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Motivation.

Can we reconcile the structures in double field theory (DFT) with
Courant algebroid structures in generalized geometry, knowing that
DFT reduces to Courant algebroid after imposing the strong
constraint?



Courant algebroid

Definition.
Let E

π→ M be a vector bundle.
Let [·, ·]E : Γ(E )× Γ(E )→ Γ(E ).
Let 〈·, ·〉E : Γ(E )× Γ(E )→ C∞(M) be a symmetric
C∞(M)-bilinear non-degenerate form.
Anchor map ρ : E → TM.

⇒ (E , [·, ·]E , 〈·, ·〉E , ρ) is a Courant algebroid, satisfying 5
properties.

(Liu, Weinstein and Xu, arXiv:dg-ga/9508013)

Here we consider: E = TM ⊕ T ∗M



Courant algebroid

1. Jacobi: [[A,B],C ] + cyclic = 1
3 D〈[A,B],C 〉+ cyclic

2. Homomorphism: ρ[A,B] = [ρ(A), ρ(B)]

3. Leibniz: [A, f B] = f [A,B] +
(
ρ(A)f

)
B − 〈A,B〉Df

4. Strong-Constraint-related:
ρ ◦ D = 0 ⇐⇒ 〈Df ,Dg〉 = 0

5. Compatibility:
ρ(C )〈A,B〉 = 〈[C ,A] +D〈C ,A〉,B〉+ 〈A, [C ,B] +D〈C ,B〉〉

where the differential operator D : C∞(M)→ Γ(E ) is defined by

〈Df ,A〉 = 1
2 ρ(A)f ,

for any A,B,C ∈ Γ(E ) and f ∈ C∞(M).



Courant algebroid (CA) properties in local expressions

Introduce a local basis for sections of E , e I where I = 1, . . . , 2d :

Operations:
[e I , eJ ] = ηIKηJLTKLMeM (twisted bracket), 〈e I , eJ〉 = 1

2η
IJ ,

ρ(e I )f = ηIJρiJ∂i f , Df = DI f e
I = ρi I∂i f e

I ,
where components of anchor ρ, (ρiJ) = (ρi j , ρ

ij) for i = 1, . . . , d .

In local coordinates, the properties of CA are

ηIJ ρi I ρ
j
J = 0 ,

ρi I ∂iρ
j
J − ρi J ∂iρj I − ηKL ρj K TLIJ = 0 ,

4 ρi [L ∂iTIJK ] + 3 ηMN TM[IJ TKL]N = 0 .



An algebroid for Double Field Theory

Strategy:
Double the canonical Courant algebroid and Project



(a) Doubling the target space

Consider a target space T ∗M with local coordinates (x i , pi ), thus a
map

X : Σ3 −→ T ∗M .

The components of this map are

X = (XI ) = (Xi ,Xi ) =: (X i , X̃i ) .

The fields X i and X̃i are identified with the pullbacks of the
coordinate functions, X i = X∗(x i ) and X̃i = X∗(pi ).

For worldvolume description of DFT:-
Larisa Jonke’s talk on Saturday at 11.



(a) Doubling the target space

The vector bundle is

E = T(T ∗M) := T (T ∗M)⊕ T ∗(T ∗M) .

The sections of the bundle: (AÎ ) = (AI , ÃI ) = (Ai ,Ai , Ãi , Ãi )
and A = AV + AF := AI ∂I + ÃI dXI .
The basis vectors on T ∗M: (∂I ) = (∂/∂X i , ∂/∂X̃i ) =: (∂i , ∂̃

i )
The basis forms on T ∗M: (dXI ) := (dX i , dX̃i )
For the anchor ρI Ĵ , we have (ρI J , ρ̃

IJ) of E .

∴ This defines a ‘large’ Courant algebroid: (E , [ · , · ], 〈 · , · 〉, ρ).



Intermediate step: Introduce a decomposition

Before projecting, first introduce

AI
± = 1

2

(
AI ± ηIJ ÃJ

)
, e±I = ∂I ± ηIJ dXJ .

For the anchor ρI Ĵ = (ρI J , ρ̃
IJ) of E , define

(ρ±)I J = ρI J ± ηJK ρ̃ IK .

An O(d , d) metric η is involved.
∴ The generalized tangent bundle is thus decomposed as

E = T(T ∗M) = T (T ∗M)⊕ T ∗(T ∗M) = L+ ⊕ L− ,

where L± is the bundle whose space of sections is spanned locally
by e±I .



Hint: Reduce the AÎ field from 4d to 2d.

Goal: By projections from the ‘large’ Courant algebroid (CA),
reproduce the DFT data:

(1) DFT vector
(2) C-bracket of DFT vectors
(3) Generalized Lie derivative in DFT → strong constraint



(b) Projecting from the ‘large’ Courant algebroid

The generalized vector of the ‘large’ CA (E = L+ ⊕ L−) is given as

A = AI ∂I + ÃI dXI = AI
+ e+

I + AI
− e
−
I .

By setting the components AI
− = 0 and renaming AI

+ = AI , we
obtain a special generalized vector

A = Ai

(
dX i + ∂̃i

)
+ Ai

(
dX̃i + ∂i

)
.

This is a DFT vector (Deser and Saemann, arXiv:1611.02772

[hep-th]).

This is systematically achieved by a projection to the subbundle
L+ of E by introducing the bundle map

p+ : E −→ L+ , (AV ,AF ) 7−→ A+ := A .



(b) Projecting from the ‘large’ Courant algebroid
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(b) Projecting from the ‘large’ Courant algebroid

Applying the projection twice to the standard Courant bracket,

p+

(
[p+(A), p+(B)]E

)
= (AK ∂KB

J − 1
2 A

K ∂JBK − {A↔ B})e+
J

= [[A,B]]L+ ,

we obtain the C-bracket of DFT vectors.

By double projecting on the generalized Lie derivative,

p+

(
Lp+(A)p+(B)

)
= (AI ∂IB

J − B I ∂IA
J + BI ∂

JAI )e+
J

= LAB ,

we obtain the generalized Lie derivative in DFT.
Note that [LC , LA] = L[[C ,A]]L+

only if we impose the strong

constraint: ηIJ ∂I f ∂Jg = 0, for all fields f , g of DFT.



DFT algebroid

Definition.
Let L+ be a vector bundle of rank 2d over T ∗M.
Let [[ · , · ]]L+ : Γ(L+)⊗ Γ(L+)→ Γ(L+) be a skew-symmetric
bracket (C-bracket).
Let 〈 · , · 〉L+ : Γ(L+)⊗ Γ(L+)→ C∞(T ∗M) be a non-degenerate
symmetric form.
Smooth bundle map ρ+ : L+ → T (T ∗M).

⇒ (L+, [[ · , · ]]L+ , 〈 · , · 〉L+ , ρ+) is a Double Field Theory (DFT)
algebroid, satisfying 3 properties.



DFT algebroid properties

(1) 〈D+f ,D+g〉L+ =
1

4
〈df ,dg〉L+ (strong-constraint-related)

(2) ρ+(C )〈A,B〉L+ = 〈[[C ,A]]L+ +D+〈C ,A〉L+ ,B〉L+

+〈A, [[C ,B]]L+ +D+〈C ,B〉L+〉L+

(compatibility condition)

(3) [[A, f B]]L+ = f [[A,B]]L++
(
ρ+(A)f

)
B−〈A,B〉L+ D+f (Leibniz)

for A,B,C ∈ Γ(L+), functions f , g ∈ C∞(T ∗M),
derivative D+ : C∞(T ∗M)→ Γ(L+) defined through
〈D+f ,A〉L+ = 1

2 ρ+(A)f .



DFT algebroid properties in local expressions

Introduce a local basis for sections of L+, eI where I = 1, . . . , 2d :

Operations:
[eI , eJ ] = ηIK ηJL T

KLM eM , 〈eI , eJ〉 = ηIJ ,
ρ(eI )f = ρLI ∂Lf , Df = DI f eI = 1

2 ρ
K
L ∂K f η

LJ eJ ,

where components of anchor ρ, (ρI J) = (ρi j , ρ
ij , ρ j

i , ρij) for
i = 1, . . . , d .

In local coordinates, the strong-constraint-related property is

〈Df ,Dg〉L+ = 1
4 (ρK I η

IJ ρLJ) ∂K f ∂Lg = 1
4η

KL ∂K f ∂Lg ,

where
ρK I η

IJ ρLJ = ηKL .



Strong constraint

Homomorphism is modified.

Modification is controlled by the strong constraint:

ρ+[[A,B]]L+ = [ρ+(A), ρ+(B)] + SCρ(A,B) ,

where

SCρ(A,B) =
(
ρL[I ∂

KρLJ] A
I BJ + 1

2 (AI ∂KBI − B I ∂KAI )
)
∂K .

This SCρ term vanishes upon imposing the strong constraint,
i.e. ∂K (. . . )∂K (. . . ) = 0.



Strong constraint

Jacobi is modified.

Modification is controlled by the strong constraint:

[[[[A,B]]L+ ,C ]]L+ + cyclic = D+N+(A,B,C ) + Z(A,B,C )

+SCJac(A,B,C ) ,

where N+(A,B,C ) = 1
3 〈[[A,B]]L+ ,C 〉L+ + cyclic,

and ZIJKL = 4 ρM [L ∂MTIJK ] + 3 ηMN TM[IJ TKL]N , and

SCJac(A,B,C )L = −1
2

(
AI ∂JBI ∂

JCL − B I ∂JAI ∂
JCL

)
− ρI [J ∂MρI N]

(
AJ BN ∂MCL

−1
2 C

J AK ∂MBK η
NL + 1

2 C
J BK ∂MAK η

NL
)

+cyclic ,

which vanishes upon imposing the strong constraint.



DFT properties in local expressions

Introduce a local basis for sections of E , e I where I = 1, . . . , 2d .

In local coordinates, the DFT properties are

ηIJ ρK I ρ
L
J = ηKL ,

2ρL[I ∂Lρ
K
J] − ηMN ρKM T̂NIJ = ρL[I ∂

KρLJ] ,

4 ρM [L ∂M T̂IJK ] + 3 ηMN T̂M[IJ T̂KL]N = ZIJKL ,

where T̂IJK gives the fluxes of Double Field Theory given

ρI J =

(
δi j βij

Bij δi
j + βjk Bki

)
.



Conclusion

Geometric origin of Double Field Theory.

Method of Doubling-Splitting-Projecting:

Large Courant algebroid
p+−→ Double field theory

strong constraint−→
canonical Courant algebroid



• Double Field Theory is an example of the pre-DFT algebroid:

Courant algebroid
���Jacobi−→ Pre-Courant algebroid(

(((
((Homomorphism−→

Ante-Courant algebroid(
((((〈Df ,Dg〉=0−→ Pre-DFT algebroid

(Bruce and Grabowski, arXiv:1608.01585 [math-ph])

(Vaisman, arXiv:1203.0836 [math.DG])

Violating the properties simultaneously in a particular way:

Double field theory
strong constraint−→ Courant algebroid



Thank You


