New results on the determination of the strong coupling

Zoltán Trócsányi

Eötvös University and MTA-DE Particle Physics Research Group

based on arXiv:1603.08927, 1606.03453, 1708.04093, 1804.09146, 1807.11472 and unpublished results of ongoing work

> Workshop on the Standard Model and Beyond September 1, 2018

Outline

- Status of the strong coupling
- \bigcirc New measurements of a_s
- New prospects: soft drop event shapes
- Conclusions

Status of the strong coupling

PDG 2016 on a_s

Lattice unbeatable?

recent prevailing view: lattice is unbeatable \ast yet determination of a_s from experiments remains desirable (or at least a fancy) e⁺e⁻ event shapes, jets \checkmark are sensitive to a_s \checkmark are measured extensively \checkmark can almost be computed from first principles (assuming local parton-hadron duality)

D. d'Enterria, arXiv: 1806.06156

Shapes at NLO+NLL+power corr.+had. mass at LEP

6 D. Wicke, G. Salam hep-ph/0102343

Three-jet event shapes at LEP

LO vs. NLO vs. data:
 suffer large
 perturbative &
 hadronization
 corrections

new since LEP:

- \checkmark NNLO corrections
- \checkmark N²LL or N³LL resummation

New measurements of as

NNLO is not enough

A, B and C computed with MCCSM (=Monte Carlo for CoLoRFulNNLO Subtraction Method) 9 V. Del Duca et al, arXiv:1603.08927

Analytic structure of perturbative expansion

$$\frac{\tau}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \left(\frac{\alpha_{\mathrm{s}}}{2\pi}\right)A(\tau) + \left(\frac{\alpha_{\mathrm{s}}}{2\pi}\right)^{2}B(\tau) + \left(\frac{\alpha_{\mathrm{s}}}{2\pi}\right)^{3}C(\tau)$$

$$A(\tau) = A_{1}L - A_{0}, \qquad L = -\ln \tau$$

$$B(\tau) = B_{3}L^{3} + B_{2}L^{2} + B_{1}L + B_{0},$$

$$C(\tau) = C_{5}L^{5} + C_{4}L^{4} + C_{3}L^{3} + C_{2}L^{2} + C_{1}L + C_{0}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

LL NLL N²LL N³LL ... needs resummation of all orders

How to improve?

✓ Match to approximate predictions that resum large logarithms of the event shapes

precise predictions are available, e.g.:

- N³LL for thrust (τ), C-parameter and heavy jet mass (ρ)
- N^2LL for broadenings and EEC

Matching NNLO with N³LL

Works for $\tau > 0.1$, fails in peak regions

How to improve?

✓ Match to approximate predictions that resum large logarithms of the event shapes

precise predictions are available, e.g.:

- N³LL for thrust (τ), C-parameter and heavy jet mass (ρ)
- N^2LL for broadenings and EEC
- \checkmark Correct for hadronisation

two options:

- estimate of hadronisation using modern MC tools
- use analytic model for power corrections, e.g.:

$$\frac{\tau}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau}(\tau) \to \frac{\tau}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau}(\tau - 2a_0)$$

Fit to data with NNLO+N³LL+PC

Works down to the peak, but

Fit data on heavy jet mass with NNLO+N³LL+PC

... not exactly as expected

Fit to data with PC

a₀ [GeV]

αs

but a_0 and α_s are strongly anticorrelated

EEC @ fixed orders

EEC @ NNLO+NNLL+NP

 $a_1 = 2.47^{+0.48}_{-2.38} \,\mathrm{GeV}^2$

 $\alpha_{\rm S}(M_Z) = 0.121^{+0.001}_{-0.003}$

$$\operatorname{corr}(\alpha_{\mathrm{S}}, a_{1}, a_{2}) = \begin{pmatrix} 1 & 0.05 & -0.97 \\ 0.05 & 1 & -0.07 \\ -0.97 & -0.07 & 1 \end{pmatrix} \begin{array}{c} \operatorname{Isp} \mathbf{C} \\ \mathbf{St} \\ \mathbf{I8} & \mathbf{Z}. \mathbf{T} \\ \mathbf{I8} & \mathbf{Z}. \mathbf{T} \\ \mathbf{St} \\ \mathbf$$

 Parameters are strongly anticorrelated
 Z. Tulipánt et al, arXiv:1708.04093

 $a_2 = 0.31^{+0.27}_{-0.05} \text{ GeV}$

How to improve?

✓ Correct for hadronisation, 2nd option:

- estimate of hadronisation using modern MC tools

Hadronization corrections are parametrized using smooth functions to tame statistical fluctuations

Parametrization is valid only in the fit range

Fit results

Global fit at NNLL+NLO:

```
\alpha_{\rm S}(M_Z) = 0.12200 \pm 0.00023(exp.) \pm 0.00113(hadr.) \pm 0.00433(ren.) \pm 0.00293(res.)
```

with combined uncertainty: $\alpha_{\rm S}(M_Z) = 0.12200 \pm 0.00535$

Global fit at NNLL+NNLO:

 $\alpha_{\rm S}(M_Z) = 0.11750 \pm 0.00018(exp.) \pm 0.00102(hadr.) \pm 0.00257(ren.) \pm 0.00078(res.)$

with combined uncertainty: $lpha_{
m S}(M_Z) = 0.11750 \pm 0.00287$

The effect of NNLO on central value is moderate but not negligible, *ren*. uncertainty down by a factor of 2, *res*. uncertainty down by a factor of 3

The overall uncertainty is dominated by theoretical uncertainty (*ren.* and *res.*)

20

Z. Tulipánt et al, arXiv: 1804.09146

How to improve?

- \checkmark Correct for hadronisation, 2nd option:
 - estimate of hadronisation using modern MC tools
- ✓ Find observable quantities with small perturbative and hadronisation corrections:
 - motto: "large uncertainty in small quantity is small uncertainty"

jet cone energy fraction:

$$\frac{\mathrm{d}\Sigma_{\mathrm{JCEF}}}{\mathrm{d}\cos\chi} = \sum_{i} \int \frac{E_{i}}{Q} \mathrm{d}\sigma_{e^{+}e^{-} \to i+X} \delta\left(\cos\chi - \frac{\vec{p_{i}} \cdot \vec{n_{T}}}{|\vec{p_{i}}|}\right)$$

How to improve?

- \checkmark Correct for hadronisation, 2nd option:
 - estimate of hadronisation using modern MC tools
- ✓ Find observable quantities with small perturbative and hadronisation corrections:
 - motto: "large uncertainty in small quantity is small uncertainty"
 - precluster hadrons and compute shapes from
 jets
 Decamp et al [ALEPH], Phys.Lett. B257 (1991) 479-491

Preclustering reduces hadronization corrections

Old: without, New: with plecustering A. Verbytskyi, private communication 23 (requiring 5 jets)

How to improve?

- \checkmark Correct for hadronisation, 2nd option:
 - estimate of hadronisation using modern MC tools
- ✓ Find observable quantities with small perturbative and hadronisation corrections:
 - motto: "large uncertainty in small quantity is small uncertainty"
 - precluster hadrons and compute shapes from jets Decamp et al [ALEPH], Phys.Lett. B257 (1991) 479-491
 - groomed (soft drop) event shapes, designed to reduce contamination from non-perturbative effects

Soft drop event shapes

Soft drop grooming is defined

for a jet with radius R using Cambridge-Aachen clustering as:

- 1. Undo the last step of the clustering for the jet J, and split it into two sub-jets.
- Check if these sub-jets pass the soft drop condition, which is defined for e⁺e⁻ collisions as:

$$\frac{\min[E_i, E_j]}{E_i + E_j} > z_{\text{cut}} (1 - \cos \theta_{ij})^{\beta/2} \text{ or } z_{\text{cut}} \left(\frac{1 - \cos \theta_{ij}}{1 - \cos R}\right)^{\beta/2}$$

 α

where E_i and E_j are the energies of the two sub-jets and θ_{ij} is the angle between them.

- 3. If the splitting fails this condition, the softer sub-jet is dropped and the groomer continues to the next step in the clustering. In other words the jet J is set to be the harder of the two sub-jets.
- 4. If the splitting passes this condition the procedure ends and the jet J is the soft-drop jet.

Special kind of grooming

- (a) the thrust axis n_T is calculated, thus dividing the event into two hemispheres;
- (b) the soft-drop algorithm is applied in each hemisphere;
- (c) the sets of particles left in the two hemispheres after soft drop constitute the soft-drop hemispheres H^L and H^R, so which the soft-drop thrust T'_{SD} is defined as

$$T_{\rm SD}' = \frac{\sum_{i \in \mathcal{H}_{\rm SD}} |\vec{n_L} \cdot \vec{p_i}|}{\sum_{i \in \mathcal{E}_{\rm SD}} |\vec{p_i}|} + \frac{\sum_{i \in \mathcal{H}_{\rm SD}} |\vec{n_R} \cdot \vec{p_i}|}{\sum_{i \in \mathcal{E}_{\rm SD}} |\vec{p_i}|}$$

Soft drop thrust in PYTHIA

J. Baron et al, arXiv: 1803.04719

K-factors are significantly smaller $K_{\text{NLO}}(\mu) = \frac{d\sigma_{\text{NLO}}(\mu)}{dO} / \frac{d\sigma_{\text{LO}}(Q)}{dO}$ for soft drop thrust $K_{\text{NNLO}}(\mu) = \frac{d\sigma_{\text{NNLO}}(\mu)}{dO} / \frac{d\sigma_{\text{LO}}(Q)}{dO}$ in the possible fit range expect smaller dependence on reg. scale 29 A. Kardos et al, arXiv: 1807.11472

K-factors are significantly smaller for soft drop thrust in the possible fit range

expect smaller dependence on renormalization scale

31

Soft drop hemisphere mass

cluster an event into exactly two jets, J is the heavier

32

A. Kardos et al, arXiv: 1807.11472

Conclusions

Conclusions

- Precise determination of the strong coupling using hadronic final states in electron-positron annihilation requires
 - careful selection of observables (and data not discussed here)
 - methods to reduce hadronisation corrections
 - estimation of the hadronisation corrections with modern MCs
- MCCSM was used to compute differential distributions for groomed (soft drop) event shapes:
 - thrust
 - hemisphere invariant mass
 - narrow jet invariant mass (not shown here)

\checkmark Our predictions

- are stable numerically
- show better perturbative stability (smaller scale dependence) than un-groomed event shapes

Outlook: prospects for as

Method	Current relative precision		Future relative precision
e^+e^- evt shapes	$expt \sim 1\% (LEP)$		< 1% possible (ILC/TLEP)
	thry ~ 1–3% (NNLO+up to N ³ LL, n.p. signif.)	[27]	$\sim 1\%$ (control n.p. via Q^2 -dep.)
e^+e^- jet rates	$expt \sim 2\%$ (LEP)		< 1% possible (ILC/TLEP)
	thry $\sim 1\%$ (NNLO, n.p. moderate)	[28]	$\sim 0.5\%$ (NLL missing)
precision EW	$expt \sim 3\% \ (R_Z, \text{LEP})$		0.1% (TLEP [10]), $0.5%$ (ILC [11])
	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9]	[0, 29]	$\sim 0.3\%~({\rm N}^{4}{\rm LO}$ feasible, $\sim 10~{\rm yrs})$
au decays	expt $\sim 0.5\%$ (LEP, B-factories)		< 0.2% possible (ILC/TLEP)
	thry $\sim 2\%$ (N ³ LO, n.p. small)	[8]	$\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)
ep colliders	$\sim 1-2\%$ (pdf fit dependent) [30,	,31],	0.1% (LHeC + HERA [23])
	(mostly theory, NNLO) [32	[2, 33]	$\sim 0.5\%$ (at least N ³ LO required)
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)		< 1% challenging
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17,21]	[, 34]	(NNLO jets imminent [22])
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$
	(limited by accuracy of pert. th.) [35	-37]	$(\sim 5 \text{ yrs } [38])$

Determination of strong coupling from e⁺e⁻ data with decreased theoretical uncertainty might be possible

35

J.M. Campbell et al [Snowmass], arXiv: 1310.5189

Fit prediction for EEC to data

Fit range: $[60^{\circ}, 160^{\circ}]$ ($[117^{\circ}, 165^{\circ}]$ for DMW setup)

Fit range was chosen to avoid regions where the theoretical prediction or hadronization corrections become unreliable

37

The result is insensitive to a $\pm 5^{\circ}$ change in the fit range

Dependence on unphysical scales

variation of

renormalization scale

resummation scale

38

Z. Tulipánt et al, arXiv: 1804.09146

Dependence on energy

fitted values

39

Z. Tulipánt et al, arXiv: 1804.09146

Problem

$$\sigma_{m}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} \mathrm{d}\sigma_{m}^{\text{VV}} J_{m}$$

- matrix elements are known for σ^{RR} and σ^{RV} for many processes
- σ^{VV} is known for many $0 \rightarrow 4$ parton, V+3 parton, VV+2 parton processes – higher multiplicities are on the horizon
- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$
 - in σ^{VV} explicit ϵ -poles at O (ϵ^{-4} , ϵ^{-3} , ϵ^{-2} , ϵ^{-1})

How to combine to obtain finite cross section?

Approaches

Sector decomposition

Anastasiou, Melnikov, Petriallo et al 2004-

Antennae subtraction

Gehrmann, Gehrmann-De Ridder, Glover et al 2004-

S. Catani, M. Grazzini et al 2007-

- SecToR-Improved Phase sPacE for Real radiation
 Czakon et al 2010-
- \circ T_N-slicing

Boughezal et al 2015-Gaunt et al 2015-

 Completely Local SubtRactions for Fully Differential Predictions at NNLO (CoLoRFulNNLO)

ZT, Somogyi et al 2005-

Several options available - why a new one?

Our goal is to devise a subtraction scheme with

- ✓ fully local counter-terms
 (efficiency and mathematically well-defined)
- ✓ fully differential predictions
 (with jet functions defined in d = 4)
- ✓ explicit expressions including flavor and color (color space notation is used)
- ✓ completely general construction
 (valid in any order of perturbation theory)
- ✓ option to constrain subtraction near singular regions (important check)

such schemes are known at NLO (CS-dipoles, FKS etc)

How to build a local subtraction scheme? Steps used at NLO:

 ✓ compute QCD factorization formulae (universal) S. Catani, S. Dittmaier, M.H. Seymour,ZT hep-ph/0201036

- ✓ construct local subtractions on whole phase space (explicit and universal in d = 4)
- ✓ integrate subtractions over unresolved phase space
 (once and for all)
- ✓ cancel IR poles
 (analytically, universal)
- ✓ implement integration of finite part in partonic MC (simple user interface defines observables) steps proven to be too difficult at NNLO: given up by many, used here

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},A_2} J_m - \left(d\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},A_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},A_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},A_2} - d\sigma_{m+2}^{\text{RR},A_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},A_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},A_1} \right) A_1 \right] \right\} J_m$$

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RR,A2 regularizes doubly-unresolved limits

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RR,A1 regularizes singly-unresolved limits

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RR, A12 removes overlapping subtractions

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RV,A1 regularizes singly-unresolved limits

CoLoRFulNNLO method

can now be computed by numerical Monte Carlo integrations

 $\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_m^{\text{NNLO}}$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

implementation for general m in MCCSM code

Adam Kardos 2015

MCCSM built in checks

Checking finiteness in singular regions, e.g. regularized RR:

Kinematic singularities cancel in RR

R = subtraction/RR

Kinematic singularities cancel in RV

R = subtraction/(RV+RR,A₁)

Pole-cancelation: $H \rightarrow bb$ at $\mu = m_H$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ \mathrm{d}\sigma_{m}^{\text{VV}} + \int_{2} \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{2}} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_{1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{1}} \right)^{\text{A}_{1}} \right] \right\} J_{m}$$

$$d\sigma_{H\to b\bar{b}}^{VV} = \left(\frac{\alpha_{\rm s}(\mu^2)}{2\pi}\right)^2 d\sigma_{H\to b\bar{b}}^{\rm B} \left\{ +\frac{2C_{\rm F}^2}{\epsilon^4} + \left(\frac{11C_{\rm A}C_{\rm F}}{4} + 6C_{\rm F}^2 - \frac{C_{\rm F}n_{\rm f}}{2}\right) \frac{1}{\epsilon^3} + \left[\left(\frac{8}{9} + \frac{\pi^2}{12}\right) C_{\rm A}C_{\rm F} + \left(\frac{17}{2} - 2\pi^2\right) C_{\rm F}^2 - \frac{2C_{\rm F}n_{\rm f}}{9} \right] \frac{1}{\epsilon^2} + \left[\left(-\frac{961}{216} + \frac{13\zeta_3}{2}\right) C_{\rm A}C_{\rm F} + \left(\frac{109}{8} - 2\pi^2 - 14\zeta_3\right) C_{\rm F}^2 + \frac{65C_{\rm F}n_{\rm f}}{108} \right] \frac{1}{\epsilon} \right\}$$

C. Anastasiou, F. Herzog, A. Lazopoulos, arXiv:0111.2368

$$\begin{split} \sum \int \mathrm{d}\sigma^{\mathrm{A}} &= \left(\frac{\alpha_{\mathrm{s}}(\mu^{2})}{2\pi}\right)^{2} \mathrm{d}\sigma^{\mathrm{B}}_{H \to b\bar{b}} \bigg\{ -\frac{2C_{\mathrm{F}}^{2}}{\epsilon^{4}} - \left(\frac{11C_{\mathrm{A}}C_{\mathrm{F}}}{4} + 6C_{\mathrm{F}}^{2} + \frac{C_{\mathrm{F}}n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}} \\ &- \bigg[\left(\frac{8}{9} + \frac{\pi^{2}}{12}\right) C_{\mathrm{A}}C_{\mathrm{F}} + \left(\frac{17}{2} - 2\pi^{2}\right) C_{\mathrm{F}}^{2} - \frac{2C_{\mathrm{F}}n_{\mathrm{f}}}{9} \bigg] \frac{1}{\epsilon^{2}} \\ &- \bigg[\left(-\frac{961}{216} + \frac{13\zeta_{3}}{2}\right) C_{\mathrm{A}}C_{\mathrm{F}} + \left(\frac{109}{8} - 2\pi^{2} - 14\zeta_{3}\right) C_{\mathrm{F}}^{2} + \frac{65C_{\mathrm{F}}n_{\mathrm{f}}}{108} \bigg] \frac{1}{\epsilon} \bigg\} \\ &\mathbf{V}, \text{ Del Duca, } \mathbf{C}, \text{ Duhr}, \mathbf{G}, \text{ Somoavi, F. Tramontano, Z. Trócsányi, arXiv:1501.07226} \end{split}$$

Poles cancel: $e^+e^- \rightarrow m(=3)$ jets at μ^2

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left[d\sigma_{m+2}^{\text{RR},A_{2}} - d\sigma_{m+2}^{\text{RR},A_{12}} \right] + \int_{1} \left[d\sigma_{m+1}^{\text{RV},A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},A_{1}} \right)^{A_{1}} \right] \right\} J_{m} d\sigma_{3}^{\text{VV}} = \mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right) + \mathcal{F}inite \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right) \\ \mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right) + \mathcal{P}oles \sum \int d\sigma^{\text{A}} = \text{200k Mathematica lines}$$

= zero numerically in any phase space point:

Poles cancel: $e^+e^- \rightarrow m(=3)$ jets at μ^2

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left[d\sigma_{m+2}^{\text{RR},A_{2}} - d\sigma_{m+2}^{\text{RR},A_{12}} \right] + \int_{1} \left[d\sigma_{m+1}^{\text{RV},A_{1}} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},A_{1}} \right)^{A_{1}} \right] \right\} J_{m}$$
$$d\sigma_{3}^{\text{VV}} = \mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right) + \mathcal{F}inite \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right)$$
$$\mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right) + \mathcal{P}oles \sum \int d\sigma^{\text{A}} = \text{200k Mathematica lines}$$
$$= \text{zero analytically using symbol techniques (C. Duhr)}$$

$$Message:$$

$$\sigma_3^{\text{NNLO}} = \int_3 \left\{ d\sigma_3^{\text{VV}} + \sum \int d\sigma^{\text{A}} \right\}_{\epsilon=0} J_3$$
indeed finite in d=4 dimensions

Thrust at NNLO vs N³LL

 $\tau = 1-T$

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|} \right)$$

N³LL resummation from T. Becher, M.D. Schwartz arXiv:0803.0343

Outlook: prospects for NNLO

✓ Extension of MCCSM to hadron collisions: Drell-Yan pair

Outlook: prospects for NNLO

✓ Extension of MCCSM to hadron collisions: H production

