Deformation quantization of non-geometric backgrounds in M-theory

Vladislav Kupriyanov

MPI Munich & UFABC

Based on: JHEP 1509 (2015) 103; Nucl.Phys. B910 (2016) 240; JHEP 1702 (2017) 099

September 26, 2017

Contents

- Deformation quantization and star product.
- Quantization of non-Poisson structures.
- Non-associative Weyl star product.
- Quantization of constant R-flux.
- G_2 -structures and deformation quantization.
- Quantization of non-geometric M-theory background.
- Discussion.

Deformation quantization: BFFLS, '77

Let A be an algebra of functions on \mathbb{R}^N , e.g., $C^{\infty}(\mathbb{R}^N)$, $\operatorname{Poly}(\mathbb{R}^N)$. **Star product** is a formal deformation of the pointwise product on A in the direction of a given Poisson bivector field $P^{ij}(x)$.

A formal deformation,

$$f \cdot g \to f \star g = f \cdot g + \sum_{r=1}^{\infty} (i\hbar)^r C_r(f,g).$$

The "Initial condition",

$$\lim_{\hbar \to 0} \frac{[f,g]_{\star}}{2i\hbar} = \{f,g\} = P^{ij}(x)\partial_i f \ \partial_j g.$$

3 The associativity condition, $(f \star g) \star h = f \star (g \star h)$.

The last condition

- requires Jacoby Identity for consistency:

$${f,g,h} := {f,{g,h}} + {h,{f,g}} + {g,{h,f}} = 0.$$

– allows to proceed to higher orders, $C_r(f,g)$, r>1,

Existence: Formality theorem by M. Kontsevich, '97

Non-Poisson structures

Magnetic charges through covariant momenta:

$$\begin{aligned} &\{x^i, x^j\} = 0, & \{x^i, \pi_j\} = \delta^i_j, \\ &\{\pi_i, \pi_j\} = e\varepsilon_{ijk}B^k(x), \\ &\{\pi_i, \pi_j, \pi_k\} = e\varepsilon_{ijk}\mathrm{div}\,\vec{B}\,. \end{aligned}$$

For Dirac monopole, $\vec{B}(\vec{x}) = g\vec{x}/x^3$. For a constant uniform magnetic charge distribution one sets, $\vec{B}(\vec{x}) = \rho \vec{x}/3$, then div $\vec{B} = \rho$.

• Constant R-flux [Blumenhagen, Plauschin & Lüst '10]:

$$\{x^i, x^j\} = \frac{\ell_3^2}{\hbar^2} R^{ijk} p_k , \qquad \{x^i, p_j\} = \delta^i_j \qquad \{p_i, p_j\} = 0 ,$$

Making, $p \to x$ and $x \to -p$, one obtains the algebra of a constant magnetic charge distribution.

Non-Poisson structures

• Magnetic charges through covariant momenta:

$$\begin{aligned} &\{x^i, x^j\} = 0, & \{x^i, \pi_j\} = \delta^i_j, \\ &\{\pi_i, \pi_j\} = e\varepsilon_{ijk}B^k(x), \\ &\{\pi_i, \pi_j, \pi_k\} = e\varepsilon_{ijk}\mathrm{div}\,\vec{B}\,. \end{aligned}$$

For Dirac monopole, $\vec{B}(\vec{x}) = g\vec{x}/x^3$. For a constant uniform magnetic charge distribution one sets, $\vec{B}(\vec{x}) = \rho \vec{x}/3$, then div $\vec{B} = \rho$.

• Constant R-flux [Blumenhagen, Plauschin & Lüst '10]:

$$\{x^i, x^j\} = \frac{\ell_s^3}{\hbar^2} \, R^{ijk} \, p_k \; , \qquad \{x^i, p_j\} = \delta^i_j \qquad \{p_i, p_j\} = 0 \; ,$$

Making, $p \to x$ and $x \to -p$, one obtains the algebra of a constant magnetic charge distribution.

Octonions, 1X = X1 = X, and |XY| = |X||Y|.

$$X=k^0\,1+k^A\,e_A,$$

where $k^0, k^A \in \mathbb{R}$, $A = 1, \ldots, 7$, while 1 is the identity element,

$$\mathbf{e_{A}}\,\mathbf{e_{B}} = -\delta_{\mathbf{AB}}\,\mathbf{1} + \eta_{\mathbf{ABC}}\,\mathbf{e_{C}} \ ,$$

 $\eta_{ABC} = +1 \text{ for } ABC = 123, \ 435, \ 471, \ 516, \ 572, \ 624, \ 673 \ .$

$$[e_A, e_B] := e_A e_B - e_B e_A = 2 \eta_{ABC} e_C$$
.

Introducing $f_i := e_{i+3}$ for i = 1, 2, 3, (e_i and 1 generate H),

$$[e_i, e_j] = 2 \varepsilon_{ijk} e_k$$
 and $[e_7, e_i] = 2 f_i$,

$$[f_i, f_j] = -2 \varepsilon_{ijk} e_k$$
 and $[e_7, f_i] = -2 e_i$,

$$[e_i, f_j] = 2(\delta_{ij} e_7 - \varepsilon_{ijk} f_k).$$

Octonions are non-associative, $[e_A, e_B, e_C] = -12\eta_{ABCD}e_D$, but alternative, i.e.,

$$[X,Y,Z]=6\left((XY)Z-X(YZ)\right) .$$

M-theory R-flux background [Günaydin, Lüst, Malek '16]

Defining the coordinates and momenta in terms of the imaginary octonions as

$$x^i = \frac{\sqrt{\lambda \, \ell_s^3 \, R}}{2 \hbar} \, f_i \; , \quad p_i = - \tfrac{\lambda}{2} \, e_i \; , \quad x^4 = \frac{\sqrt{\lambda^3 \, \ell_s^3 \, R}}{2 \hbar} \, e_7 \; ,$$

we obtain

$$\{x^{i}, x^{j}\}_{\lambda} = \frac{\ell_{s}^{3}}{\hbar^{2}} R^{4,ijk4} p_{k} \quad \text{and} \quad \{x^{4}, x^{i}\}_{\lambda} = \frac{\lambda \ell_{s}^{3}}{\hbar^{2}} R^{4,1234} p^{i},$$

$$\{x^{i}, p_{j}\}_{\lambda} = \delta_{j}^{i} x^{4} + \lambda \varepsilon_{jk}^{i} x^{k} \quad \text{and} \quad \{x^{4}, p_{i}\}_{\lambda} = \lambda^{2} x_{i},$$

$$\{p_{i}, p_{j}\}_{\lambda} = -\lambda \varepsilon_{ijk} p^{k}.$$

with λ being the M-theory radius. Sending $\lambda \to 0$ one recover the R-flux algebra.

Non-associative star products

Main problem: for a non-Poisson P^{jk} what can be used instead of the associativity condition to restrict the higher order terms in star products? Why not,

$$f \star g = f \cdot g + \frac{i\hbar}{2} \{f, g\}$$
?

The nonassociative star products should be:

(a*) Hermitean:

$$(f\star g)^*=g^*\star f^*.$$

(b∗) Unital:

$$1 \star f = f = f \star 1 .$$

(c⋆) Closed:

$$\int f \star g = \int f \cdot g .$$

(d⋆) 3-cyclic:

$$\int (f \star g) \star h = \int f \star (g \star h) .$$

Alternativity and Malcev-Poisson identity

def. \star is alternative if $A_{\star}(f,g,h)$ is completely antisymmetric in its arguments, or 'alternating'. For such products we have

$$f \star (g \star h) - (f \star g) \star h = \frac{1}{6} [f, g, h]_{\star} ,$$

$$[f, g, h]_{\star} := [f, [g, h]_{\star}]_{\star} + [h, [f, g]_{\star}]_{\star} + [g, [h, f]_{\star}]_{\star} .$$

Each alternative algebra defines the Malcev algebra when product is substituted by the commutator, $f \star g \to [f,g]_{\star}$. It satisfys:

$$[f,g,[f,h]_{\star}]_{\star} = [[f,g,h]_{\star},f]_{\star}$$
.

In the semi-classical limit it implies the Malcev-Poisson identity:

$${f,g,{f,h}} = {\{f,g,h\},f\}}$$
.

For the constant R-flux taking $f=x^1$, $g=x^3\,p_1$ and $h=x^2$, one finds on the r.h.s.: $\frac{3\ell_s^3}{\hbar^2}\,R$, while the l.h.s. vanishes. The same is true for the M-theory R-flux.

Weyl star products

def. Weyl star products satisfy

$$(x^{i_1}\ldots x^{i_n})\star f=\sum_{P_n}\frac{1}{n!}P_n(x^{i_1}\star (\cdots\star (x^{i_n}\star f)\ldots),$$

e.g.,

$$(x^{i}x^{j}) \star f = \frac{1}{2} \left(x^{i} \star (x^{j} \star f) + x^{j} \star (x^{i} \star f) \right).$$

Theorem [KVG & Vassilevich, '15]: For any bivector field $P^{ij}(x)$ there is unique Hermitian, unital, strictly triangular, Weyl star product.

Remarks:

- Weyl ★ is alternative on monomials (Schwartz functions?).
- It is neither closed, $\int f \star g \neq \int f \cdot g$, nor 3-cyclyc.
- Constructive order by order procedure.

Weyl star product

$$\begin{split} &(f\star g)(x)=f\cdot g+\frac{i\hbar}{2}P^{ij}\partial_{i}f\partial_{j}g\\ &-\frac{\hbar^{2}}{8}P^{ij}P^{kl}\partial_{i}\partial_{k}f\partial_{j}\partial_{l}g-\frac{\hbar^{2}}{12}P^{ij}\partial_{j}P^{kl}\left(\partial_{i}\partial_{k}f\partial_{l}g-\partial_{k}f\partial_{i}\partial_{l}g\right)\\ &-\frac{i\hbar^{3}}{8}\left[\frac{1}{3}P^{nl}\partial_{l}P^{mk}\partial_{n}\partial_{m}P^{ij}\left(\partial_{i}f\partial_{j}\partial_{k}g-\partial_{i}g\partial_{j}\partial_{k}f\right)\right.\\ &+\frac{1}{6}P^{nk}\partial_{n}P^{jm}\partial_{m}P^{il}\left(\partial_{i}\partial_{j}f\partial_{k}\partial_{l}g-\partial_{i}\partial_{j}g\partial_{k}\partial_{l}f\right)\\ &+\frac{1}{3}P^{ln}\partial_{l}P^{jm}P^{ik}\left(\partial_{i}\partial_{j}f\partial_{k}\partial_{n}\partial_{m}g-\partial_{i}\partial_{j}g\partial_{k}\partial_{n}\partial_{m}f\right)\\ &+\frac{1}{6}P^{jl}P^{im}P^{kn}\partial_{i}\partial_{j}\partial_{k}f\partial_{l}\partial_{n}\partial_{m}g\\ &+\frac{1}{6}P^{nk}P^{ml}\partial_{n}\partial_{m}P^{ij}\left(\partial_{i}f\partial_{j}\partial_{k}\partial_{l}g-\partial_{i}g\partial_{j}\partial_{k}\partial_{l}f\right)\right]+\mathcal{O}\left(\hbar^{4}\right)\;. \end{split}$$

and so on.

Exemple: quantization of a constant R-flux

Consider the algebra of non-Poisson brackets,

$$\{x^I, x^J\} = \Theta^{IJ}(x) = \begin{pmatrix} \frac{\ell_s^3}{\hbar^2} R^{ijk} p_k & -\delta_j^i \\ \delta_j^i & 0 \end{pmatrix}$$
 with $x = (x^I) = (\mathbf{x}, \mathbf{p}).$

The quantization is given by [Mylonas, Schupp, Szabo '12]:

$$f \star_{R} g = \int \frac{d^{6}k}{(2\pi)^{6}} \frac{d^{6}k'}{(2\pi)^{6}} \, \tilde{f}(k) \tilde{g}(k') \, e^{i\mathcal{B}(k,k')\cdot x} = f(x) \, e^{\frac{i\hbar}{2} \, \overleftarrow{\partial}_{I} \, \Theta^{IJ}(x) \, \overrightarrow{\partial}_{J}} \, g(x),$$

where

$$\mathcal{B}(\mathbf{k},\mathbf{k}')\cdot\mathbf{x} := (\mathbf{k}+\mathbf{k}')\cdot\mathbf{x} + (\mathbf{l}+\mathbf{l}')\cdot\mathbf{p} - \frac{\ell_s^3}{2\hbar}\,R\,\mathbf{p}\cdot(\mathbf{k}\times_{\varepsilon}\mathbf{k}') + \frac{\hbar}{2}\left(\mathbf{l}\cdot\mathbf{k}' - \mathbf{k}\cdot\mathbf{l}'\right)\,,$$

It is alternative on Schwartz functions and monomials. Also, it is Weyl; Hermitean, unital, closed and 3-cyclic.

Deformed vector sums

For each \vec{p}, \vec{p}' from the unit ball $|\vec{p}| \leq 1$ in \mathbb{R}^7 , define the map

$$ec{p} \circledast_{\eta} ec{p}' = \epsilon_{(ec{p}, ec{p}')} \left(\sqrt{1 - |ec{p}'|^2} \ ec{p} + \sqrt{1 - |ec{p}\,|^2} \ ec{p}' - ec{p} imes_{\eta} \ ec{p}'
ight) \ .$$

(V1) Vector $\vec{p} \circledast_{\eta} \vec{p}'$ belongs to the unit ball in V,

$$1 - |\vec{p} \circledast_{\eta} \vec{p}'|^2 = \left(\sqrt{1 - |\vec{p}|^2} \sqrt{1 - |\vec{p}'|^2} - \vec{p} \cdot \vec{p}'\right)^2 \ge 0;$$

(V2) Commutator reproduces the cross product,

$$ec{p}\circledast_{\eta}ec{p}'-ec{p}'\circledast_{\eta}ec{p}=rac{1}{2}ec{p}' imes_{\eta}ec{p}; \qquad (ec{p} imes_{\eta}ec{p}')_{A}=\eta_{ABC}p_{B}p_{C}'.$$

(V3) It is alternative,

$$\vec{\mathcal{A}}_{\eta}(\vec{p},\vec{p}^{\,\prime},\vec{p}^{\,\prime\prime}\,) := (\vec{p} \circledast_{\eta} \vec{p}^{\,\prime}\,) \circledast_{\eta} \vec{p}^{\,\prime\prime} - \vec{p} \circledast_{\eta} (\vec{p}^{\,\prime} \circledast_{\eta} \vec{p}^{\,\prime\prime}\,) = \frac{2}{3}\, \vec{\mathcal{J}}_{\eta}(\vec{p},\vec{p}^{\,\prime},\vec{p}^{\,\prime\prime}\,) \;.$$

For $\mathbf{q} \in \mathbb{R}^3$, vector star product $\mathbf{q} \circledast \mathbf{q}'$ is associative,

Deformed vector sums

To extend $\vec{p} \circledast_{\eta} \vec{p}'$ over the entire space V we introduce the maps

$$ec{p} = rac{\sin(\hbar \, |ec{k}|)}{|ec{k}|} \, \, ec{k} \qquad ext{and} \quad ec{k} = rac{\sin^{-1} |ec{p}|}{\hbar \, |ec{p}|} \, \, ec{p} \, \, .$$

The deformed vector sum is defined as

$$\vec{\mathcal{B}}_{\eta}(\vec{k}, \vec{k}') = \frac{\sin^{-1}|\vec{p}\circledast_{\eta}\vec{p}'|}{\hbar|\vec{p}\circledast_{\eta}\vec{p}'|}|\vec{p}\circledast_{\eta}\vec{p}'| \left|_{\vec{p}=\vec{k}\sin(\hbar|\vec{k}|)/|\vec{k}|}\right|.$$

- (B1) $\vec{\mathcal{B}}_{\eta}(\vec{k}, \vec{k}') = -\vec{\mathcal{B}}_{\eta}(-\vec{k}', -\vec{k})$;
- (B2) $\vec{\mathcal{B}}_{\eta}(\vec{k},\vec{0}) = \vec{\mathcal{B}}_{\eta}(\vec{0},\vec{k}) = \vec{k}$;
- (B3) $\vec{\mathcal{B}}_{\eta}(\vec{k}, \vec{k}') = \vec{k} + \vec{k}' 2 \hbar \vec{k} \times_{\eta} \vec{k}' + O(\hbar^2)$;
- (B4) The associator

$$\vec{\mathcal{A}}_{\eta}(\vec{k},\vec{k}',\vec{k}'') := \vec{\mathcal{B}}_{\eta}(\vec{\mathcal{B}}_{\eta}(\vec{k},\vec{k}'),\vec{k}'') - \vec{\mathcal{B}}_{\eta}(\vec{k},\vec{\mathcal{B}}_{\eta}(\vec{k}',\vec{k}''))$$

is antisymmetric in all arguments.

Quantization of imaginary octonions, $[e_A, e_B] = 2 \eta_{ABC} e_C$.

$$(f \star_{\eta} g)(\vec{\xi}) = \int \frac{d^{7}\vec{k}}{(2\pi)^{7}} \frac{d^{7}\vec{k}'}{(2\pi)^{7}} \tilde{f}(\vec{k}) \tilde{g}(\vec{k}') e^{i\vec{B}_{\eta}(\vec{k},\vec{k}') \cdot \vec{\xi}}.$$

This star product satisfies,

(S1)
$$(f \star_{\eta} g)^* = g^* \star_{\eta} f^*;$$

(S2)
$$f \star_{\eta} 1 = 1 \star_{\eta} f = f$$
;

(S3) provides quantization of imaginary octonions,

$$f \star_{\eta} g = f \cdot g + \frac{i\hbar}{2} \{f, g\}_{\eta} + O(\hbar^2), \qquad \{\xi_A, \xi_B\}_{\eta} = 2 \eta_{ABC} \xi_C;$$

- (S4) It is alternative on monomials and Schwartz functions.
- (S5) For functions f, g on three-dimensional subspace endowed with su(2) Lie algebra $[e_i, e_j] = 2 \varepsilon_{ijk} e_k$, the \star_{η} defines the associative star product $(f \star_{\varepsilon} g)(\xi, \mathbf{0}, 0)$.

Neither \star_{η} , nor \star_{ε} is closed, $\int f \star g \neq \int f g$.

Closure and cyclicity

def. Star products • and ★ are equivalent if

$$f ullet g = \mathcal{D}^{-1} ig(\mathcal{D} f \star \mathcal{D} g ig) \qquad \text{with} \quad \mathcal{D} = 1 + O(\hbar) \; .$$

Physically, equivalent star products represent different quantizations for the same classical system preserving the main properties.

$$6(f \star (g \star h) - (f \star g) \star h) = [f, g, h]_{\star} \iff 6(f \bullet (g \bullet h) - (f \bullet g) \bullet h) = [f, g, h]_{\bullet}.$$

The closed, $\int f \bullet g = \int f g$, alternative star product is 3-cyclic:

$$\int (f \bullet g) \bullet h = \int f \bullet (g \bullet h) .$$

Octonionic closed star product is given by:

$$f \bullet_{\eta} g = \mathcal{D}^{-1} \big(\mathcal{D} f \star_{\eta} \mathcal{D} g \big) \qquad \text{with} \quad \mathcal{D} = \Big(\big(\hbar \bigtriangleup_{\vec{\xi}}^{1/2} \big)^{-1} \sinh \big(\hbar \bigtriangleup_{\vec{\xi}}^{1/2} \big) \Big)^{6},$$

[KVG '16].

Closure and cyclicity

def. Star products • and ★ are equivalent if

$$f \bullet g = \mathcal{D}^{-1} ig(\mathcal{D} f \star \mathcal{D} g ig) \qquad \text{with} \quad \mathcal{D} = 1 + O(\hbar) \; .$$

Physically, equivalent star products represent different quantizations for the same classical system preserving the main properties.

$$6(f \star (g \star h) - (f \star g) \star h) = [f, g, h]_{\star} \iff 6(f \bullet (g \bullet h) - (f \bullet g) \bullet h) = [f, g, h]_{\bullet}.$$

The closed, $\int f \bullet g = \int f g$, alternative star product is 3-cyclic:

$$\int (f \bullet g) \bullet h = \int f \bullet (g \bullet h) .$$

Octonionic closed star product is given by:

$$fullet_{\eta}g=\mathcal{D}^{-1}ig(\mathcal{D}f\star_{\eta}\mathcal{D}gig) \qquad ext{with} \quad \mathcal{D}=\Big(ig(\hbarigtriangledown_{ec{\xi}}^{1/2}ig)^{-1}\sinhig(\hbarigtriangledown_{ec{\xi}}^{1/2}ig)\Big)^6,$$

[KVG '16].

Quantization of non-geometric M-theory background

The GLM algebra is obtained from, $\{\xi_A, \xi_B\} = 2\eta_{ABC}\xi_C$, by linear transformation,

$$\vec{x} = \left(x^A\right) = \left(\mathbf{x}, x^4, \mathbf{p}\right) := \varLambda\,\vec{\xi} = \tfrac{1}{2\hbar} \left(\sqrt{\lambda\,\ell_s^3\,R}\,\sigma\,,\,\sqrt{\lambda^3\,\ell_s^3\,R}\,\sigma^4\,,\,-\lambda\,\hbar\,\xi\right).$$

Define a star product of functions on the seven-dimensional M-theory phase space by the prescription

$$(f \star_{\lambda} g)(\vec{x}) = (f_{\Lambda} \bullet_{\eta} g_{\Lambda})(\vec{\xi})|_{\vec{\xi} = \Lambda^{-1} \vec{x}}$$

where $f_{\Lambda}(\vec{\xi}) := f(\Lambda \vec{\xi})$. It satisfies all required properties. Moreover,

$$\lim_{\lambda\to 0} (f \star_{\lambda} g)(\vec{x}) = (f \star_{R} g)(x) ,$$

in the limit $\lambda \to 0$ the non-geometric M-theory star product reduces exactly to constant R-flux star product, [KVG & Szabo '17].

Discussion

Why we cannot just set

$$f \star g = f \cdot g + \frac{i\hbar}{2} \{f, g\}$$
?

The condition of the *alternativity* of the star product, at least on some class of functions, seems to be reasonable condition to restrict non-associative star products.

- ② G_2 -symmetric star product \star_{η} is used to quantize non-geometric M-theory background, construct \star_{λ}
 - The restriction of \star_{λ} to a proper subspace defines an associative su(2) star product \star_{ε} .
 - The limit $\lambda \to 0$ of \star_{λ} reproduces the constant *R*-flux star product \star_{R} . The limit $R \to 0$ of \star_{R} gives Moyal.
 - Explicit all orders formulas for everything.
- Not the end of the story! What kind of physics will we have here?

Discussion

Why we cannot just set

$$f \star g = f \cdot g + \frac{i\hbar}{2} \{f, g\}$$
?

The condition of the *alternativity* of the star product, at least on some class of functions, seems to be reasonable condition to restrict non-associative star products.

- ② G_2 -symmetric star product \star_{η} is used to quantize non-geometric M-theory background, construct \star_{λ} .
 - The restriction of *_λ to a proper subspace defines an associative su(2) star product *_ε.
 - The limit $\lambda \to 0$ of \star_{λ} reproduces the constant R-flux star product \star_{R} . The limit $R \to 0$ of \star_{R} gives Moyal.
 - Explicit all orders formulas for everything.
- Not the end of the story! What kind of physics will we have here?

Discussion

Why we cannot just set

$$f \star g = f \cdot g + \frac{i\hbar}{2} \{f, g\}$$
?

The condition of the *alternativity* of the star product, at least on some class of functions, seems to be reasonable condition to restrict non-associative star products.

- ② G_2 -symmetric star product \star_{η} is used to quantize non-geometric M-theory background, construct \star_{λ} .
 - The restriction of *_λ to a proper subspace defines an associative su(2) star product *_ε.
 - The limit $\lambda \to 0$ of \star_{λ} reproduces the constant R-flux star product \star_{R} . The limit $R \to 0$ of \star_{R} gives Moyal.
 - Explicit all orders formulas for everything.
- Not the end of the story! What kind of physics will we have here?

