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PDG Summary

PDG2016

Dominated by
Lattice Gauge Theory

PDG, Chin. Phys. C 40 (2016) 100001.

LHC data, but not in average
since only NLO theory!

PDG´92: 2.4%
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PDG, Chin. Phys. C40 (2016) 100001

PDG 2016 on αs

not included in average: 
LHC data, but only NLO theory

                   dominated by 
                   lattice

PDG 1992: 2.4%   
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Lattice unbeatable?

recent prevailing view:  
lattice is unbeatable 
yet determination of αs  

from experiments remains 
desirable  
(or at least a fancy) 

e+e— event shapes, jets 
✓ are sensitive to αs  
✓ are measured extensively 
✓ can almost be computed from first principles          

(assuming local parton-hadron duality)

as status and perspectives (2018) David d’Enterria

Table 1 summarizes all high-precision as values extracted so far. The c2-averaging of the six sub-
groups of observables currently in the PDG-2017 yields as(m2

Z
) = 0.1181 ± 0.0011 [4]. Inclusion

of the newly derived (red-italics) values has almost no impact in four subclasses (lattice QCD, PDF,
e+e�, Z decays) but would change by �0.4% (+2%) the t- (top)-based pre-averages (Fig. 1). The
updated world-average, combining all results, would thereby be as(m2

Z
) = 0.1183 ± 0.0008 with

slightly increased central value and decreased uncertainty (⇠0.7%).
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Figure 1: as extractions. Top: Current PDG-2017 (solid dots, orange band) and 2018-updated (open dots)
pre-averages. Middle: Expected FCC-ee values via W, Z decays. Bottom: Other less accurate methods today.

3. Future as prospects

Improvements in a few extractions listed in Table 1 are anticipated in the coming years thanks
to new LHC data and more precise calculations. In addition, other sets of observables computed
today with a lower accuracy (NLO, or approximately-NNLO, bottom of Fig. 1), and thereby not
included now in the world-average, will provide additional constraints [2]. Ultimately, as(m2

Z
)

precision in the permille range will require a clean e+e� machine providing many orders-of-
magnitude more jets and electroweak bosons than collected at LEP. Measurements of W hadronic

decays (theoretically known at N3LO) provide today a very imprecise as(m2
Z
) = 0.117 ± 0.030

(⇠30% uncertainty) due to the limited LEP data. Statistical samples of 108 W available at FCC-
ee [6], combined with a significantly reduced parametric uncertainty of the Vcs CKM element,
can ultimately yield das(m2

Z
)/as(m2

Z
) ⇡ 0.3% [22]. Similarly, the high-statistics and clean set

of accurately-reconstructed (and flavour-tagged) e+e� final-states will provide precise as determi-
nations from event shapes, jets rates, and parton-to-hadron fragmentation functions (FF) stud-
ies. The energy dependence of the low-z FF provides today as(m2

Z
) = 0.1205± 0.0022 (⇠2%
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Figure 9: 1-σ confidence-level contours from fits to event-shape variables in a range of
schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme
(normal hadron level), with arrows indicating the motion of the contour in going from the
default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating
the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the res-
onance E-scheme — here the correction to resonance level has carried out using only events
with light primary quarks; (d) fits in the E-scheme at resonance level where the correction to
resonance level now includes events with heavy primary quarks as well — the arrows indicate
the motion from the ‘uds’ resonance level.

Shapes at NLO+NLL+power corr.+had. mass at LEP
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Three-jet event shapes at LEP

‣ LO vs. NLO vs. data:  
 suffer large  
 perturbative &  
 hadronization 
 corrections 

‣ new since LEP: 
✓ NNLO corrections  
✓ N2LL or N3LL resummation
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NNLO is not enough
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(4.29)

is free of ✏-poles, although to perform the algebra for the 1/✏2 and 1/✏ poles still requires some
e↵ort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual di↵erential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e� ! 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].

5.1 Definition of event shapes

Thrust [76, 77] is defined as

T = max
~n

✓

P

i |~n · ~pi|
P

i |~pi|

◆

, (5.1)

where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,

P

i |~pi| = Q. In general 1/2  T  1, with
T = 1/2 for spherically symmetric events, and T ! 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3  T  1.

Heavy jet mass [78–80] is defined by dividing the event into two hemispheres, HL, HR, by a
plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is

M2
i

s
=

1

E2
vis

✓

X

j2Hi

pj

◆2

, i = L,R , (5.2)

19

τ = 1-T

V. Del Duca et al, arXiv:1603.08927  

A, B and C computed with MCCSM (=Monte Carlo for CoLoRFulNNLO 
Subtraction Method) 

New results on on as Zoltán TRÓCSÁNYI

According to the Particle Data Group [] the current world average of the determinations of the
strong coupling as = 0.1181 has an uncertainty of slightly below 1 %. The average is dominated
by the lattice determinations [?] that show the smallest uncertainties by far. Determinations based
on experimental data span a much larger range, over 4 %, which suggests that measuring the strong
coupling in experiments cannot cope with the precision of lattice determination. Yet it is interesting
that the average of as extractions from collider data is about one standard deviation smaller than
the world average, leaving some uneasy feeling related to the value of this important parameter of
nature.

The largest spread of as values appears among the determinations based on measuring the ge-
ometrical properties of hadronic final states in electron-positron annihilation, which is somewhat
counter intuitive as such collisions provide a clean environment with strong interactions affecting
only the final state. The main reasons for the large uncertainties lie in the usually large perturbative
and non-perturbative (hadronisation) effects. This makes the inclusion of higher-order corrections
mandatory. After the colsure of LEP significant advances were made in this respect. On the one
hand the next-to-next-to-leading order (NNLO) corrections have been computed for three-jet like
observables [], while on the other resummation of large logarithms to all orders have been per-
formed at the next-to-next-to-leading logarithmic (NNLL or N2LL)) and in some cases even at
N3LL accuracy [].

Fig. 1(a) shows the predictions for the thrust distribution at LO, NLO and NNLO accuracy, as
given by the perturbative expansion for the normalized cross section, 1

t
s

ds
dt

=
⇣ as

2p

⌘
A(t)+

⇣ as

2p

⌘2
B(t)+

⇣ as

2p

⌘3
C(t) . (1)

Even the most precise prediction falls short significantly over the whole kinematic range, especially
for small values of t where the logarithms L=� lnt become large. This is readily understood from
the analytic structure of perturbative predictions:

A(t) = A1L+A0 ,

B(t) = B3L3 +B2L2 +B1L+B0 ,

C(t) =C5L5 +C4L4 +C3L3 +C2L2 +C1L+C0

(2)

where the dependence of the coefficients on t is suppressed. The logarithmic cntributions have to
be resummed in order to obtain a reliable prediction for small values of t . As shown in Fig. 1(b),
combining the NNLO and N3LL predictions, using R-matching to account for the doubling count-
ing of logarithmic terms, improves the agreement between the prediction and data for the thrust
distribution significantly. Nevertheless, there remains a large gap between the two in the peak re-
gion where most of the data fall. One might expect that the difference between the perturbative
prediction and the data is mainly due to hadronisation corrections.

As for estimating the hadronisation corrections, there are two options: (i) use an analytic
model (power corrections, PC) for the non-perturbative corrections [] in the form of a shift of the
differential distribution

t
s

ds
dt

(t)! t
s

ds
dt

(t �2a0) , (3)

1The A, B and C coefficients were computed using the MCCSM program [] that implements the CoLoRFulNNLO
subtraction method [2, 3].

2
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Analytic structure of perturbative expansion
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How to improve?
✓ Match to approximate predictions that resum large 

logarithms of the event shapes 
precise predictions are available, e.g.: 

- N3LL for thrust (τ), C-parameter and heavy jet 
mass (ρ) 

- N2LL for broadenings and EEC
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Matching NNLO with N3LL
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How to improve?
✓ Match to approximate predictions that resum large 

logarithms of the event shapes 
precise predictions are available, e.g.: 

- N3LL for thrust (τ), C-parameter and heavy jet 
mass (ρ) 

- N2LL for broadenings and EEC 
✓ Correct for hadronisation 

two options: 
- estimate of hadronisation using modern MC tools 
- use analytic model for power corrections, e.g.:                     
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Fit to data with NNLO+N3LL+PC
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Fit data on heavy jet mass with 
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Fit to data with PC
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Figure 10: Contours of 2σ and 5σ confidence in the simultaneous fit of αs and a non-
perturbative shift parameter ΛNP to the thrust and heavy jet mass aleph data from 91.2
to 206 GeV. The combined fit is also shown.

Event Shape αs(mZ) ΛNP (GeV) χ2/d.o.f.

Thrust 0.1101 0.821 66.9/47

Heavy Jet Mass 0.1017 3.17 60.4/43

Combined 0.1236 -0.621 453/92

Table 3: Best fit values including leading power correction. The χ2 is calculated using both
statistical and experimental systematic uncertainties.

shapes would remove the ambiguity, but this does not happen. Second, we see that while the
perturbative fit has αs lower for thrust than for heavy jet mass, with the power corrections,
the value of αs is higher for thrust, as found in previous studies [17, 18]. However, when we
perform a simultaneous fit to all of the thrust and heavy jet mass degrees of freedom, we get a
value for αs that is larger than each one separately. The best fit for thrust, heavy jet mass, and
the combined fit are shown in Table 3. The fact that the thrust and heavy jet mass contours
do not overlap indicate that a better handling of non-perturbative effects is required.

We conclude that neither correcting the theory curves with a Monte Carlo simulation nor
using a minimal shape function approach for the leading power correction is satisfactory. The
shape function approach is improvable, while the Monte Carlo approach is limited by the
perturbative accuracy of the parton shower, which will be limited to leading-log resummation
in at least the near future (although SCET may eventually help go beyond LL [34, 35]). To
improve the shape function fit, a number of additional ingredients should be included. First
of all, the renormalon ambiguity in separating the perturbative and non-perturbative parts of

21

Y-T. Chien, M.D. Schwartz  
arXiv:1005.1644

… and look marginally universal

but a0 and αs are strongly anticorrelated
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EEC @ fixed orders
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FIG. 1: The NNLO coe�cient of the weighted
⌧ = 1� T distribution. The lower panels show the

predictions of ref. [6], denoted as SW, (middle panel)
and those of ref. [5], denoted as GGGH, (lower panel)
normalized to ours, as well as the relative uncertainties
of the numerical integrations (shaded band around the

line at one).

defines thrust minor, where the thrust-minor axis, ~nTm ,
is orthogonal to both the thrust and thrust-major axes.
Oblateness O is then the di↵erence of thrust major and
thrust minor [17],

O = TM � Tm . (9)

The value of the C-parameter for massless final-state
particles is

Cpar =
3

2

P

i,j |~pi||~pj | sin2 ✓ij
(
P

i |~pi|)2
, (10)

where ✓ij is the angle between ~pi and ~pj .
Finally, energy-energy correlation [18] is the nor-

malised energy-weighted cross section defined in terms
of the angle between two particles i and j in an event,

EEC(�) =
1

�had

X

i,j

Z

EiEj

Q2

⇥ d�e+e�!i j+X�(cos�+ cos ✓ij) ,

(11)

where Q2 is the squared center-of-mass energy, Ei and
Ej are the particle energies, ✓ij = ⇡ � � is the angle
between the two particles and �had is the total hadronic
cross section. Experience shows that computing radiative
corrections to the distributions of C-parameter, oblate-
ness and energy-energy correlations is numerically more
challenging than for other three-jet event shapes.

As a validation of our method, we show in figs. 1 and 2
the third-order coe�cient in eq. (5) for O = ⌧ ⌘ 1 � T

FIG. 2: The same as fig. 1 for the C-parameter.

and O = Cpar. We observe a very good numerical con-
vergence of our method at NNLO: the absolute uncer-
tainties of the integrations are shown as shaded narrow
bands around the solid line on the upper panels (hardly
visible) and the relative ones around the lines at one on
the lower panels of figs. 1 and 2. We compare our results
to the predictions of refs. [5, 6] and we find agreement
over a large range of ⌧ and C-parameter. We observe
statistically significant di↵erences beyond the kinemati-
cal limits (⌧ = 1/3 and Cpar = 3/4) where the three-
particle final states vanish and the event shapes are deter-
mined by a four-jet final state. In these regions the C(O)
coe�cients are determined by the NLO corrections to
four-jet production, which have been known for long [2]
and can also be computed with modern automated tools,
such as MadGraph5 aMC@NLO [19]. We have checked that
our predictions are in complete agreement with those of
MadGraph5 aMC@NLO.

We present predictions for the distributions of oblate-
ness O and energy-energy correlation EEC at NNLO ac-
curacy in perturbative QCD for collider energy

p

Q2 =
91.2GeV in figs. 3 and 4. The bands represent the de-
pendence of the predictions on the renormalization scale
varied in the range [0.5, 2] times our default scale: the
total center-of-mass energy. We use ↵s = 0.118 for the
central value and the three-loop running of the strong
coupling for computing the scale variations. The lower
panels show the relative scale dependence of the NNLO
predictions and the relative uncertainties of the integra-
tions. Both oblateness and energy-energy correlation are
known to vanish in the dijet limit. Moreover, oblate-
ness is expected to vanish also for cylindrically symmet-
ric final states, while for three-parton events one has
0  O  1/

p
3. Indications of these features are visi-

ble in figs. 3 and 4.

V. Del Duca et al, arXiv:1603.08927  

only MCCSM can compute NNLO

large corrections
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Z. Tulipánt et al, arXiv:1708.04093  
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Figure 7: NNLL+NNLO matched prediction for EEC. The analytic model of eq. (4.1) is used
to account for hadronization corrections. The bottom panel shows the ratio of the data to the
matched result. The band represents renormalization scale variation in the range µ 2 [Q/2, 2Q]
with three-loop running of ↵

S

.

Finally, the three-parameter fits show that in this approach to hadronization corrections, the
non-perturbative parameter a

1

is more important than a
2

. As stressed already in ref. [5], this
indicates that the parametrization in eq. (4.1) is not able to fully describe the non-perturbative
corrections, especially at medium and large �. Hence, part of the hadronization e↵ects are absorbed
into the strong coupling. This is also apparent from the very strong anti-correlation in the fits
between ↵

S

and the non-perturbative parameter a
2

. Thus, it would be very interesting to repeat
our analysis with hadronization corrections extracted from data by comparison to Monte Carlo
simulations. The results of such an analysis will appear elsewhere [46].

5 Conclusions

In this paper we presented precise QCD predictions for the energy-energy correlation in e+e�

collisions. Our computation includes fixed-order perturbative corrections up to NNLO accuracy, as
well as a resummation of the logarithmically enhanced terms in the back-to-back region at NNLL
accuracy. In order to obtain a description which incorporates the complete perturbative knowledge
about the observable and is valid over a wide kinematical range, the fixed-order and resummed
predictions must be matched. We have implemented this matching in the R scheme at NNLL+NLO
and also, for the first time, in the log-R scheme at both NNLL+NLO and NNLL+NNLO accuracy.
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Figure 6: NNLL+NLO matched predictions for EEC in the R and log-R matching schemes. The
analytic model of eq. (4.1) is used to account for hadronization corrections. The bottom panel
shows the ratio of the data and the R matched prediction to the log-R matched result. The bands
represent the e↵ect of varying the renormalization scale in the range µ 2 [Q/2, 2Q] with two-loop
running of ↵

S

.

Once more, the uncertainties shown include the fit uncertainties and theoretical uncertainties added
in quadrature. The correlation matrix of the fit for the central values again shows that ↵

S

and a
2

are very strongly anti-correlated:

NNLL+NNLO (log-R): corr(↵
S

, a
1

, a
2

) =

0

@
1 0.05 �0.97

0.05 1 �0.07
�0.97 �0.07 1

1

A . (4.7)

We see that the quality of the fit improves drastically compared to the purely perturbative fit
reported in table 1. Moreover, the extracted value of ↵

S

(MZ) is sizably reduced compared to the
fits based on NNLL+NLO predictions and is indeed compatible with the world average within
uncertainties.

Figure 7 shows the comparison of the best fit NNLL+NNLO result to the measured data. We
again observe that the measurement is very well described by the theoretical prediction and, in
particular, the impact of the NNLO correction is clearly visible in the medium � range, where
the agreement between the data and the prediction is now excellent. The systematic deviation
which is present in the NNLL+NLO predictions in this range is completely erased when the NNLO
correction is taken into account. At the same time the best fit value of ↵

S

(MZ) is shifted by about
�6%. We conclude that the inclusion of the fixed-order NNLO correction is essential for a precise
determination of ↵

S

from EEC.
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the fit for the central values:

NNLL+NLO (R): corr(↵
S

, a
1

, a
2

) =

0

@
1 0.04 �0.70

0.04 1 �0.03
�0.70 �0.03 1

1

A . (4.3)

Evidently the strong coupling ↵
S

is highly anti-correlated with the non-perturbative parameter a
2

.

The analysis of ref. [5] performed on the same data gave |a
2

| . 0.002 GeV, a very small
value compatible with a

2

= 0. After fixing the parameter a
2

to zero, a two-parameter fit to the
strong coupling and the remaining non-perturbative parameter a

1

produced the best fit values of
↵
S

(MZ) = 0.130+0.002
�0.004 and a

1

= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:

NNLL+NLO (log-R): ↵
S

(MZ) = 0.128+0.002
�0.006 , a

1

= 1.17+1.46
�0.29 GeV2 , a

2

= 0.13+0.14
�0.09 GeV ,

(4.4)
and we find �2/d.o.f. = 40.8/48 = 0.85, with the correlation matrix for the central values

NNLL+NLO (log-R): corr(↵
S

, a
1

, a
2

) =

0

@
1 �0.17 �0.98

�0.17 1 0.08
�0.98 0.08 1

1

A . (4.5)

The strong coupling ↵
S

and the a
2

non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:

NNLL+NNLO (log-R): ↵
S

(MZ) = 0.121+0.001
�0.003 , a

1

= 2.47+0.48
�2.38 GeV2 , a

2

= 0.31+0.27
�0.05 GeV .

(4.6)
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compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
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�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:

NNLL+NNLO (log-R): ↵
S

(MZ) = 0.121+0.001
�0.003 , a

1

= 2.47+0.48
�2.38 GeV2 , a

2

= 0.31+0.27
�0.05 GeV .

(4.6)

16

the fit for the central values:

NNLL+NLO (R): corr(↵
S

, a
1

, a
2

) =

0

@
1 0.04 �0.70

0.04 1 �0.03
�0.70 �0.03 1

1

A . (4.3)

Evidently the strong coupling ↵
S

is highly anti-correlated with the non-perturbative parameter a
2

.

The analysis of ref. [5] performed on the same data gave |a
2

| . 0.002 GeV, a very small
value compatible with a

2

= 0. After fixing the parameter a
2

to zero, a two-parameter fit to the
strong coupling and the remaining non-perturbative parameter a

1

produced the best fit values of
↵
S

(MZ) = 0.130+0.002
�0.004 and a

1

= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
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retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:
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= 2.47+0.48
�2.38 GeV2 , a
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fits based on NNLL+NLO predictions deteriorates quite drastically as evidenced by the rather high
values of �2/d.o.f = 340.3/86 = 3.96 for the R matched prediction and �2/d.o.f. = 440.1/86 = 5.12
for the log-R matched one. At the same time the extracted values of ↵

S

(MZ) become even higher
with ↵

S

(MZ) = 0.134 – 0.135. However, the inclusion of NNLO correction drastically improves the
quality of the fit and we obtain �2/d.o.f. = 95.9/86 = 1.12. The extracted value of ↵

S

(MZ) also
decreases somewhat and we find ↵

S

(MZ) = 0.127± 0.003 for the best fit value.

Our extracted values of ↵
S

(MZ) based on the NNLL+NLO predictions using R matching are
quite close to the values obtained in ref. [5] for all three fit ranges, although our results are
marginally higher. We have checked that these di↵erences are due to the fact that the determina-
tions in ref. [5] used the incomplete A(3) NNLL resummation coe�cient.

Overall, we observe that the inclusion of the fixed-order NNLO corrections reduces the extracted
value of ↵

S

(MZ). This reduction is about �2% to �3% when data in the range 0� < � < 63� are
taken into account, about �2% to �4% for the range 15� < � < 63� and between �5% to �7%
when 15� < � < 120�, depending on the matching prescription used for the NNLL+NLO prediction.
Hence, these corrections must be included in a precise determination of ↵

S

using EEC.

In our analysis so far, we have neglected hadronization corrections. However, non-perturbative
contributions are expected to be relevant, especially at small angles [17, 32–34, 45], and indeed
the OPAL analysis of ref. [15] found hadron-parton correction factors from around 1.5 for very
small � to around 0.9 for large �7. Hence it is important to account for these non-perturbative
contributions. As already mentioned, these can be determined either by extracting them from data
by comparison to Monte Carlo predictions, or by performing analytic model calculations. Here, we
follow the latter option and use the non-perturbative model of ref. [42] to describe the hadronization
contributions. Thus we multiply the Sudakov form factor of eq. (2.14) with a correction of the form

S
NP

= e�
1
2a1b

2
(1� 2a

2

b) , (4.1)

and treat a
1

and a
2

as free parameters of the non-perturbative model to be fitted from data.

We have performed a three-parameter fit including data in the 0� < � < 63� range using
our NNLL+NNLO prediction, as well as the predictions obtained at NNLL+NLO with both R
matching and log-R matching. In the R matching scheme at NNLL+NLO accuracy, we extract the
following parameters:

NNLL+NLO (R): ↵
S

(MZ) = 0.134+0.001
�0.009 , a

1

= 1.55+4.26
�1.54 GeV2 , a

2

= �0.13+0.50
�0.05 GeV ,

(4.2)
with �2/d.o.f. = 38.7/48 = 0.81. All uncertainties are again obtained by adding the fit uncertain-
ties and the theoretical uncertainties in quadrature. The theoretical uncertainties are assessed by
varying the renormalization scale µ between Q/2 and 2Q and repeating the fit. The total uncer-
tainties are mostly dominated by the theoretical uncertainty with the exception of the upper limit
of strong coupling. In this case, we find that the maximal best fit value of ↵

S

is obtained for µ ' Q,
hence the upper limit is controlled by the fit uncertainty. We also report the correlation matrix of

7In ref. [15] only the hadron level data is given in a tabulated form with uncertainties, while the parton level data
appears only in plots. This is nevertheless su�cient to assess the magnitude of the hadron-parton correction factors
even without the original parton level data.

15

☞ parameters are 
    strongly anticorrelated
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How to improve?
✓ Correct for hadronisation, 2nd option: 
- estimate of hadronisation using modern MC toolsNon-perturbative corrections
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Hadronization corrections are parametrized using smooth functions to tame
statistical fluctuations

Parametrization is valid only in the fit range

17

Energy-energy correlation (see also V. Shtabovenko’s talk)

Energy-energy correlation in e+e� ! jets:

1
�t

d⌃
d cos�

=
1
�t

Z X

i,j

Ei Ej

Q2

d�e+e�!ij+X �(cos�+ cos ✓ij)

Ei and Ej are particle energies, Q is the center-of-mass energy and ✓ij = ⇡ � �
is the angle between the two particles

Was measured at LEP, PEP, PETRA, SLC and TRISTAN

[OPAL Collaboration, P.D. Acton et al. Z. Phys. C59 (1993)] 4

Z. Tulipánt et al, arXiv: 1804.09146
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Fit results

Z. Tulipánt et al, arXiv: 1804.09146

Final results

Global fit at NNLL+NLO:

↵S(MZ ) = 0.12200± 0.00023(exp.)± 0.00113(hadr .)± 0.00433(ren.)± 0.00293(res.)

with combined uncertainty: ↵S(MZ ) = 0.12200± 0.00535

Global fit at NNLL+NNLO:

↵S(MZ ) = 0.11750± 0.00018(exp.)± 0.00102(hadr .)± 0.00257(ren.)± 0.00078(res.)

with combined uncertainty: ↵S(MZ ) = 0.11750± 0.00287

The e↵ect of NNLO on central value is moderate but not negligible, ren.
uncertainty down by a factor of 2, res. uncertainty down by a factor of 3

The overall uncertainty is dominated by theoretical uncertainty (ren. and res.)

22
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How to improve?
✓ Correct for hadronisation, 2nd option: 
- estimate of hadronisation using modern MC tools 

✓ Find observable quantities with small perturbative 
and hadronisation corrections: 

motto: “large uncertainty in small quantity is small 
uncertainty”  

jet cone energy fraction:                   
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Finally, jet-cone energy fraction [89] is defined as the energy deposited within a conical shell
of the opening angle � between a particle and the thrust axis ~nT , whose direction is defined to
point from the heavy jet mass hemisphere to the light jet mass hemisphere,

d⌃JCEF

d cos�
=

X

i

Z

Ei

Q
d�e+e�!i+X�

✓

cos�� ~pi · ~nT

|~pi|

◆

. (5.9)

In principle 0o  �  180o, but hard gluon emissions typically contribute only to the region
90o  �  180o, which is plotted in the data [90].

5.2 Event shapes revisited

In this section we present the predictions of the CoLoRFulNNLO method for the event shapes
considered also in refs. [5, 6]. To begin, we write the perturbative expansion of the di↵erential
distribution of an event shape observable O at the default renormalization scale (not to be
confused with the regularization scale of section 2.3) µ0 =

p

Q2 (the total center-of-mass
energy) as

1

�0

d�

dO
=

↵s

2⇡
A(O) +

⇣↵s

2⇡

⌘2

B(O) +
⇣↵s

2⇡

⌘3

C(O) + O(↵4
s ) , (5.10)

where ↵s = ↵s(µ0) and �0 is the leading-order perturbative prediction for the total cross section
of the process e+e� ! hadrons. The LO and NLO perturbative coe�cients A(O) and B(O)
for thrust, heavy jet mass, total and wide jet broadening, C-parameter and the jet transition
variable y23 in the Durham algorithm were computed a long time ago [91], while predictions
for the NNLO coe�cients C(O) were presented in [5, 6]3. However, experiments measure the
distributions normalized to the total hadronic cross section, �, thus physical predictions should
be normalized to that. At the default renormalization scale µ0, distributions normalized to
the total hadronic cross section can be obtained from the expansion in eq. (5.10) above by
multiplying with the inverse of

�

�0

= 1 +
↵s

2⇡
At +

⇣↵s

2⇡

⌘2

Bt +O(↵3
s ) (5.11)

where [92–94]

At =
3

2
CF and Bt = CF

✓

123

8
� 11⇣3

◆

CA � 3

8
CF +

✓

4⇣3 �
11

2

◆

nfTR

�

. (5.12)

The renormalization scale dependence of a three-jet event shape distribution normalized to the
total hadronic cross section can be computed as

1

�

d�(µ)

dO
=

↵s(µ)

2⇡
Ā(O;µ) +

✓

↵s(µ)

2⇡

◆2

B̄(O;µ) +

✓

↵s(µ)

2⇡

◆3

C̄(O;µ) + O(↵4
s (µ

2)) , (5.13)

3Since these distributions have 1/O singularities, it is more convenient to present results for the quantities
OC(O) and this was done in refs. [5, 6] as well as in this paper in figures 1–3.

21

V. Del Duca et al, arXiv:1606.03453   
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How to improve?
✓ Correct for hadronisation, 2nd option: 
- estimate of hadronisation using modern MC tools 

✓ Find observable quantities with small perturbative 
and hadronisation corrections: 

motto: “large uncertainty in small quantity is small 
uncertainty”                    

- precluster hadrons and compute shapes from 
jets Decamp et al [ALEPH], Phys.Lett. B257 (1991) 479-491 
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Preclustering reduces hadronization 
corrections
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Figure 2: Monte Carlo predictions obtained with old and new EEC.
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How to improve?
✓ Correct for hadronisation, 2nd option: 
- estimate of hadronisation using modern MC tools 

✓ Find observable quantities with small perturbative 
and hadronisation corrections: 

motto: “large uncertainty in small quantity is small 
uncertainty”                    

- precluster hadrons and compute shapes from 
jets 

- groomed (soft drop) event shapes, designed to 
reduce contamination from non-perturbative 
effects

Decamp et al [ALEPH], Phys.Lett. B257 (1991) 479-491 



Soft drop event shapes
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Soft drop grooming is defined
for a jet with radius R using Cambridge-Aachen clustering as:  
1. Undo the last step of the clustering for the jet J, and 

split it into two sub-jets. 
2. Check if these sub-jets pass the soft drop condition, 

which is defined for e+e- collisions as:  
                                                            

where Ei and Ej are the energies of the two sub-jets and 
θij is the angle between them.  

3. If the splitting fails this condition, the softer sub-jet is 
dropped and the groomer continues to the next step in 
the clustering. In other words the jet J is set to be the 
harder of the two sub-jets.  

4. If the splitting passes this condition the procedure ends 
and the jet J is the soft-drop jet. 

3. If the splitting fails this condition the softer subjet is dropped and the groomer continues to the
next step in the clustering. In other words the jet J is set to be the harder of the two subjets.

4. If the splitting passes this condition the procedure ends and the jet J is the soft-drop jet.

Soft drop has two different parameters: zcut, which is an energy threshold, and �, which is the angular
exponent that controls how strongly wide-angle emissions are discarded. In the limit � ! 1 the
ungroomed jet is recovered, while � = 0 corresponds to mMDT [34]. In our studies, we will heavily
use jets defined by a hemisphere of the event. In this case, we find it more convenient to work with a
soft-drop condition defined with a slightly different normalisation:

min[Ei, Ej ]

Ei + Ej
> zcut(1� cos ✓ij)

�/2. (2.2)

The observable we will be making use of for most of this work is thrust [24], which is defined by

T = max

~n

✓P
i2E |~n · ~pi|P
i2E |~pi|

◆
, (2.3)

where the ~pi are the three-momenta of all the different particles i in the event E . The unit vector
~nT which maximizes the sum is called the thrust axis. Often, especially in the context of all-order
calculations, the variable

⌧ = 1� T = min

~n

✓
1�

P
i|~n · ~pi|P
i|~pi|

◆
(2.4)

is defined. This observable is equal to zero for two back to back particles, however with additional
emissions the observable moves away from zero. The ⌧ ⌧ 1 region, often referred to as the two-jet
region, is characterised by soft and collinear emissions, while larger values of ⌧ require hard emissions
to contribute. Given the above considerations, we are tempted to define soft-drop thrust as follows:

(a) the thrust axis nT is calculated, thus dividing the event into two hemispheres;

(b) the soft-drop algorithm is applied in each hemisphere;

(c) the set of particles which are left after soft drop constitutes the soft-drop event ESD, on which
the soft-drop thrust TSD is defined as

TSD = max

~n

 P
i2ESD

|~n · ~pi|P
i2ESD

|~pi|

!
. (2.5)

Furthermore, in analogy with Eq. (2.4), we also introduce ⌧SD = 1� TSD. The above definition seems
very natural, as it is a straightforward extension of the ungroomed thrust. However step (c) does result
in undesirable features. Let us consider for instance the � = 0 case, for which soft drop coincides with
mMDT. Due to the close resemblance of the ⌧ variable with the hemisphere jet mass [9, 50] in the
soft-collinear region, we expect the ⌧SD distribution, for � = 0, to only exhibit single logarithms at
small ⌧SD, which are of collinear origin. However, this expectation is broken already at LO. In order
to see this let us consider a three-particle configuration, which at parton level is realized by allowing
one emission from the quark-antiquark dipole. If this emission is soft, it is then groomed away and the
groomed event is now constituted by just two partons. However, these are not aligned and therefore
they provide a non-zero value of ⌧SD. This has to happen at values of ⌧SD which are parametrically
rather small, suppressed by two powers of zcut. The first power of zcut comes about because we are in

– 4 –

rather than looking for a way to disentangle perturbative and non-perturbative physics, we should
focus on observables that, while maintaining several features of the commonly used event shapes, have
at the same time reduced sensitivity to non-perturbative corrections. One way of constructing such
observables is through the application of so-called grooming algorithms, which have been developed
in the context of jet physics at the LHC.

The field of jet substructure [28–32] aims to develop efficient ways to distinguish signal jets origi-
nating from the decay of highly-boosted massive particles into hadrons, from the overwhelming back-
ground of QCD jets. In particular, many jet substructure algorithms contain a grooming step, namely
a procedure to remove soft and large-angle radiation from the jet, as this is likely to come from
contamination with the busy environment that one encounters in proton-proton collision. Grooming
algorithms decrease, by construction, the effective radius of a jet and, therefore, its area [33], thus
reducing the sensitivity of jet observables from the underlying event and pile-up. The effect that these
algorithms have on hadronisation corrections depends instead on the algorithm of choice [34]. How-
ever, Monte Carlo studies show that the widely used (modified) Mass-Drop Tagger (mMDT) [34, 35],
trimming [36], pruning [37, 38], and soft drop [39], all exhibit reduced sensitivity to non-perturbative
hadronisation corrections. In this list, the mMDT/soft-drop algorithms are the best understood from
a theoretical viewpoint. Indeed, significant progress has been made to perform all-order calculations
for soft-drop observables [40, 41]. In the context of SCET, computations have been performed up
to NNLL accuracy [42, 43] for the soft-drop mass (see also [44]) and, more recently, for multi-prong
jet shapes [45]. Unfolded measurements also exist [46, 47], which show very good agreement with
perturbative predictions.

The soft-drop algorithm is a powerful tool that reduces the sensitivity of jet observables to non-
perturbative contributions, such us hadronisation and the underlying event, thus extending the domain
of applicability of high-precision perturbative calculations in QCD. It is therefore natural to explore its
application to QCD final states in e+e� collision, where the only non-perturbative contribution arises
from the hadronisation process, with the aim of reducing their impact. This is what we are set to do
in this study. In the first part of this paper, we study the impact of non-perturbative corrections on
the thrust distribution at LEP energies. In particular, in Section 2 we define soft-drop event shapes,
while we perform a detailed Monte Carlo study in Section 3. In the second part of the paper, in view
of using soft-drop event shapes for future extractions of the strong coupling, we study the interplay of
the soft-drop algorithm with perturbative predictions, discussing both resummation and fixed-order.
We consider the thrust distribution in Section 4, while we discuss the jet mass in Section 5. Finally
we conclude in Section 6. Explicit results and technical details are collected in the Appendices.

2 Thrust with soft drop

The soft-drop grooming technique [39] is defined for a jet with radius R using Cambridge-Aachen
clustering [48, 49] as:

1. Undo the last step of the clustering for the jet, J , and split it into two subjets.

2. Check if these subjets pass the soft drop condition, which is defined for e+e� collisions as [42]:

min[Ei, Ej ]

Ei + Ej
> zcut

✓
1� cos ✓ij
1� cosR

◆�/2

(2.1)

where Ei and Ej are the energies of the two subjets and ✓ij is the angle between them.

– 3 –

, or
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Soft drop thrust

J. Baron et al, arXiv: 1803.04719

Special kind of grooming 
(a) the thrust axis nT is calculated, thus dividing the 

event into two hemispheres; 
(b) the soft-drop algorithm is applied in each 

hemisphere;  
(c) the sets of particles left in the two hemispheres 

after soft drop constitute the soft-drop hemi- 
spheres HL and HR, on which the soft-drop thrust 
T’SD is defined as 

Figure 1. Fixed order thrust calculated from EVENT2 , LO on the left and NLO on the right. The dotted
red lines show the original definition of thrust, while the solid red lines show its new incarnation. The two
definitions coincide for the ungroomed case (solid blue), while for soft-drop thrust the new version ⌧ 0

SD removes
the second transition region.

a region where soft drop is active, while the second one arises because we are concentrating on values
of ⌧ which would have been zero in the absence of soft drop. We note that at asymptotically small
values ⌧SD, the distribution reverts to a double-logarithmic behaviour because the value of ⌧SD is set
by the kinematics of the emission which has been groomed away and it is therefore sensitive to the
soft-collinear region of phase-space. A more detailed analysis of this type of kinematic configurations,
and the resulting O

�
z2cut

�
transition point, is performed in Appendix A. This effect can be seen in

Fig. 1 for a fixed order computation at LO (on the left) and NLO (on the right) accuracy, i.e. with
one or two emissions off the qq̄ dipole calculated with the program EVENT2 [51, 52]. The ungroomed
thrust distribution is shown in solid blue, while the naive soft-drop thrust in dotted red. The unwanted
double-logarithmic behaviour of the soft-drop distribution is clearly evident.

The resummation of the above type of contributions does not appear to be straightforward. Al-
though these effects are confined to a rather small region of phase-space, where non-perturbative effects
dominate, we find their presence a nuisance and we prefer to get rid of them altogether. Therefore,
we modify the last step of the soft-drop thrust definition as follows:

(c0) the sets of particles left in the two hemispheres after soft drop constitute the soft-drop hemi-
spheres HL

SD and HR
SD, on which the soft-drop thrust T 0

SD is defined as

T 0
SD =

P
i2HL

SD
| ~nL · ~pi|

P
i2ESD

|~pi|
+

P
i2HR

SD
| ~nR · ~pi|

P
i2ESD

|~pi|
, (2.6)

where ~nL and ~nR are the jet axes of the left and right hemispheres, respectively. 2 If no soft drop
is applied, T 0

SD reduces to T , as it should. Moreover, T 0
SD is free of the undesired transition point

in the soft-collinear region. Again, in analogy with Eq. (2.4), we also introduce ⌧ 0SD = 1� T 0
SD.

2We thank Gregory Soyez for discussions on this point. Furthermore, we note that this approach shares some
similarities to event shapes defined with respect two broadening axes [53].
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(a) the thrust axis nT is calculated, thus dividing the 
event into two hemispheres; 

(b) the soft-drop algorithm is applied in each 
hemisphere;  

(c) the sets of particles left in the two hemispheres 
after soft drop constitute the soft-drop hemi- 
spheres HL and HR, on which the soft-drop thrust 
T’SD is defined as 
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Soft drop thrust in PYTHIA

Figure 3. Soft-drop thrust distribution generated with Pythia for three different values of the angular exponent
�, compared to ungroomed thrust. As � increases we move closer to the ungroomed case, which we recover
for � ! 1. All plots are for zcut = 0.1.

Figure 4. Soft-drop thrust distribution generated with Pythia for three different values of the energy cut zcut,
compared to ungroomed thrust. All plots are for � = 0.

the observable for which hadronisation corrections reach the 10% level is now ⌧ 0SD ' 10

�2. This is
behaviour we had hoped to see: soft drop appears to be an efficient way to reduce contamination of
non-perturbative physics even in e+e� collisions at LEP energies.

Thus far we have only considered the pair of values zcut = 0.1 and � = 0, which is the preferred
option for jet studies at the LHC. However, here we are considering a different type of collisions, at
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compared to ungroomed thrust. All plots are for � = 0.

the observable for which hadronisation corrections reach the 10% level is now ⌧ 0SD ' 10

�2. This is
behaviour we had hoped to see: soft drop appears to be an efficient way to reduce contamination of
non-perturbative physics even in e+e� collisions at LEP energies.

Thus far we have only considered the pair of values zcut = 0.1 and � = 0, which is the preferred
option for jet studies at the LHC. However, here we are considering a different type of collisions, at
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J. Baron et al, arXiv: 1803.04719

Figure 1. Fixed order thrust calculated from EVENT2 , LO on the left and NLO on the right. The dotted
red lines show the original definition of thrust, while the solid red lines show its new incarnation. The two
definitions coincide for the ungroomed case (solid blue), while for soft-drop thrust the new version ⌧ 0

SD removes
the second transition region.

a region where soft drop is active, while the second one arises because we are concentrating on values
of ⌧ which would have been zero in the absence of soft drop. We note that at asymptotically small
values ⌧SD, the distribution reverts to a double-logarithmic behaviour because the value of ⌧SD is set
by the kinematics of the emission which has been groomed away and it is therefore sensitive to the
soft-collinear region of phase-space. A more detailed analysis of this type of kinematic configurations,
and the resulting O

�
z2cut

�
transition point, is performed in Appendix A. This effect can be seen in

Fig. 1 for a fixed order computation at LO (on the left) and NLO (on the right) accuracy, i.e. with
one or two emissions off the qq̄ dipole calculated with the program EVENT2 [51, 52]. The ungroomed
thrust distribution is shown in solid blue, while the naive soft-drop thrust in dotted red. The unwanted
double-logarithmic behaviour of the soft-drop distribution is clearly evident.

The resummation of the above type of contributions does not appear to be straightforward. Al-
though these effects are confined to a rather small region of phase-space, where non-perturbative effects
dominate, we find their presence a nuisance and we prefer to get rid of them altogether. Therefore,
we modify the last step of the soft-drop thrust definition as follows:

(c0) the sets of particles left in the two hemispheres after soft drop constitute the soft-drop hemi-
spheres HL

SD and HR
SD, on which the soft-drop thrust T 0

SD is defined as

T 0
SD =

P
i2HL

SD
| ~nL · ~pi|

P
i2ESD

|~pi|
+

P
i2HR

SD
| ~nR · ~pi|

P
i2ESD

|~pi|
, (2.6)

where ~nL and ~nR are the jet axes of the left and right hemispheres, respectively. 2 If no soft drop
is applied, T 0

SD reduces to T , as it should. Moreover, T 0
SD is free of the undesired transition point

in the soft-collinear region. Again, in analogy with Eq. (2.4), we also introduce ⌧ 0SD = 1� T 0
SD.

2We thank Gregory Soyez for discussions on this point. Furthermore, we note that this approach shares some
similarities to event shapes defined with respect two broadening axes [53].
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Soft drop thrust
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new
only MCCSM 
computes NNLO

New results on on as Zoltán TRÓCSÁNYI

much reduced over a wide range of the event shape. As such changes in b and zcut also reduce the
cross section, the optimal value of the grooming parameters is influenced by the desire of avoiding
the loss of too much data.

The precision of as determination is also influenced by the convergence of the perturbative
series for the observable, characterized by the NLO and NNLO K-factors defined by ratios of
distributions of the observable O as

KNLO(µ) =
dsNLO(µ)

dO

�
dsLO(Q)

dO
, KNNLO(µ) =

dsNNLO(µ)
dO

�
dsLO(Q)

dO
. (4)

Here we chose the normalization such that the cross sections at LO in the denominators are always
computed at the default renormalization scale µ = Q, independently of µ . The closer the K-factors
to unity, the better the convergence of the perturbative series. In order to check how grooming
affects the perturbative stability of the predictions, we scanned the region of (b ,zcut) values over
the rectangle {(0,0.05),(1,0.05),(0,0.1),(1,0.1)}. We found that the K-factors depend on the
grooming parameters smoothly. Fig. ?? shows the distribution and the K-factors at the corners of
this rectangle. We see that similarly to the non-perturbative corrections, the stronger the grooming
the better the convergence of the perturbation series. The values b = 0 and zcut = 0.1 look optimal
in the sense that the cross section still remains sizeable. The same conclusions can be drawn if one
uses the soft drop hemisphere mass [?].

In this talk we discussed that precise determination of the strong coupling using hadronic final
states in electron-positron annihilation requires (i) careful selection of observables, (ii) estimation
of the hadronisation corrections with modern MC tools and (iii) needs methods to reduce hadro-
nisation corrections. The latter could be pre-clustering the hadrons, or grooming techniques, such
as soft drop. We used the MCCSM program for computing differential distributions for groomed
(soft drop) event shapes at the NNLO accuracy. We found that our predictions were stable nu-
merically. We observed that soft drop improves the perturbative convergence of the predictions.
The smaller perturbative uncertainty, together with the reduced hadronization corrections makes
the soft-drop thrust and hemisphere jet mass appealing candidates for a precise determination of
the strong coupling at lepton colliders.
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Figure 1: Predictions for the soft drop thrust at LO (dots in green), NLO (dashes in blue)
and NNLO (solid in red) accuracy and grooming parameters (�, zc) as shown in the title
of each plot. The bands represent the dependence on the renormalization scale µ = ⇠Q
varied in in the range ⇠ 2 [0.5, 2]. The lower panels present the corresponding K-factors
(with the same pattern and color coding).

In order to illustrate the numerical stability of our computations, in Tables 1, 2 and
3 we present the coe�cients at µ = Q for the three observables at grooming parameters
(�, zc) = (0.5, 0.05). This stability does not depend on the value of � and zc as it can
be seen in Figures 1, ?? and 3 where the physical predictions at the first three orders
in perturbation theory are shown for four representative pairs of (�, zc) together with
their dependence on the renormalization scale corresponding to scale variation in the range
µ 2 [Q/2, 2Q]. Below each plot we show the LO (dots in green) NLO (dashes in blue) and
NNLO (solid in red) K-factors.

In general we find that the less grooming the bigger the change from order to order
in perturbation theory. Thus grooming improves perturbative convergence as one might
expect. The sizes of the radiative corrections however, depend on the observable, being

4
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Soft drop hemisphere mass

cluster an event into exactly two jets, J is the heavier

Figure 6. The results for the fixed order and resummed differential cross section of the plain and soft-
dropped thrust for e+e� collisions at a centre of mass energy Q = mZ and the soft drop parameters � = 0 and
zcut = 0.1 (left) and zcut = 0.05 (right). The figure shows LO for plain thrust (black dashed) and soft-dropped
thrust (magenta dashed-dotted) and the matched LO+NLL0 cross section for plain thrust (blue dotted) and
soft-dropped thrust (red solid) with the bands from resummation and scale uncertainties included.

5.1 Hemisphere jet invariant mass

We start by considering the hemisphere mass. In this case, we cluster an event into exactly two jets
and we look at the largest value of:

e(2)2 =

m2
J

E2
J

, (5.1)

with mJ the jet mass and EJ its energy. This is the same observable that was considered in Ref. [42].
Therefore, the results can be largely reused, with a slight modification due to the different definition
of soft drop, which corresponds to zcut ! zcut2��/2. Factorisation of the distribution in terms of hard,
soft and jet functions leads to the identification of the following scales

µH = Q, µ2
J =

Q2

4

¯N
,

µSG = 2

�/2Qzcut, µSC =

h zcut
2

�/2
¯N�+1

i 1
�+2 Q

2

. (5.2)

Note that these scales only differ in factors of two compared to the computation for thrust, since
these observables share soft and collinear behaviours. Furthermore, this leads to the same anomalous
dimensions. Just as for the scales, the transition point contribution is also the same as for thrust after
the change ¯N ! 4

¯N or in ⌧ -space ⌧ ! e(2)2 /4. This leads to a transition contribution:

T (⌧, zcut) =
↵s

⇡
CF (� + 2)Li2

2

41
2

 
e(2)2

2 zcut

! 2
�+2

3

5. (5.3)

Because the resummation of the hemisphere mass was discussed in great detail in Ref. [42], in
this section we limit ourselves to an analysis of its behaviour in the transition region in order to
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Figure 6. The results for the fixed order and resummed differential cross section of the plain and soft-
dropped thrust for e+e� collisions at a centre of mass energy Q = mZ and the soft drop parameters � = 0 and
zcut = 0.1 (left) and zcut = 0.05 (right). The figure shows LO for plain thrust (black dashed) and soft-dropped
thrust (magenta dashed-dotted) and the matched LO+NLL0 cross section for plain thrust (blue dotted) and
soft-dropped thrust (red solid) with the bands from resummation and scale uncertainties included.
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with mJ the jet mass and EJ its energy. This is the same observable that was considered in Ref. [42].
Therefore, the results can be largely reused, with a slight modification due to the different definition
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Conclusions
✓ Precise determination of the strong coupling using hadronic 

final states in electron-positron annihilation requires 

- careful selection of observables (and data — not discussed here) 
- methods to reduce hadronisation corrections 
- estimation of the hadronisation corrections with modern MCs 

✓ MCCSM was used to compute differential distributions for 
groomed (soft drop) event shapes: 

- thrust 

- hemisphere invariant mass 

- narrow jet invariant mass (not shown here) 

✓  Our predictions 

- are stable numerically 

- show better perturbative stability (smaller scale dependence) than 
un-groomed event shapes
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Outlook: prospects for αs

Determination of strong coupling from e+e— data with 
decreased theoretical uncertainty might be possible

1.4 Quark masses and strong coupling from lattice QCD 9

Method Current relative precision Future relative precision

e+e� evt shapes
expt ⇠ 1% (LEP) < 1% possible (ILC/TLEP)

thry ⇠ 1–3% (NNLO+up to N3LL, n.p. signif.) [27] ⇠ 1% (control n.p. via Q2-dep.)

e+e� jet rates
expt ⇠ 2% (LEP) < 1% possible (ILC/TLEP)

thry ⇠ 1% (NNLO, n.p. moderate) [28] ⇠ 0.5% (NLL missing)

precision EW
expt ⇠ 3% (RZ , LEP) 0.1% (TLEP [10]), 0.5% (ILC [11])

thry ⇠ 0.5% (N3LO, n.p. small) [9, 29] ⇠ 0.3% (N4LO feasible, ⇠ 10 yrs)

⌧ decays
expt ⇠ 0.5% (LEP, B-factories) < 0.2% possible (ILC/TLEP)

thry ⇠ 2% (N3LO, n.p. small) [8] ⇠ 1% (N4LO feasible, ⇠ 10 yrs)

ep colliders
⇠ 1–2% (pdf fit dependent) [30, 31], 0.1% (LHeC + HERA [23])

(mostly theory, NNLO) [32,33] ⇠ 0.5% (at least N3LO required)

hadron colliders
⇠ 4% (Tev. jets), ⇠ 3% (LHC tt̄) < 1% challenging

(NLO jets, NNLO tt̄, gluon uncert.) [17, 21, 34] (NNLO jets imminent [22])

lattice
⇠ 0.5% (Wilson loops, correlators, ...) ⇠ 0.3%

(limited by accuracy of pert. th.) [35–37] (⇠ 5 yrs [38])

Table 1-1. Summary of current uncertainties in extractions of ↵
s

(M2

Z

) and targets for future (5�25 years)
determinations. For the cases where theory uncertainties are considered separately, the theory uncertainties
for future targets reflect a reduction by a factor of about two.

For example, the numerical lattice data for correlators are much cleaner than the experimental data. Further,
the lattice o↵ers several choices of current operators and the most well-behaved one can be chosen for the
determinations; in practice, this turns out to be the pseudoscalar current. The lattice calculations still need
an input from experiment to set the overall energy scale, but this can be chosen in a way that also reduces final
uncertainties. For example, if mc is obtained from the pseudoscalar correlator, choosing m⌘c to set the energy
scale reduces sensitivity to the tuning of the bare charm-quark mass. Using these methods, the HPQCD
Collaboration obtains mc(mc, nf = 4) = 1.273(6) GeV in the MS scheme [35]. By contrast, the Karlsruhe
group obtains mc(mc, nf = 4) = 1.279(13) GeV from e+e� experimental data [39]. The most important
reason for the greater precision of the lattice determination is that the data for the lattice correlation functions
is much cleaner than the e+e� annihilation data. The uncertainty is dominated by continuum perturbation
theory, and therefore may improve only modestly unless another order of perturbation theory is calculated.
However, these charm correlation functions are very easy to calculate with lattice QCD. The lattice part of
this determination will be checked by many lattice groups and should be very robust.

The b quark mass can also be obtained in this way, with the result mb(mb, nf = 5) = 4.164(23) GeV [35].
The sources of systematic uncertainty are completely di↵erent than for mc. Perturbative uncertainties are
tiny because ↵s(mb)4 ⌧ ↵s(mc)4. However, the method requires treating the b quark as a light quark, which
is just barely working at lattice spacings used so far. Discretization errors dominate the current uncertainty,
followed by statistical errors. The lattice result for mb is not currently as precise as the result from e+e�

experimental data, mb(mb, nf = 5) = 4.163(16) GeV [39]. Discretization and statistical errors should be
straightforward to reduce by brute force computing power, and so are likely to come down by a factor of
two in the next few years, perhaps to 0.011 GeV or better. Precisions of that order for mb have already
been claimed from e+e� data from reanalyses of the data and perturbation theory [39], and coming lattice
calculations will be able to check these using the computing power expected in the next few years.

Community Planning Study: Snowmass 2013

J.M. Campbell et al [Snowmass], arXiv: 1310.5189 
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Fit range: [60�, 160�] ([117�, 165�] for DMW setup)

Fit range was chosen to avoid regions where the theoretical prediction or
hadronization corrections become unreliable

The result is insensitive to a ±5� change in the fit range
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Fit prediction for EEC to data

Z. Tulipánt et al, arXiv: 1804.09146
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Dependence on unphysical scales

Z. Tulipánt et al, arXiv: 1804.09146

variation of
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Dependence on energy

Z. Tulipánt et al, arXiv: 1804.09146

Fit dependence on Q
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Problem
�NNLO = �RR

m+2 + �RV
m+1 + �VV

m

�
�

m+2
d�RR

m+2Jm+2 +
�

m+1
d�RV

m+1Jm+1 +
�

m
d�VV

m Jm

‣ matrix elements are known for σRR and σRV for many processes 
‣ σVV is known for many 0→4 parton, V+3 parton, VV+2 parton processes 

− higher multiplicities are on the horizon 
‣ the three contributions are separately divergent in  d = 4 dimensions: 

- in σRR kinematical singularities as one or two partons become 
unresolved yielding ε-poles at O(ε-4, ε-3, ε-2, ε-1) after 
integration over phase space, no explicit ε-poles 

- in σRV kinematical singularities as one parton becomes unresolved 
yielding ε-poles at O(ε-2, ε-1) after integration over phase space 
+ explicit ε-poles at O(ε-2, ε-1) 

- in σVV explicit ε-poles at O (ε-4, ε-3, ε-2, ε-1) 

How to combine to obtain finite cross section?

m
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Sector decomposition 

Antennae subtraction 

qT-slicing 

SecToR-Improved Phase sPacE for Real radiation 
(STRIPPER) 

τN-slicing 

Completely Local SubtRactions for Fully 
Differential Predictions at NNLO (CoLoRFulNNLO) 

Approaches
Anastasiou, Melnikov, Petriallo et al 2004- 

Gehrmann, Gehrmann-De Ridder, Glover et al 2004- 

S. Catani, M. Grazzini et al 2007-  

Czakon et al 2010- 

Boughezal et al 2015- 
Gaunt et al 2015- 

ZT, Somogyi et al 2005-
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Several options available - why a new one?

Our goal is to devise a subtraction scheme with 

✓ fully local counter-terms                         
(efficiency and mathematically well-defined) 

✓ fully differential predictions                            
(with jet functions defined in d = 4) 

✓ explicit expressions including flavor and color 
(color space notation is used) 

✓ completely general construction                       
(valid in any order of perturbation theory) 

✓ option to constrain subtraction near singular 
regions (important check) 

such schemes are known at NLO (CS-dipoles, FKS etc)
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How to build a local subtraction scheme?
Steps used at NLO: 

✓ compute QCD factorization formulae                       
(universal) 

✓ construct local subtractions on whole phase space                            
(explicit and universal in d = 4) 

✓ integrate subtractions over unresolved phase space 
(once and for all) 

✓ cancel IR poles                                                      
(analytically, universal) 

✓ implement integration of finite part in partonic MC 
(simple user interface defines observables) 
steps proven to be too difficult at NNLO:        ?  

given up by many, used here

S. Catani, S. Dittmaier,  
M.H. Seymour,ZT  
hep-ph/0201036
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Structure

of subtractions is governed by the jet functions
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Structure

of subtractions is governed by the jet functions
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G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 

Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

RR,A2 regularizes doubly-unresolved limits
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Structure

of subtractions is governed by the jet functions
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RR,A1 regularizes singly-unresolved limits
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Structure

of subtractions is governed by the jet functions
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RR,A12 removes overlapping subtractions
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Structure

of subtractions is governed by the jet functions

�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 

Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

RV,A1 regularizes singly-unresolved limits
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CoLoRFulNNLO method
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Adam Kardos 2015

can now be computed by numerical Monte Carlo 
integrations                                

implementation for general m in MCCSM code
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MCCSM built in checks
Checking finiteness in singular regions, e.g. regularized RR:

MCCSM
Testing the whole m+2 parton line:

Doubly unresolved

Singly unresolved:

MCCSM
Testing the whole m+2 parton line:

Doubly unresolved

Singly unresolved:

double unresolved

single unresolved
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Kinematic singularities cancel in RR

R = subtraction/RR
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Kinematic singularities cancel in RV

R = subtraction/(RV+RR,A1)
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Pole-cancelation: H→bb at µ = mH
_
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Poles cancel: e+e-→ m(=3) jets at µ2 
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Poles cancel: e+e-→ m(=3) jets at µ2 
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Thrust at NNLO vs N3LL

τ = 1-T

check explicitly that the combination
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(4.29)

is free of ✏-poles, although to perform the algebra for the 1/✏2 and 1/✏ poles still requires some
e↵ort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual di↵erential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e� ! 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].

5.1 Definition of event shapes

Thrust [76, 77] is defined as
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~n
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, (5.1)

where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,

P

i |~pi| = Q. In general 1/2  T  1, with
T = 1/2 for spherically symmetric events, and T ! 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3  T  1.

Heavy jet mass [78–80] is defined by dividing the event into two hemispheres, HL, HR, by a
plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is
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Outlook: prospects for NNLO
✓ Extension of MCCSM to hadron collisions: Drell-Yan pair
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Outlook: prospects for NNLO
✓ Extension of MCCSM to hadron collisions: H production
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