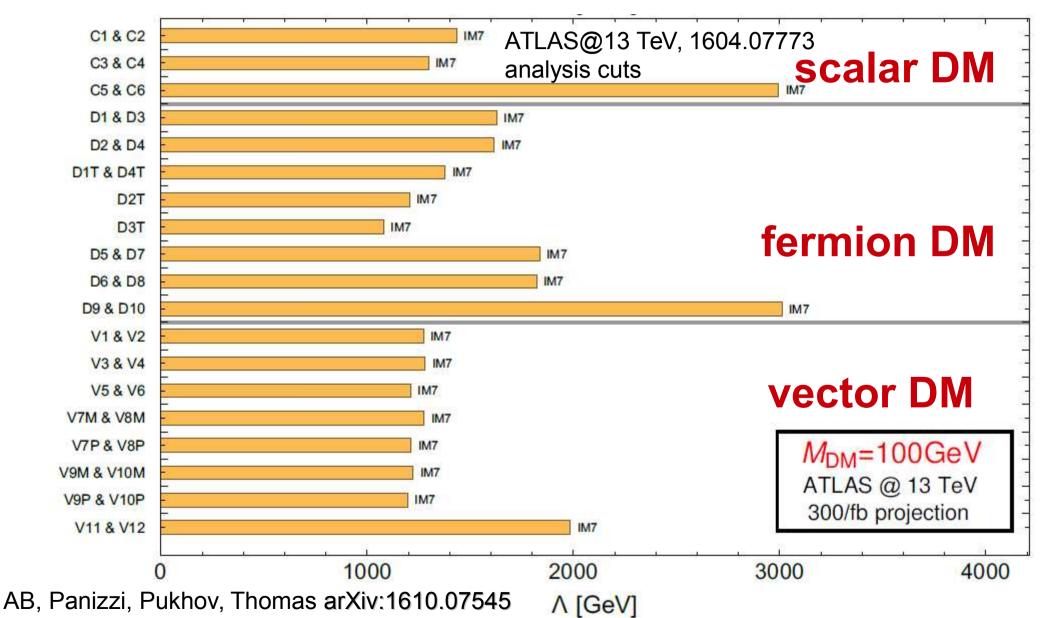
On the other hand, M(DM,DM) distributions, defined by the EFT operators are different!

$$\mathrm{M_{DM}}\!=\!$$
 10 GeV, $\sqrt{s}\!=\!$ 13 TeV , $MET\!>\!$ 500GeV




Distinguishing DM operators/theories

The flatter MET shapes


operator energy dependence $\rightarrow M_{\text{DMDM}}$ shape $\rightarrow MET$ shape

⇒projection for 300 fb⁻¹: some operators C1-C2,C5-C6,D9-D10,V1-V2,V3-V4,V5-V6 and V11-12 can be distinguished from each other

⇒Application beyond EFT: when the DM mediator is not produced on-the-mass-shell and M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}

LHC@13TeV reach projected 100 fb⁻¹

LanHEP→ CalcHEP→ LHE→ CheckMATE

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^2 = \min_{\kappa} \sum_{i=3}^7 [(\frac{1}{2}N_i^k - \kappa \cdot N_i^l)/(10^{-2}BG_i)]^2 \qquad \text{: if χ^2>9.48 (95\%CL for 4 DOF) - operators can be distinguished!}$$

			Co 100 C C1	om Save	Scalar D 1000 C1		Di 100 (D1	244 2772	mion DM 1000 GeV D1 D9		
Complex Scalar	100 GeV	C1 C5	0.0 15.74	19.7 0.0	25.54 0.37	74.63 16.25	11.73 1.11	41.79 3.93	25.78 0.74	52.58 7.35	
DM	1000 GeV	C1 C5	19.89 50.86	0.36 13.86	0.0 10.34	11.82 0.0	2.33 21.03	2.09 3.7	0.27 11.18	4.58 1.53	
Dirac Fermion	100 GeV	D1 D9	9.88 30.49	1.17 3.59	2.52 1.96	25.99 3.96	0.0 7.99	9.23 0.0	2.4 2.71	14.17 0.52	
DM	1000 GeV	D1 D9	$20.31 \\ 37.38$	0.73 6.54	0.27 4.18	12.92 1.6	2.25 11.96	2.93 0.5	0.0 4.89	5.42 0.0	

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^2 = \min_{\kappa} \sum_{i=3}^7 [(\frac{1}{2}N_i^k - \kappa \cdot N_i^l)/(10^{-2}BG_i)]^2 \qquad \text{: if χ^2>9.48 (95\%CL for 4 DOF) - operators can be distinguished!}$$

8			Co	Complex Scalar DM Dirac Fermion DM						M	Complex Vector DM							
			100 GeV 1000 GeV		100	$100~{ m GeV}$ $1000~{ m GeV}$			1	$100~{ m GeV}$				$1000~{ m GeV}$				
超			C ₁	C5	C1	C5	D1	D9	D1	D9	V1	V3	V5	V11	V1	V3	V5	V11
Complex Scalar DM	100 GeV	C1 C5	0.0 15.74	19.7 0.0	Control	74.63 16.25		41.79 3.93	25.78 0.74	52.58 7.35	22.97 0.18	32.89 1.53	54.35 8.2	73.34 15.73	25.18 0.44	34.61 1.9		80.85 19.13
	1000 GeV	10000	19.89 50.86		0.0 10.34	11.82 0.0	2.33 21.03	2.09 3.7	0.27 11.18	4.58 1.53	0.06 11.57	0.45 6.82	5.29 1.26	11.41 0.01	0.06 10.84	0.68 6.1	4.42 1.61	14.36 0.14
Dirac Fermion DM	100 GeV	D1 D9	9.88 30.49	1.17 3.59	2.52 1.96	25.99 3.96	0.0 7.99	9.23 0.0	2.4 2.71	14.17 0.52	1.85 2.49	5.09 0.62	15.34 0.73	25.37 3.69	2.29 2.31	5.85 0.39	13.85 0.56	29.81 5.36
	1000 GeV		20.31 37.38		0.27 4.18	12.92 1.6	2.25 11.96	2.93 0.5	0.0 4.89	5.42 0.0	0.32 4.98	0.82 2.02	6.33 0.06	12.58 1.44	0.08 4.56	1.18 1.61	5.08 0.04	15.7 2.55
13221	100 GeV	V3 V5	18.06 24.86 38.36 50.03	0.17 1.45 7.24 13.43	0.06 0.44 4.79 10.0	13.34 7.57 1.3 0.01	1.72 4.57 12.86 20.55		0.32 0.79 5.67 10.89	5.5 2.14 0.06 1.39	0.0 0.74 5.61 11.2	0.77 0.0 2.5 6.54	6.25 2.68 0.0 1.11	12.9 7.25 1.14 0.0	0.1 0.57 5.24 10.52	1.06 0.03 2.04 5.83	5.34 2.04 0.13 1.49	16.03 9.59 2.13 0.16
Complex Vector DM	1000 GeV	V3 V5	19.73 25.96 37.33 54.48	1.78 6.47	0.06 0.65 4.04 12.42	12.46 6.72 1.68 0.13	2.13 5.21 11.72 23.85		0.08 1.12 4.59 13.43	5.02 1.7 0.04 2.41	0.1 1.01 4.84 13.74	0.59 0.03 1.93 8.55	5.83 2.17 0.14 2.03	12.09 6.41 1.55 0.16	0.0 0.85 4.34 13.01	0.89 0.0 1.57 7.73	4.78 1.65 0.0 2.57	15.14 8.6 2.72 0.0

Alexander Belyaev

Importance of the operator running in the DM DD ↔ Collider interplay

In case of axial operators, e.g.

$$c_A^{(q)} c_{\chi} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} \gamma_5 q$$

$$c_A^{(q)} c_{\chi} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} \gamma_{5} q$$
 (D7) or $c_A^{(q)} c_{\phi} \phi^{\dagger} \overleftrightarrow{\partial}_{\mu} \phi \overline{q} \gamma^{\mu} \gamma_{5} q$ (

couplings $\mathbf{c}_{\mathbf{v}}^{(q)}$ arise due to the running of the wilson coeffcient $\mathbf{c}_{\mathbf{A}}^{(q)}$ leading to sizable constraints on the DM DD constraints

Importance of the operator running in the DM DD ↔ Collider interplay

In case of axial operators, e.g.

$$c_A^{(q)} c_{\chi} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} \gamma_5 q$$

$$c_A^{(q)} c_{\chi} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} \gamma_{5} q$$
 (D7) or $c_A^{(q)} c_{\phi} \phi^{\dagger} \overleftrightarrow{\partial}_{\mu} \phi \overline{q} \gamma^{\mu} \gamma_{5} q$

 χ

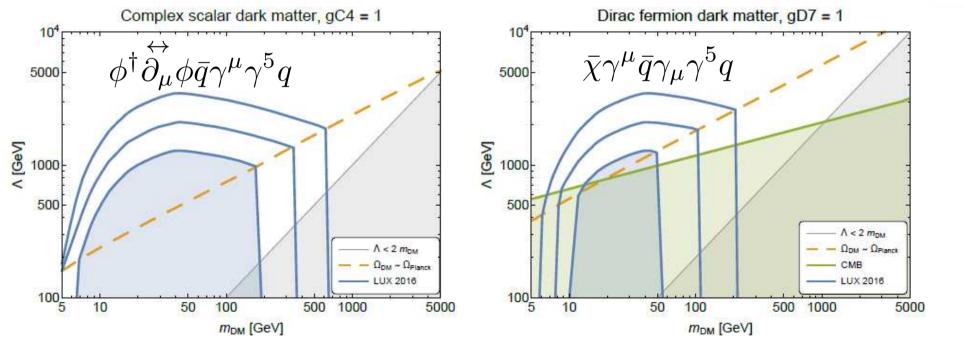
couplings $\mathbf{c}_{v}^{(q)}$ arise due to the running of the wilson coeffcient $\mathbf{c}_{\Delta}^{(q)}$ leading to sizable constraints on the DM DD constraints

$$c_{A}^{\;(u)},\,c_{A}^{\;(d)},\,c_{V}^{\;(u)},\,c_{V}^{\;(d)} = (1,1,0,0)[1\text{TeV}] \; \rightarrow (1.1,\,1.1,\,0.04,\,-0.07)[1\text{GeV}]$$

runDM program (github.com/bradkav/runDM) by D'Eramo, Kavanagh Panci

Importance of the operator running in the DM DD ↔ Collider interplay

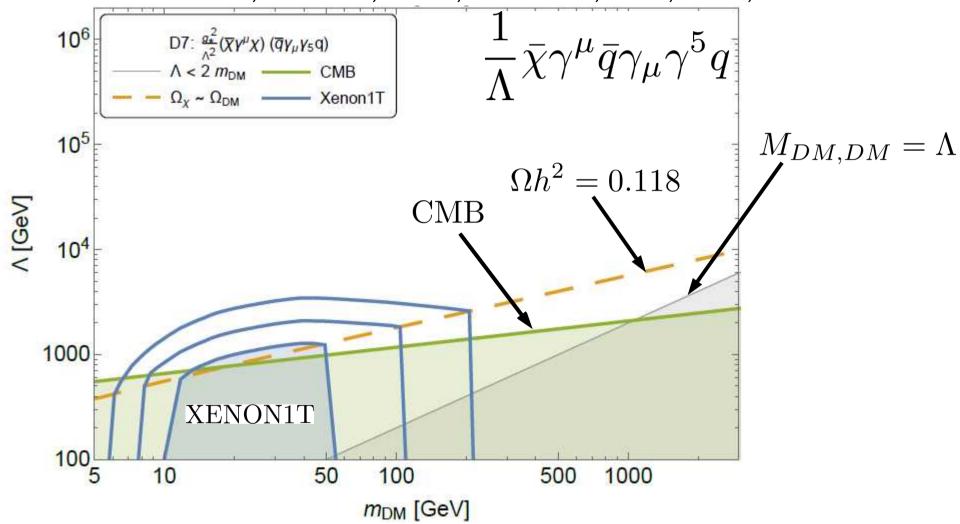
In case of axial operators, e.g


$$c_A^{(q)} c_{\chi} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} \gamma_5 q$$

$$c_A^{(q)} c_{\chi} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} \gamma_{5} q$$
 (D7) or $c_A^{(q)} c_{\phi} \phi^{\dagger} \overleftrightarrow{\partial}_{\mu} \phi \overline{q} \gamma^{\mu} \gamma_{5} q$

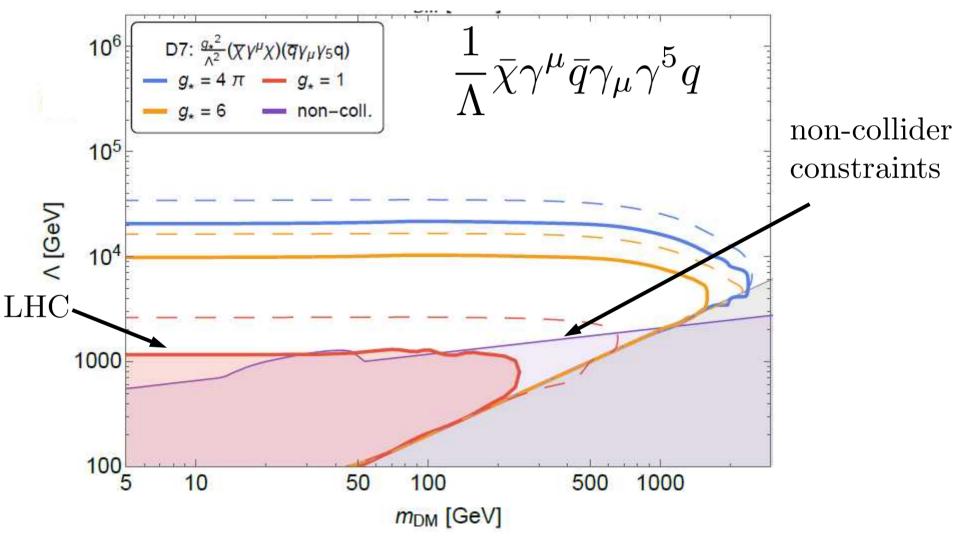
couplings $\mathbf{c}_{v}^{(q)}$ arise due to the running of the wilson coeffcient $\mathbf{c}_{\lambda}^{(q)}$ leading to sizable constraints on the DM DD constraints

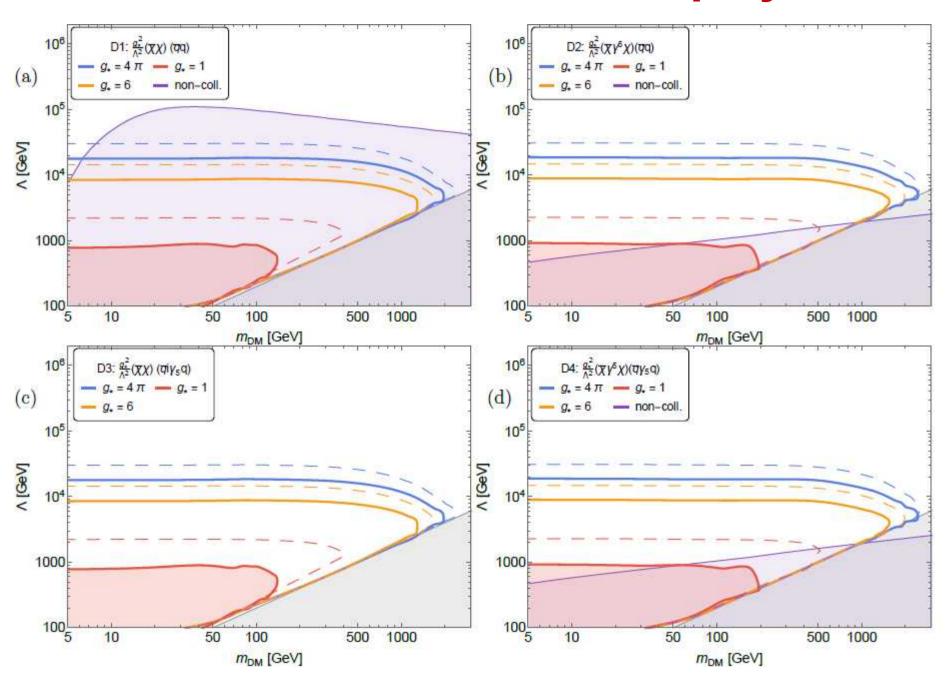
$$c_A^{(u)}, c_A^{(d)}, c_V^{(u)}, c_V^{(d)} = (1,1,0,0)[1\text{TeV}] \rightarrow (1.1, 1.1, 0.04, -0.07)[1\text{GeV}]$$


runDM program (github.com/bradkav/runDM) by D'Eramo, Kavanagh Panci

AB, Bertuzzo, Caniu, di Cortona, Eboli, Iocco, Pukhov 2018

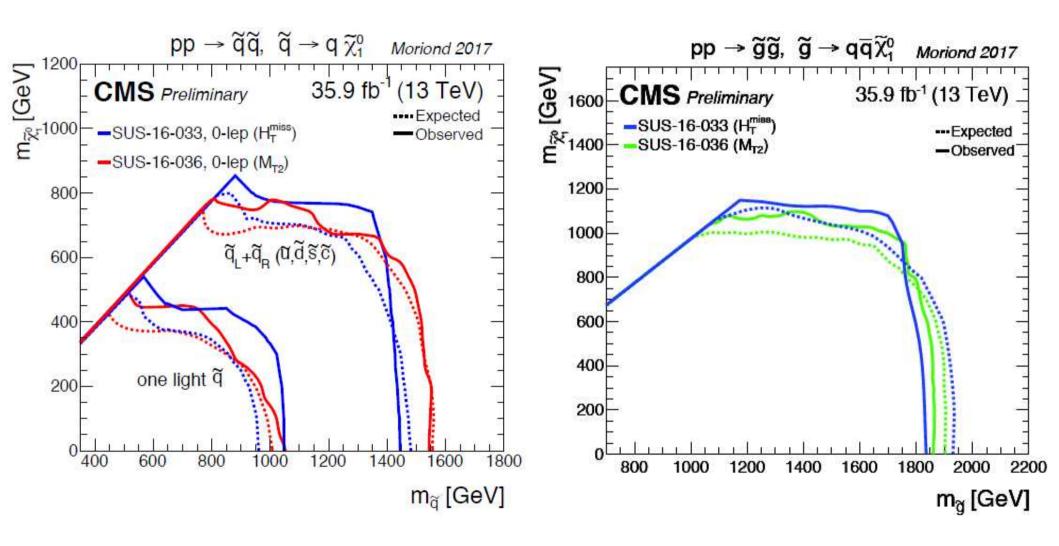
DM DD ←→ Collider interplay


AB, Bertuzzo, Caniu, di Cortona, Eboli, Iocco, Pukhov 2018

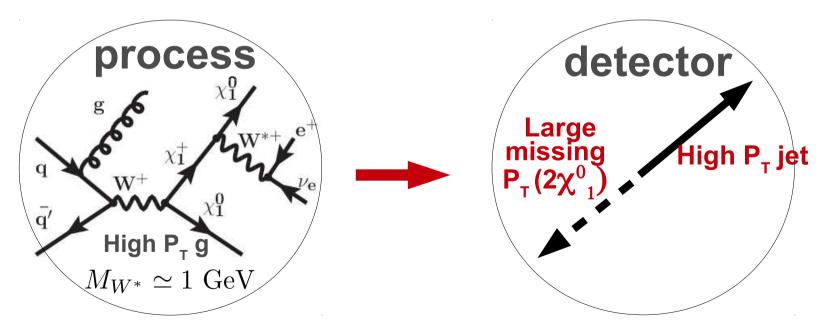

CMB: $p_{\text{ann}} < 4.1 \times 10^{-28} \frac{\text{cm}^3}{\text{s GeV}} \text{ at 95\% C.L.}, \text{ where } p_{\text{ann}} = \sum_j f_j(600, m_{\text{DM}}) \frac{\langle \sigma v \rangle_j(600)}{m_{\text{DM}}}$

DM DD ←→ Collider interplay

AB, Bertuzzo, Caniu, di Cortona, Eboli, Iocco, Pukhov 2018



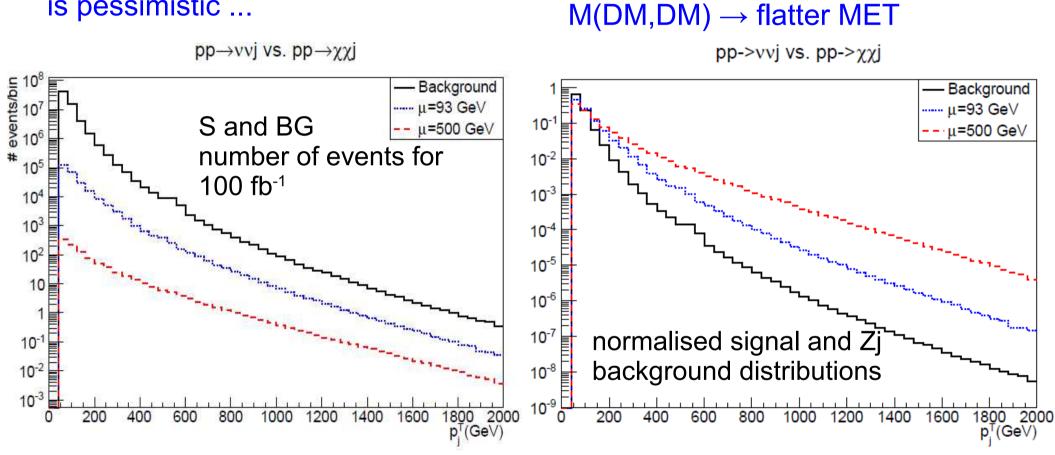
DM DD ←→ Collider interplay


Beyond the EFT: SUSY

There is no limit on the LSP mass if the mass of strongly interacting SUSY particles above ~ 1.9 TeV

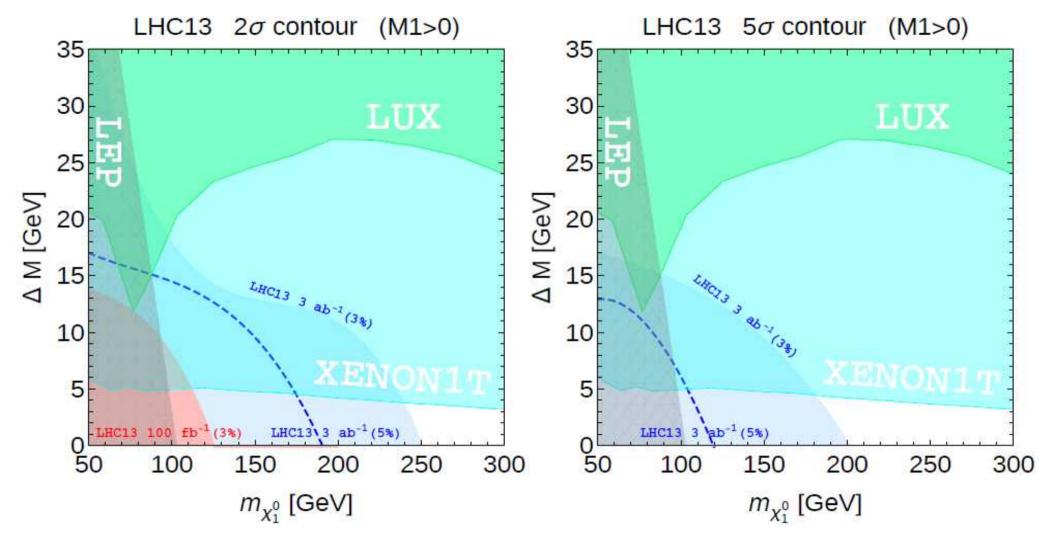
SUSY Compressed Mass Spectrum scenario

- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for leptonic signatures
- The only way to probe CHS is a mono-jet signature ["Where the Sidewalk Ends? ..." Alves, Izaguirre, Wacker '11], which has been used in studies on compressed SUSY spectra, e.g. Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13; Han, Kribs, Martin, Menon '14



Signal vs Background

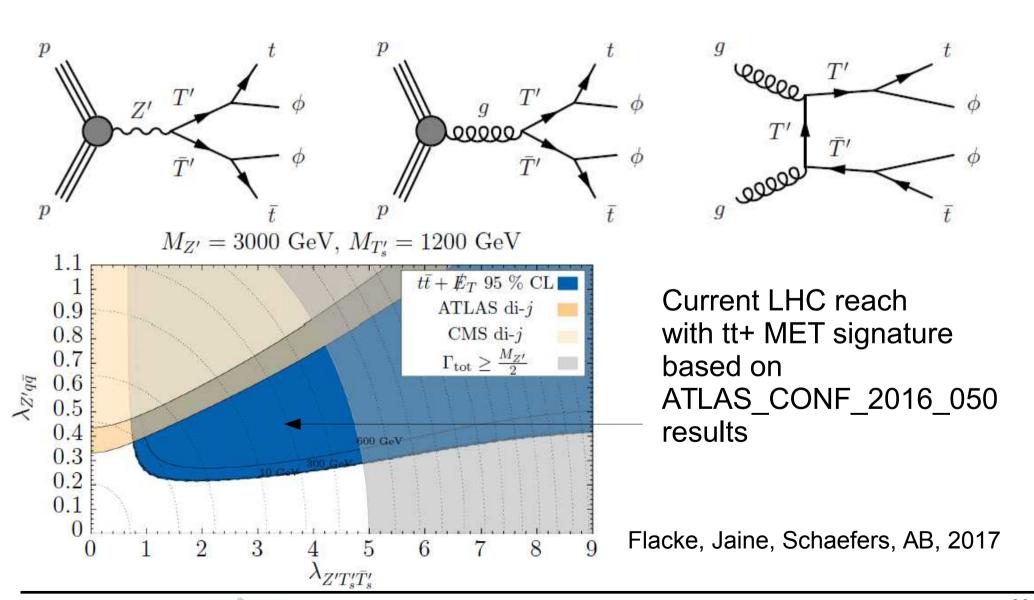
but the difference in shapes is


encouraging: large DM mass → biger

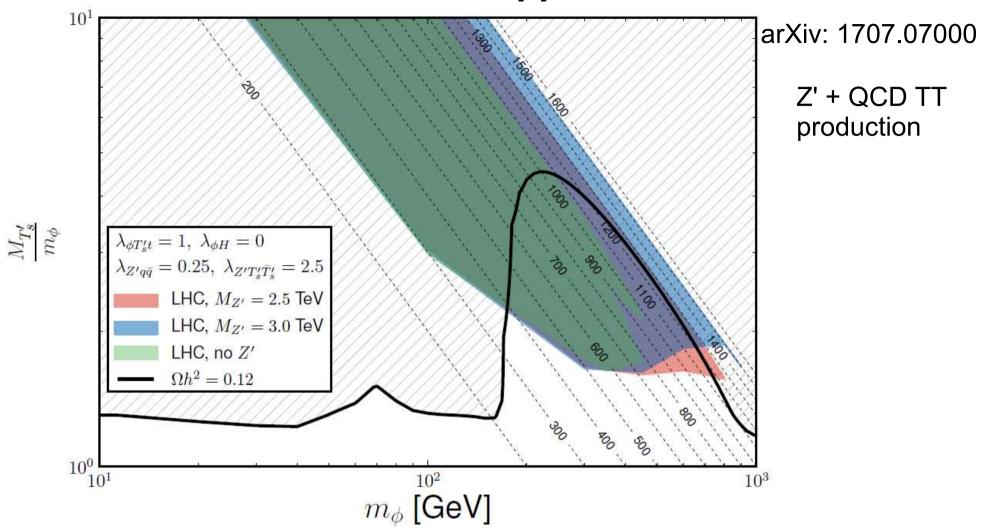
difference in rates is pessimistic ...

Signal and Zj background p_T distributions for the 13 TeV LHC

LHC/DM direct detection sensitivity



AB, Barducci, Bharucha, Porod, Sanz JHEP, 1504.02472


- SUSY DM, can be around the corner (~100 GeV), but it is hard to detect it!
- Great complementarity of DD and LHC for small DM (NSUSY) region

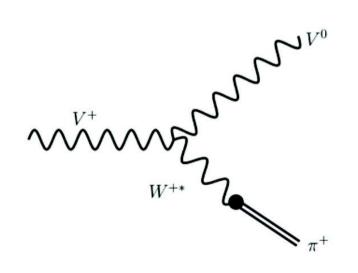
Beyond the mono-jet signature

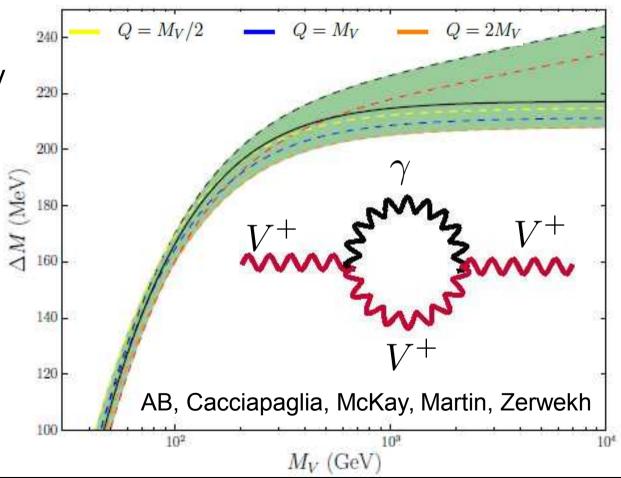
Example of the vector resonance in the Composite Higgs model: Z'→ TT→ t t DM DM signature

The role of Z' vs QCD for pp→ TT→ t t DM DM

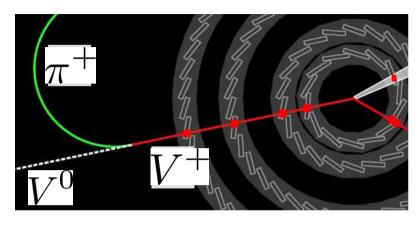
⇒LHC is probing now DM and top partner masses up to about 0.9 and 1.5 TeV respectively: above bounds from QCD production alone by ~ factor of two

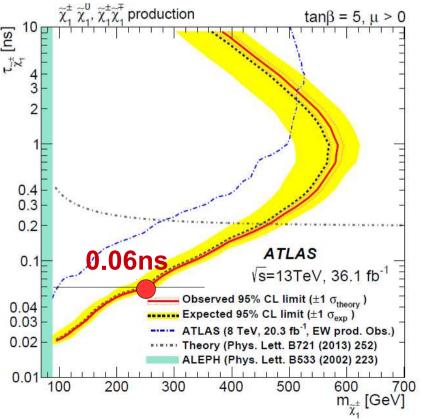
⇒DM DD rates are loop-suppressed

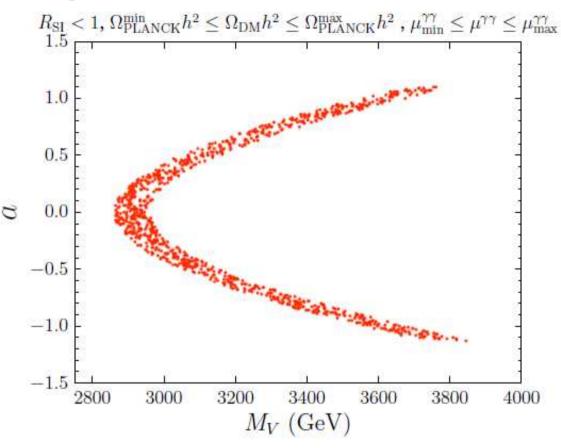

Disappearing Charged Tracks from: VDM as an example


$$\mathcal{L} = \mathcal{L}_{SM} - Tr \{ D_{\mu} V_{\nu} D^{\mu} V^{\nu} \} + Tr \{ D_{\mu} V_{\nu} D^{\nu} V^{\mu} \}$$
$$- \frac{g^{2}}{2} Tr \{ [V_{\mu}, V_{\nu}] [V^{\mu}, V^{\nu}] \}$$
$$- ig Tr \{ W_{\mu\nu} [V^{\mu}, V^{\nu}] \} + \tilde{M}^{2} Tr \{ V_{\nu} V^{\nu} \}$$

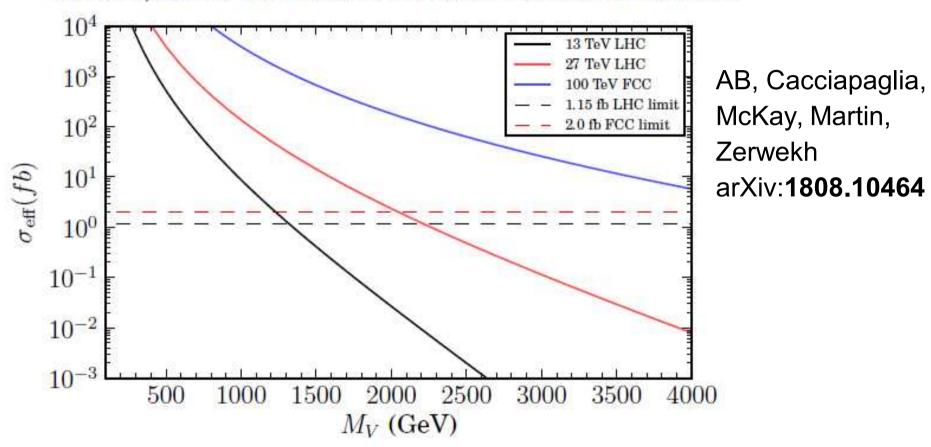
The small mass gap (~ pion mass) between DM and its charged partner will lead to the disappearing charge tracks signatures


 $+a\left(\Phi^{\dagger}\Phi\right)Tr\{V_{\nu}V^{\nu}\}$


The life-time should be properly evaluated using W-pion mixing (otherwise overestimated by factor of 10)



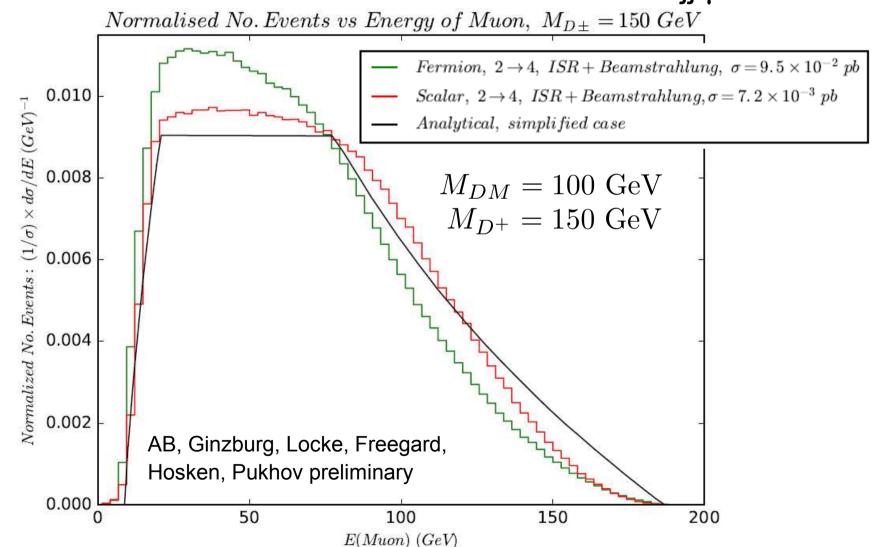
Collider sensitivity to VDM mass



Using ATLAS arXiv:1712.02118 for LHC interpretation and Mahbubani, Schwaller, Zurita ArXiv:1703.05327 For 100 TeV FCC projections

Collider sensitivity to VDM mass

LHC@13, @27TeV and FCC@100 TeV constraints from LLP searches


Current bound from LHC on DM mass from the minimal vector triplet model: **1.3 TeV**!

100 TeV FCC will cover DM mass **beyond 4TeV**: will discover or close the model

Decoding the nature of DM at the ILC

muon spectrum from the models with scalar and fermion DM

 $e^+e^- \to D^+$ D- \to DM DM W+ W- \to DM DM jj $\mu \; \nu$

Decoding Problem: Data → **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data

Decoding Problem: Data → **Theory link**

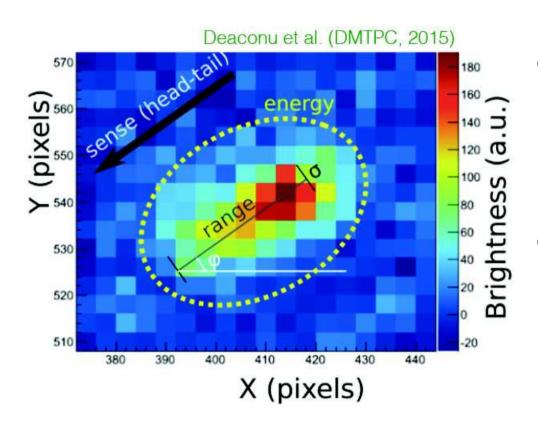
- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP,
 Madgraph for any model stored in the database
 - you can upload their own model and perform simulation

Decoding Problem: Data → **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
 - you can upload their own model and perform simulation
- As a HEPMDB spin-off the PhenoData project was created hepmdb.soton.ac.uk/phenodata
 - stores data (digitized curves from figures, tables etc) from those HEP papers which did not provide data in arXiv or HEPData
 - has an easy search interface and paper identification via arXiv, DOI or preprint numbers

Summary

- ⇒DM DD detection provides a very powerful probe of DM theory space in general provides DM mass probe beyond the collider reach
- Colliders provide DM detection power in the region "blind" for DM DD, typically below 1 TeV
- ⇒Several ways to decode DM nature from the signal which we hope to observe soon (slopes of MET, cross sections, signatures, ...)
- ⇒New prospects: new DD experiments, new ideas, prospects for directional DM detection, new signatures at colliders (VFB, LL, ...), future colliders (great potential of ILC and FCC see Albert's talk)
- ⇒Great synergy of collider and non-collider experiments (DD, CMB, relic density)


Thank you!

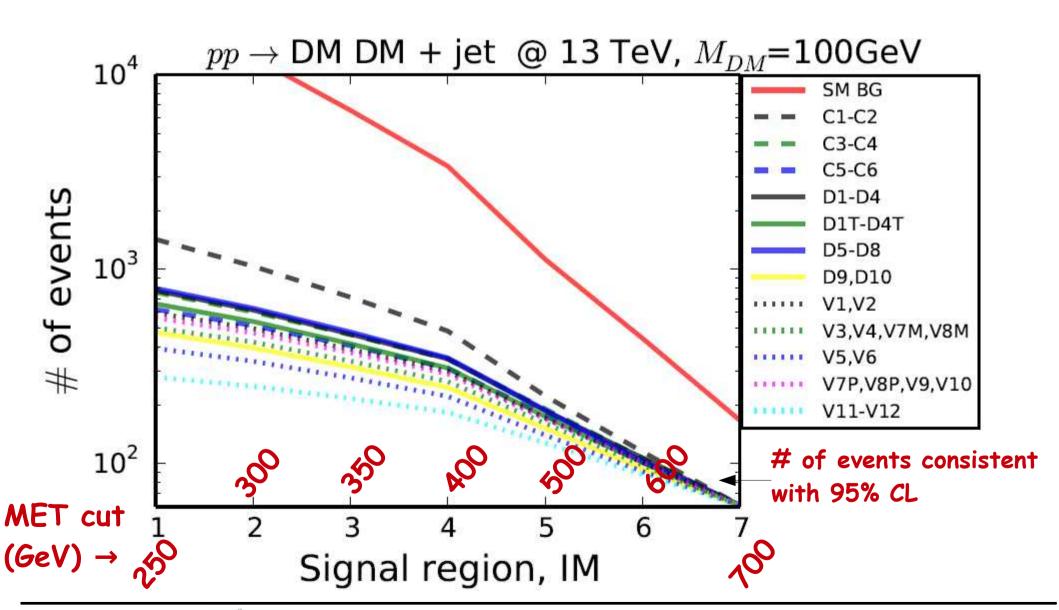
Backup Slides

DM DD: directional detection – going beyond the neutrino floor

- The idea is to measure both the energy and the direction of the recoil
- Most mature technology is the gaseous Time Projection Chamber (TPC): DRIFT, MIMAC, DMTPC, NEWAGE, D3

- Detecting recoil tracks in nuclear emulsion (e.g. NEWS experiment)
 Aleksandrov et al. [1604.04199]
- Directional detection is HARD, But it is also very POWERFUL.

Relation of the actual dimension (D) and the naive one (d) for VDM operators


V_{DM} Operator	$ig \Lambda_d$	d	Λ_D	D	$\Delta_{\sigma}(\sigma_{2\to 2} \propto E^{\Delta_{\sigma}})$	Amplitude Enhancement
V1,V2,V5,V6	$\frac{1}{\Lambda}$	5	$\frac{M_{DM}^2}{\Lambda^3}$	7	4	$(E/M_{DM})^2$
V3,V4,V7M,V8M,V11,V12	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}^2}{\Lambda^4}$	8	6	$(E/M_{DM})^2$
V7P,V8P,V9,V10	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}}{\Lambda^3}$	7	4	E/M_{DM}

- we suggest a new parametrisation of VDM operators: since the energy E and the collider limit on L are of the same order, it is natural to use an additional M_{DM}/Λ factor for each power of E/M_{DM} enhancement, so collider limits are not artificially enhanced [~100 TeV !!! for MDM =1 GeV, see Kumar, Marfatia, Yaylali 1508.04466] and will be of the same order as limits for other operators
- Dictionary between limits on Λ in different parametrisations:

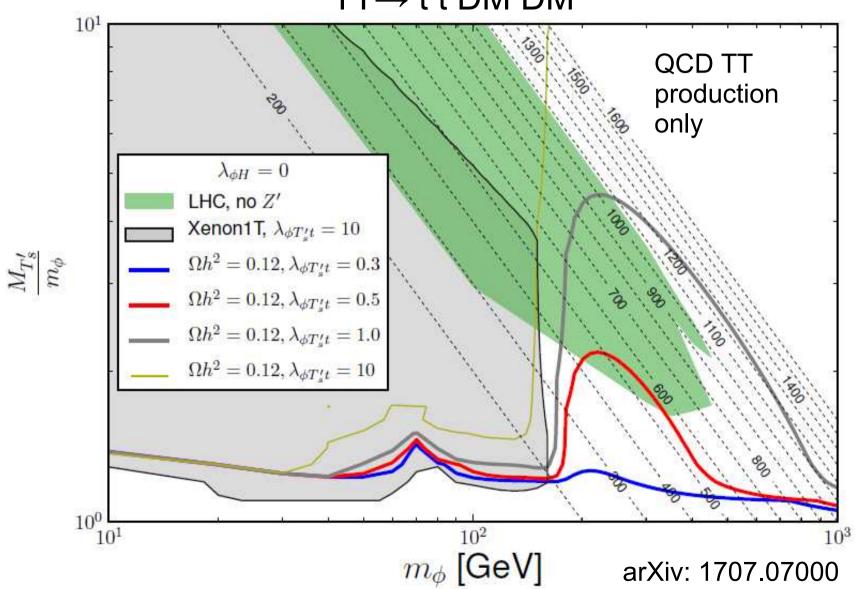
$$\Lambda_D = \left(\Lambda_d^{d-4} M_{DM}^{D-d}\right)^{\frac{1}{D-4}} \quad \text{and} \qquad \Lambda_d = (\Lambda^{D-4} M_{DM}^{d-D})^{\frac{1}{d-4}}$$

Distinguishing DM operators

operator energy dependence $\rightarrow M_{DMDM}$ shape $\rightarrow MET$ shape

On the BG uncertainty

• The BG is statistically driven, e.g. pp-> Zj \rightarrow nnj BG is defined from the pp \rightarrow Zj \rightarrow I⁺I⁻j one


CMS-PAS-EXO-16-013

	1 12 20 10 10 10 10	270/2002/00/00 10:100	100000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1	69/3	155200.2	5	200 D. Sal		
E _T ^{miss} Range	$Z(\nu\nu)$ +jets	$W(\ell \nu)$ +jets	$Z(\ell\ell)$ +jets	γ +jets	Тор	Diboson	QCD	Total	Total	Data
(GeV)			Na.1 201		V.*			(Pre-fit)	(Post-fit)	
200 - 230	14919 ± 221	11976 ± 196	207 ± 13	230 ± 14	564 ± 55	251 ± 41	508 ± 171	27761 ± 1464	28654 ± 171	28601
230 - 260	7974 ± 116	5776 ± 101	92.9 ± 5.7	101 ± 6	267 ± 26	157 ± 26	308 ± 104	14114 ± 757	14675 ± 97	14756
260 - 290	4467 ± 70	2867 ± 50	37.9 ± 2.3	63.7 ± 3.9	116 ± 11	77.3 ± 12.7	38.3 ± 21.0	7193 ± 351	7666 ± 68	7770
290 - 320	2518 ± 46	1520 ± 34	18.4 ± 1.1	29.6 ± 1.8	56.7 ± 5.6	42.9 ± 7.1	29.8 ± 10.5	4083 ± 204	4215 ± 48	4195
320 - 350	1496 ± 35	818 ± 20	10.0 ± 0.6	19.7 ± 1.2	33.6 ± 3.3	25.4 ± 4.2	9.0 ± 5.4	2385 ± 118	2407 ± 37	2364
350 - 390	1204 ± 31	555 ± 15	3.9 ± 0.2	12.7 ± 0.8	24.5 ± 2.4	22.1 ± 3.6	6.0 ± 3.5	1817 ± 87	1826 ± 32	1875
390 - 430	684 ± 20	275 ± 9	2.1 ± 0.1	8.3 ± 0.5	9.8 ± 1.0	13.9 ± 2.3	3.0 ± 1.6	978 ± 45	998 ± 23	1006
430 - 470	382 ± 14	155 ± 6	0.96 ± 0.06	4.9 ± 0.3	9.4 ± 0.9	6.6 ± 1.1	1.0 ± 0.8	589 ± 30	574 ± 17	543
470 - 510	248 ± 11	87.3 ± 3.8	0.47 ± 0.03	3.7 ± 0.2	0.22 ± 0.02	5.1 ± 0.8	0.65 ± 0.44	337 ± 15	344 ± 12	349
510 - 550	160 ± 8	52.2 ± 2.7	0.23 ± 0.01	2.0 ± 0.1	2.7 ± 0.3	2.2 ± 0.4	0.28 ± 0.19	211 ± 9	219 ± 9	216
550 - 590	99.5 ± 6.0	29.2 ± 1.9	0.12 ± 0.01	1.8 ± 0.1	0.94 ± 0.09	2.0 ± 0.3	0.19 ± 0.14	134 ± 6	134 ± 7	142
590 - 640	77.3 ± 4.9	18.9 ± 1.4	0.09 ± 0.01	0.46 ± 0.03	< 0.13	1.7 ± 0.3	0.11 ± 0.08	100 ± 4	98.5 ± 5.8	111
640 - 690	44.8 ± 3.5	11.2 ± 0.9	0.017 ± 0.001	0.19 ± 0.01	< 0.13	1.5 ± 0.2	0.06 ± 0.05	59.6 ± 2.6	58.0 ± 4.1	61
690 - 740	27.8 ± 2.5	6.1 ± 0.6	0.013 ± 0.0008	0.57 ± 0.04	< 0.13	0.69 ± 0.11	0.02 ± 0.02	36.6 ± 1.5	35.2 ± 2.9	32
740 - 790	21.8 ± 2.3	5.3 ± 0.6	< 0.005	0.28 ± 0.02	0.23 ± 0.02	0.11 ± 0.02	0.02 ± 0.02	23.8 ± 1.0	27.7 ± 2.7	28
790 - 840	13.5 ± 1.9	2.8 ± 0.4	< 0.005	0.18 ± 0.01	0.27 ± 0.03	0.010 ± 0.001	0.008 ± 0.007	15.3 ± 0.7	16.8 ± 2.2	14
840 - 900	9.5 ± 1.4	2.0 ± 0.3	< 0.005	0.28 ± 0.02	< 0.13	0.25 ± 0.04	< 0.008	12.2 ± 0.6	12.0 ± 1.6	13
900 - 960	5.4 ± 1.0	1.1 ± 0.2	< 0.005	< 0.08	< 0.13	0.37 ± 0.06	< 0.008	7.6 ± 0.3	6.9 ± 1.2	7
960 - 1020	3.3 ± 0.8	0.77 ± 0.21	< 0.005	0.12 ± 0.01	< 0.13	0.23 ± 0.04	< 0.008	5.2 ± 0.3	4.5 ± 1.0	3
1020 - 1160	2.5 ± 0.8	0.52 ± 0.16	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	3.6 ± 0.2	3.2 ± 0.9	1
1160 - 1250	1.7 ± 0.6	0.3 ± 0.11	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	2.3 ± 0.1	2.2 ± 0.7	2
> 1250	1.4 ± 0.5	0.19 ± 0.08	< 0.005	< 0.08	< 0.13	0.06 ± 0.01	< 0.008	1.6 ± 0.1	1.6 ± 0.6	3

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-013/#AddFig

Complementarity of LHC and non-LHC DM searches

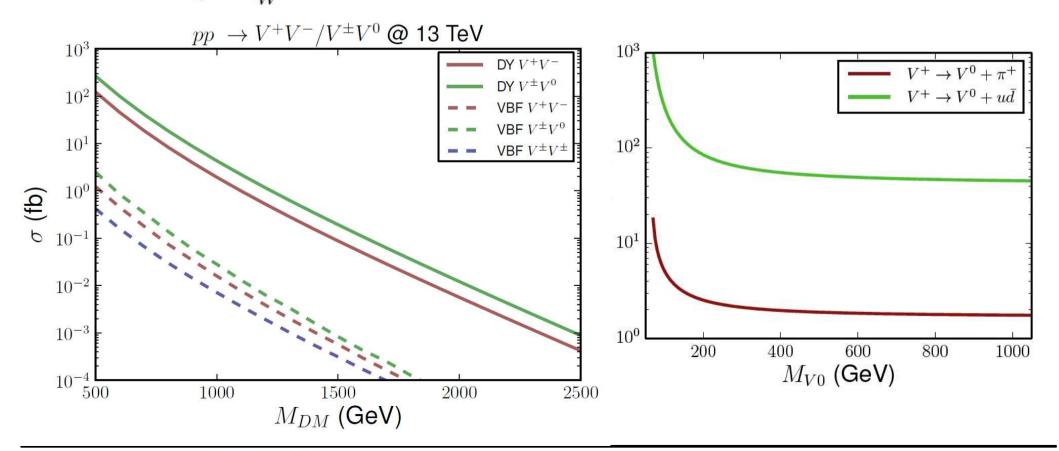
for the model with Vector Resonances, Top Partners and Scalar DM TT→ t t DM DM

LHC@13TeV Reach for spin 0 and ½ DM

			Exclude	$d \Lambda (GeV)$	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 fb ⁻¹		
	Operators	Coefficient		DM Mass	3	DM Mass		
			$10 \; \mathrm{GeV}$	$100~{\rm GeV}$	$1000~{\rm GeV}$	$10 \; \mathrm{GeV}$	$100~{ m GeV}$	$1000~{ m GeV}$
Complex Scalar DM	C1 & C2	$1/\Lambda$	456	424	98	1168	1115	267
	C3 & C4	$1/\Lambda^2$	750	746	400	1134	1131	662
	C5 & C6	$1/\Lambda^2$	1621	1576	850	2656	2611	1398
Dirac Fermion DM	D1 & D3	$1/\Lambda^2$	931	940	522	1386	1405	861
	D2 & D4	$1/\Lambda^2$	952	936	620	1426	1399	1022
	D1T & D4T	$1/\Lambda^2$	735	729	476	1217	1199	780
	D2T	$1/\Lambda^2$	637	638	407	1053	1052	670
	D3T	$1/\Lambda^2$	586	625	391	969	938	644
	D5 & D7	$1/\Lambda^2$	1058	967	721	1580	1591	1190
	D6 & D8	$1/\Lambda^2$	978	1050	579	1608	1585	955
	D9 & D10	$1/\Lambda^2$	1587	1592	958	2613	2619	1580

LHC@13TeV Reach for spin 1 DM

	Operators	Coefficient	Exclude	$d \Lambda (GeV)$	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 fb ⁻¹ DM Mass		
				DM Mass	3			
			$10 \; \mathrm{GeV}$	$100~{\rm GeV}$	$1000~{ m GeV}$	$10~{ m GeV}$	$100~{\rm GeV}$	$1000~{\rm GeV}$
Complex Vector DM	V1 & V2	M_{DM}^2/Λ_D^3	831	833	714	1162	1161	997
	V3 & V4	M_{DM}^2/Λ_D^4	930	931	833	1196	1193	1070
	V5 & V6	M_{DM}^2/Λ_D^3	784	791	711	1095	1104	993
	V7M & V8M	M_{DM}^2/Λ_D^4	930	926	882	1195	1193	1130
	V7P & V8P	M_{DM}/Λ_D^3	796	791	652	1112	1102	911
	V9M & V10M	M_{DM}/Λ_D^3	796	799	737	1109	1114	1027
	V9P & V10P	M_{DM}/Λ_D^3	794	782	609	1110	1089	850
Con	V11 & V11A	M_{DM}^2/Λ_D^4	1435	1442	1309	1844	1850	1683


Disappearing Charged Tracks from DM

The small mass gap between (~ pion mass) DM and its charged partner will lead to the disappearing charge tracks

The life-time should be properly evaluated using

W-pion mixing

$$\mathcal{L}_{\pi^-V^+V^0} = \frac{g^2 f_{\pi}}{2\sqrt{2}M_W^2} [g_{\beta\gamma}(p_{V^+} - p_{V^0})_{\alpha} + g_{\alpha\gamma}(p_{V^+} - p_{V^0})_{\beta}] p_{\pi^-}^{\alpha} \pi^- V^{+\beta} V^{0\gamma}$$

