
Enhancing Tensor Field Theories
(renormalizable f4	melonic case)

Reiko	Toriumi

Radboud	University,	Nijmegen,	the	Netherlands

with	Joseph	Ben	Geloun	

(Labotatoire	d’Informatique	de	Paris	Nord,	Université	Paris	13)

arXiv:1709.05141



Tensor model approach to Quantum Gravity
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… generates	triangulated	2-dimensional		surfaces

… a	statistical	model	for	infinitely	refined	triangulations,	when	tuned	to	the	criticality	(	Nà Infinity,	là lc )
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Figure 2.2: Propagator and vertex interaction of the matrix model (2.35). In dashed lines:
the dual edge of the propagator and the dual triangle of the vertex.

Figure 2.3: An open ribbon graph, with two closed faces, and its dual triangulation.

define the notion of face: a face of G is a set of strands forming a loop. We note n(G) the
number of (3-valent) vertices of G, and F (G) its number of faces. It is then not difficult to
see that:

Z =
∑

G connected

1

s(G)
λn(G)AG , (2.37)

AG = NF (G) , (2.38)

where s(G) is a symmetry factor. The fact that the amplitude AG is weighted by the
number of faces is easy to understand: since in G, the indices of the strands are identified
by δ-functions across propagators and vertices, one can trivially sum all of them but one
per face; we are therefore left with one free index per face, which sums to N . The main
interest of the occurrence of such ribbon graphs in the perturbative expansion of the matrix
models, is that their duals are triangulated surfaces. To see this, it suffices to associate a
transverse line to each propagator, and a triangle to each vertex, as represented in Figures
2.2 and 2.3. In this dual picture, the role of the propagator is to identify pairwise the
edges of the n(G) triangles generated by G, yielding a closed triangulated surface. Note
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Rank	d tensor	models	generate	Feynman	graphs	dual	to	d dim.	triangulated	surfaces.
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Quantum Gravity a la tensor models/tensor field theories

are	rank	d tensors/tensor	fields:
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Quantum Gravity a la tensor models
(field theory versions: tensor field theories, group field theories)

', '̄ are rank d tensors/tensor fields:
'i

1

i
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.

Ib(�, �) =

�
[dgi ]

6 �(g6, g2, g3)�(g1, g2, g3)

�(g6, g4, g5)�(g1, g4, g5)

Sylvain Carrozza (CPT) Renormalization of Tensorial (Group) Field Theories GDR Renormalization 2015 14 / 38

Trace invariants

Trace invariants of fields �(g1, g2, . . . , gd) labelled by d-colored bubbles b:

Trb(�, �) =

�
[dgi ]

6 �(g6, g2, g3)�(g1, g2, g3)

�(g6, g4, g5)�(g1, g4, g5)

(d = 2) · · ·

(d = 3) · · ·

(d = 4) · · ·

Sylvain Carrozza (Univ. Bordeaux) Introduction to GFT Univ. Helsinki, 01/06/2016 15 / 21

Trace invariants

Trace invariants of fields �(g1, g2, . . . , gd) labelled by d-colored bubbles b:

Trb(�, �) =

�
[dgi ]

6 �(g6, g2, g3)�(g1, g2, g3)

�(g6, g4, g5)�(g1, g4, g5)

(d = 2) · · ·

(d = 3) · · ·

(d = 4) · · ·

Sylvain Carrozza (Univ. Bordeaux) Introduction to GFT Univ. Helsinki, 01/06/2016 15 / 21

Trace invariants

Trace invariants of fields �(g1, g2, . . . , gd) labelled by d-colored bubbles b:

Trb(�, �) =

�
[dgi ]

6 �(g6, g2, g3)�(g1, g2, g3)

�(g6, g4, g5)�(g1, g4, g5)

(d = 2) · · ·

(d = 3) · · ·

(d = 4) · · ·

Sylvain Carrozza (Univ. Bordeaux) Introduction to GFT Univ. Helsinki, 01/06/2016 15 / 21

+ �(4)
6,1

Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Quantum Gravity a la tensor models

(field theory versions: tensor field theories, group field theories)
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
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b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
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=
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t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
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b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
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b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
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b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
�

b�B

tbIb(�, �)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(�, �) =
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b�B
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=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(�, �) is the interaction part of the action, and should be a sum of connected
tensor invariants
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=
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t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
white (resp. black) node � field (resp. complex conjugate field);
edge of color � � convolution of �-th indices of ' and '.
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which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(�, �):
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where Trnb
are sums over all indices pk,s of P of nb tensors � and �̄. Then Trnb

are considered

as traces over indices of the tensors. In (3), the kernels K and Vnb
are to be specified, µ is a

mass coupling and �nb
is a coupling constant. If Vnb

corresponds to a simple pairing between

tensor indices, then Trnb
spans the space of unitary invariants [27, 35, 33].

There is a geometrical interpretation of the interaction Trnb
(�̄nb · Vnb

· �nb). Consider

each tensor field as a d-simplex; the generalized trace Trnb
corresponds to a pairing or an

identification of the (d � 1)-simplices on the boundary of the d-simplexes to form a d + 1
dimensional discrete geometry. If the kernel Vnb

is not a simple pairing by delta functions

identifying indices, it assigns a weight to each of those discrete geometries.

A model is specified after giving the data of the kernels K and Vnb
. Let us first introduce

some convenient notations:

�P;P0 =
dY

s=1

DY

i=1

�ps,i,p0s,i , P2b =
dX

s=1

|ps|2b , |ps|2b =
DX

i=1

|ps,i|2b ,

�
12...d = �p

1

,p
2

,...,pd = �P . (4)

for a real parameter b � 0, and where �p,q is the usual Kronecker symbol on .

We introduce the following class of kernels for the kinetic term

Kb(P;P0) = �P;P0P2b . (5)

Kb therefore represents a sum of the power of eigenvalues of d Laplacian operators over the

d copies of U(1)D. The case b = 1 corresponds precisely to Laplacian eigenvalues on the

torus. Seeking renormalizable theories, from the fact that we are dealing with a nonlocal

model, we might be led to choose values of b different from integers. In usual quantum field

theory (QFT) b should have an upper bound b  1 to ensure the Osterwalder-Schrader (OS)

positivity axiom [122]. Whether or not such a condition (or any OS axioms) might be kept

for tensor field theories is still in debate [47]. Thus, for the moment, to avoid putting strong

constraints on the models, we let b as a free strictly positive real parameter.

We will be interested in 2 models distinguished by their interactions. Introduce a param-
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where Trnb
are sums over all indices pk,s of P of nb tensors � and �̄. Then Trnb

are considered

as traces over indices of the tensors. In (3), the kernels K and Vnb
are to be specified, µ is a

mass coupling and �nb
is a coupling constant. If Vnb

corresponds to a simple pairing between

tensor indices, then Trnb
spans the space of unitary invariants [27, 35, 33].

There is a geometrical interpretation of the interaction Trnb
(�̄nb · Vnb

· �nb). Consider

each tensor field as a d-simplex; the generalized trace Trnb
corresponds to a pairing or an

identification of the (d � 1)-simplices on the boundary of the d-simplexes to form a d + 1
dimensional discrete geometry. If the kernel Vnb

is not a simple pairing by delta functions

identifying indices, it assigns a weight to each of those discrete geometries.

A model is specified after giving the data of the kernels K and Vnb
. Let us first introduce

some convenient notations:
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for a real parameter b � 0, and where �p,q is the usual Kronecker symbol on .

We introduce the following class of kernels for the kinetic term

Kb(P;P0) = �P;P0P2b . (6)

Kb therefore represents a sum of the power of eigenvalues of d Laplacian operators over the

d copies of U(1)D. The case b = 1 corresponds precisely to Laplacian eigenvalues on the

torus. Seeking renormalizable theories, from the fact that we are dealing with a nonlocal

model, we might be led to choose values of b different from integers. In usual quantum field

theory (QFT) b should have an upper bound b  1 to ensure the Osterwalder-Schrader (OS)

positivity axiom [122]. Whether or not such a condition (or any OS axioms) might be kept

for tensor field theories is still in debate [47]. Thus, for the moment, to avoid putting strong

constraints on the models, we let b as a free strictly positive real parameter.

6

Geometrical Picture of tensor models

A Feynman graph is a d -dimentional triangulation of a manifold with

a boundary.

e.g., In rank d = 3,

(d + 1)-colored graphs are dual to d -dimensional triangulations.

e.g, a simple Feynman graph with 8 external legs:
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Figure 3. Trace invariants and gluings of simplices in D = 3.

has an expansion in connected (D + 1)-colored vacuum graphs G having B as a (marked) subgraph, denoted G � B.
The scaling in N in (2.13) of a graph G rewrites

N� 2
D! �(G)N� 2

D(D�2)!

�
�(G)�D �(B)

�
. (2.14)

Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.

C. Topology from bubbles

To simplify the discussion, in this section we will restrict to the case D = 3. The original idea of tensor models
[28–30] was to generate triangulations of 3-dimensional spaces. The basic building block in the original proposals was
an interaction term which combinatorially describes a tetrahedron (a 3-simplex) also used in group field theories [58]

Vtetrahedron =
X

a,b,c,d,e,f

TabcTcdeTebfTfda . (2.15)

This term is not �3U(N) invariant. The most one can say about it is that it is invariant under a simultaneous O(N)
orthogonal transformation of all its indices.

The situation is already improved in colored tensor models [34] where the indices are distinguished and one can
implement a �3U(N) invariance. As the pattern of contraction of a tetrahedron is not a trace invariant one can raise
the question of the topological interpretation of the trace invariant observables and their relation to triangulations.

The situation is actually like in one-matrix models with generic interactions. A Tr(Mk)-vertex is seen (by duality)
as a polygon with k sides. A closed graph is then a gluing of such polygons. Obviously one can divide each polygon
into triangles (by adding a vertex in the middle of the polygon, i.e. by taking the topological cone over its boundary),
so that the graph encodes a triangulation. Here, a similar interpretation holds. The (3+1)-colored graphs are known
to describe topological 3-dimensional pseudo-manifolds [34]. The black and white vertices of the graph correspond
to tetrahedra (3-simplices). The triangles (2-simplices) bounding a tetrahedron are represented by the half-lines
touching the vertex, hence are colored 0, 1, 2, 3. The lower dimensional simplices are colored by the colors of the
triangles sharing them. Thus the edges are labeled by pairs of colors (the edge 12 is common to the triangles 1 and
2), and the points (vertices of the tetrahedra, to be distinguished from the vertices of the graph) are labeled by triples
of colors (the point 123 is the point common to the triangles 1, 2 and 3 bounding a tetrahedron).

A line in the colored graph represents the unique gluing of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings: that is we glue triangles of the same color, say 2, in such a way that the
edge 02 (resp. 12 and 32) bounding a triangle is glued on the edge 02 (resp. 12 and 32) bounding the second triangle,
and similarly for points. This construction yields the pseudo-manifold dual to a (3 + 1)-colored graph.

Alternatively the same graph with 3 + 1 colors can be seen as the gluing of the e�ective interactions, B which are
graphs with 3 colors, along the lines of color 0. Following the above construction, each e�ective interaction by itself,
being a graph with 3 colors, represents a surface. The (black and white) vertices are dual to triangles, and the edges
bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
those of the edges and of the points). In figure 3(a) for instance we represented such a surface obtained by gluing
eight triangles.

Adding the lines of color 0 results in taking the topological cone over this pseudo-manifold, CM = (M � [0, 1])/(M �
{1}). Let us first examine the e�ect of this coning on one triangle (represented in figure 3(b)). The original triangle
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Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.
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touching the vertex, hence are colored 0, 1, 2, 3. The lower dimensional simplices are colored by the colors of the
triangles sharing them. Thus the edges are labeled by pairs of colors (the edge 12 is common to the triangles 1 and
2), and the points (vertices of the tetrahedra, to be distinguished from the vertices of the graph) are labeled by triples
of colors (the point 123 is the point common to the triangles 1, 2 and 3 bounding a tetrahedron).

A line in the colored graph represents the unique gluing of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings: that is we glue triangles of the same color, say 2, in such a way that the
edge 02 (resp. 12 and 32) bounding a triangle is glued on the edge 02 (resp. 12 and 32) bounding the second triangle,
and similarly for points. This construction yields the pseudo-manifold dual to a (3 + 1)-colored graph.

Alternatively the same graph with 3 + 1 colors can be seen as the gluing of the e�ective interactions, B which are
graphs with 3 colors, along the lines of color 0. Following the above construction, each e�ective interaction by itself,
being a graph with 3 colors, represents a surface. The (black and white) vertices are dual to triangles, and the edges
bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
those of the edges and of the points). In figure 3(a) for instance we represented such a surface obtained by gluing
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Adding the lines of color 0 results in taking the topological cone over this pseudo-manifold, CM = (M � [0, 1])/(M �
{1}). Let us first examine the e�ect of this coning on one triangle (represented in figure 3(b)). The original triangle
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Geometrical Picture of tensor models

A Feynman graph is a d -dimentional triangulation of a manifold with

a boundary.

e.g., In rank d = 3,

(d + 1)-colored graphs are dual to d -dimensional triangulations.

e.g, a simple Feynman graph with 8 external legs:
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has an expansion in connected (D + 1)-colored vacuum graphs G having B as a (marked) subgraph, denoted G � B.
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Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.

C. Topology from bubbles

To simplify the discussion, in this section we will restrict to the case D = 3. The original idea of tensor models
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This term is not �3U(N) invariant. The most one can say about it is that it is invariant under a simultaneous O(N)
orthogonal transformation of all its indices.
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as a polygon with k sides. A closed graph is then a gluing of such polygons. Obviously one can divide each polygon
into triangles (by adding a vertex in the middle of the polygon, i.e. by taking the topological cone over its boundary),
so that the graph encodes a triangulation. Here, a similar interpretation holds. The (3+1)-colored graphs are known
to describe topological 3-dimensional pseudo-manifolds [34]. The black and white vertices of the graph correspond
to tetrahedra (3-simplices). The triangles (2-simplices) bounding a tetrahedron are represented by the half-lines
touching the vertex, hence are colored 0, 1, 2, 3. The lower dimensional simplices are colored by the colors of the
triangles sharing them. Thus the edges are labeled by pairs of colors (the edge 12 is common to the triangles 1 and
2), and the points (vertices of the tetrahedra, to be distinguished from the vertices of the graph) are labeled by triples
of colors (the point 123 is the point common to the triangles 1, 2 and 3 bounding a tetrahedron).

A line in the colored graph represents the unique gluing of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings: that is we glue triangles of the same color, say 2, in such a way that the
edge 02 (resp. 12 and 32) bounding a triangle is glued on the edge 02 (resp. 12 and 32) bounding the second triangle,
and similarly for points. This construction yields the pseudo-manifold dual to a (3 + 1)-colored graph.

Alternatively the same graph with 3 + 1 colors can be seen as the gluing of the e�ective interactions, B which are
graphs with 3 colors, along the lines of color 0. Following the above construction, each e�ective interaction by itself,
being a graph with 3 colors, represents a surface. The (black and white) vertices are dual to triangles, and the edges
bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
those of the edges and of the points). In figure 3(a) for instance we represented such a surface obtained by gluing
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Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.
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This term is not �3U(N) invariant. The most one can say about it is that it is invariant under a simultaneous O(N)
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implement a �3U(N) invariance. As the pattern of contraction of a tetrahedron is not a trace invariant one can raise
the question of the topological interpretation of the trace invariant observables and their relation to triangulations.
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bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
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bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
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for tensor field theories is still in debate [47]. Thus, for the moment, to avoid putting strong
constraints on the models, we let b as a free strictly positive real parameter.
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We will be interested in 2 models distinguished by their interactions. Introduce a param-
eter a 2 (0,1) and write:
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Note that in (11), (12) and (13), the color index 1 plays a special role. We sum over all
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⇣
|p
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⌘
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e.g.,	 1' 12

3

3'

2'

A	(d+1)-colored	Feynman	tensor	graph	is	a	d-
dimensional	triangulation	of	a	(pseudo)	

manifold	with	a	boundary.

In [73], a power counting theorem was proved for the model + using Tr
4;1

([p2a + p02a]�4)
restricted at rank d = 3 and d = 4 and D = 1. Nevertheless, the optimization procedure to
reach a power counting was quite complicated. There were indications of potentially super-
renormalizable enhanced models without finalizing the proof of such a renormalizability. In
this work, we will improve that analysis by noting that the relevant interaction is rather
Tr

4

(p2a �4). Before reaching this point, our next task is to express generic amplitudes in the
enhanced models.

3 Amplitudes

Z =

Z
D'D'̄ e�(Skinetic

+Sinteraction

) (27)

Models + and ⇥ associated with actions given by (25) and (26), respectively, give the
quantum models determined by the partition function

Z• =

Z
d⌫C•(�̄,�) e

�Sint

• [

¯�,�] , (28)

where • = +,⇥, and d⌫C•(�̄,�) is a field Gaussian measure with covariance C• given by the
inverse of the kinetic term:

C•(P;P0) = C̃•(P) �P,P0 , C̃•(P) =
1P

⇠ P
2⇠ + µ

. (29)

C•(P;P0) =
1P

⇠ P
2⇠ + µ

�P,P0 , (30)

where, if • = +, ⇠ = a, b and if • = ⇥, ⇠ = a, 2a, b. Dealing with the interactions, we have
the vertex kernels V

4;s and V
+;4;s associated with (25) and V

4;s and V⇥;4;s associated with (26)
with

V
4;s(P;P0;P00;P000) =

�

2
�
4;s(P;P0;P00;P000) ,

V
+;4;s(P;P0;P00;P000) =

⌘
+

2
|ps|2a �4;s(P;P0;P00;P000) ,

V⇥;4;s(P;P0;P00;P000) =
⌘⇥
2
|ps|2a|p0s|2a �4;s(P;P0;P00;P000) , (31)

s = 1, 2, . . . , d, where the operator �
4;s(�) is a product of Kronecker deltas identifying the

different momenta according to the pattern dictated by the interaction Tr
4;s(�4). Note that

V•;4;s has a color index. Similarly, the vertex operator V
2

associated with the mass counter-
term is a delta function �P;P0 ; the vertex operators V

2;⇠;s, ⇠ = a, 2a, b, associated with the
counter-terms CT

2;⇠[�̄,�] are delta functions weighted by momenta |ps|2⇠.

Feynman tensor graphs. There are two equivalent graphical representations of Feynman
graphs in tensor models. The first one is called “stranded graphical representation” and it
incorporates more details of the structure of the Feynman graph (used and explained in [22]
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Geometrical Picture of tensor models

A Feynman graph is a d -dimentional triangulation of a manifold with

a boundary.

e.g., In rank d = 3,

(d + 1)-colored graphs are dual to d -dimensional triangulations.

e.g, a simple Feynman graph with 8 external legs:
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Figure 3. Trace invariants and gluings of simplices in D = 3.

has an expansion in connected (D + 1)-colored vacuum graphs G having B as a (marked) subgraph, denoted G � B.
The scaling in N in (2.13) of a graph G rewrites

N� 2
D! �(G)N� 2

D(D�2)!

�
�(G)�D �(B)

�
. (2.14)

Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.

C. Topology from bubbles

To simplify the discussion, in this section we will restrict to the case D = 3. The original idea of tensor models
[28–30] was to generate triangulations of 3-dimensional spaces. The basic building block in the original proposals was
an interaction term which combinatorially describes a tetrahedron (a 3-simplex) also used in group field theories [58]

Vtetrahedron =
X

a,b,c,d,e,f

TabcTcdeTebfTfda . (2.15)

This term is not �3U(N) invariant. The most one can say about it is that it is invariant under a simultaneous O(N)
orthogonal transformation of all its indices.

The situation is already improved in colored tensor models [34] where the indices are distinguished and one can
implement a �3U(N) invariance. As the pattern of contraction of a tetrahedron is not a trace invariant one can raise
the question of the topological interpretation of the trace invariant observables and their relation to triangulations.

The situation is actually like in one-matrix models with generic interactions. A Tr(Mk)-vertex is seen (by duality)
as a polygon with k sides. A closed graph is then a gluing of such polygons. Obviously one can divide each polygon
into triangles (by adding a vertex in the middle of the polygon, i.e. by taking the topological cone over its boundary),
so that the graph encodes a triangulation. Here, a similar interpretation holds. The (3+1)-colored graphs are known
to describe topological 3-dimensional pseudo-manifolds [34]. The black and white vertices of the graph correspond
to tetrahedra (3-simplices). The triangles (2-simplices) bounding a tetrahedron are represented by the half-lines
touching the vertex, hence are colored 0, 1, 2, 3. The lower dimensional simplices are colored by the colors of the
triangles sharing them. Thus the edges are labeled by pairs of colors (the edge 12 is common to the triangles 1 and
2), and the points (vertices of the tetrahedra, to be distinguished from the vertices of the graph) are labeled by triples
of colors (the point 123 is the point common to the triangles 1, 2 and 3 bounding a tetrahedron).

A line in the colored graph represents the unique gluing of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings: that is we glue triangles of the same color, say 2, in such a way that the
edge 02 (resp. 12 and 32) bounding a triangle is glued on the edge 02 (resp. 12 and 32) bounding the second triangle,
and similarly for points. This construction yields the pseudo-manifold dual to a (3 + 1)-colored graph.

Alternatively the same graph with 3 + 1 colors can be seen as the gluing of the e�ective interactions, B which are
graphs with 3 colors, along the lines of color 0. Following the above construction, each e�ective interaction by itself,
being a graph with 3 colors, represents a surface. The (black and white) vertices are dual to triangles, and the edges
bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
those of the edges and of the points). In figure 3(a) for instance we represented such a surface obtained by gluing
eight triangles.

Adding the lines of color 0 results in taking the topological cone over this pseudo-manifold, CM = (M � [0, 1])/(M �
{1}). Let us first examine the e�ect of this coning on one triangle (represented in figure 3(b)). The original triangle
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Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.

C. Topology from bubbles

To simplify the discussion, in this section we will restrict to the case D = 3. The original idea of tensor models
[28–30] was to generate triangulations of 3-dimensional spaces. The basic building block in the original proposals was
an interaction term which combinatorially describes a tetrahedron (a 3-simplex) also used in group field theories [58]
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This term is not �3U(N) invariant. The most one can say about it is that it is invariant under a simultaneous O(N)
orthogonal transformation of all its indices.

The situation is already improved in colored tensor models [34] where the indices are distinguished and one can
implement a �3U(N) invariance. As the pattern of contraction of a tetrahedron is not a trace invariant one can raise
the question of the topological interpretation of the trace invariant observables and their relation to triangulations.

The situation is actually like in one-matrix models with generic interactions. A Tr(Mk)-vertex is seen (by duality)
as a polygon with k sides. A closed graph is then a gluing of such polygons. Obviously one can divide each polygon
into triangles (by adding a vertex in the middle of the polygon, i.e. by taking the topological cone over its boundary),
so that the graph encodes a triangulation. Here, a similar interpretation holds. The (3+1)-colored graphs are known
to describe topological 3-dimensional pseudo-manifolds [34]. The black and white vertices of the graph correspond
to tetrahedra (3-simplices). The triangles (2-simplices) bounding a tetrahedron are represented by the half-lines
touching the vertex, hence are colored 0, 1, 2, 3. The lower dimensional simplices are colored by the colors of the
triangles sharing them. Thus the edges are labeled by pairs of colors (the edge 12 is common to the triangles 1 and
2), and the points (vertices of the tetrahedra, to be distinguished from the vertices of the graph) are labeled by triples
of colors (the point 123 is the point common to the triangles 1, 2 and 3 bounding a tetrahedron).

A line in the colored graph represents the unique gluing of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings: that is we glue triangles of the same color, say 2, in such a way that the
edge 02 (resp. 12 and 32) bounding a triangle is glued on the edge 02 (resp. 12 and 32) bounding the second triangle,
and similarly for points. This construction yields the pseudo-manifold dual to a (3 + 1)-colored graph.

Alternatively the same graph with 3 + 1 colors can be seen as the gluing of the e�ective interactions, B which are
graphs with 3 colors, along the lines of color 0. Following the above construction, each e�ective interaction by itself,
being a graph with 3 colors, represents a surface. The (black and white) vertices are dual to triangles, and the edges
bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
those of the edges and of the points). In figure 3(a) for instance we represented such a surface obtained by gluing
eight triangles.

Adding the lines of color 0 results in taking the topological cone over this pseudo-manifold, CM = (M � [0, 1])/(M �
{1}). Let us first examine the e�ect of this coning on one triangle (represented in figure 3(b)). The original triangle
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has an expansion in connected (D + 1)-colored vacuum graphs G having B as a (marked) subgraph, denoted G � B.
The scaling in N in (2.13) of a graph G rewrites

N� 2
D! �(G)N� 2

D(D�2)!
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�(G)�D �(B)

�
. (2.14)

Using (a weaker version of) proposition 2 in appendix A, �(G) � D �(B) and the inequality is saturated for �(G) = 0.
It follows that in the large N limit only graphs G � B of degree zero contribute to the expectation.

C. Topology from bubbles

To simplify the discussion, in this section we will restrict to the case D = 3. The original idea of tensor models
[28–30] was to generate triangulations of 3-dimensional spaces. The basic building block in the original proposals was
an interaction term which combinatorially describes a tetrahedron (a 3-simplex) also used in group field theories [58]

Vtetrahedron =
X

a,b,c,d,e,f

TabcTcdeTebfTfda . (2.15)

This term is not �3U(N) invariant. The most one can say about it is that it is invariant under a simultaneous O(N)
orthogonal transformation of all its indices.

The situation is already improved in colored tensor models [34] where the indices are distinguished and one can
implement a �3U(N) invariance. As the pattern of contraction of a tetrahedron is not a trace invariant one can raise
the question of the topological interpretation of the trace invariant observables and their relation to triangulations.

The situation is actually like in one-matrix models with generic interactions. A Tr(Mk)-vertex is seen (by duality)
as a polygon with k sides. A closed graph is then a gluing of such polygons. Obviously one can divide each polygon
into triangles (by adding a vertex in the middle of the polygon, i.e. by taking the topological cone over its boundary),
so that the graph encodes a triangulation. Here, a similar interpretation holds. The (3+1)-colored graphs are known
to describe topological 3-dimensional pseudo-manifolds [34]. The black and white vertices of the graph correspond
to tetrahedra (3-simplices). The triangles (2-simplices) bounding a tetrahedron are represented by the half-lines
touching the vertex, hence are colored 0, 1, 2, 3. The lower dimensional simplices are colored by the colors of the
triangles sharing them. Thus the edges are labeled by pairs of colors (the edge 12 is common to the triangles 1 and
2), and the points (vertices of the tetrahedra, to be distinguished from the vertices of the graph) are labeled by triples
of colors (the point 123 is the point common to the triangles 1, 2 and 3 bounding a tetrahedron).

A line in the colored graph represents the unique gluing of two tetrahedra of opposite orientations along boundary
triangles which respects all the colorings: that is we glue triangles of the same color, say 2, in such a way that the
edge 02 (resp. 12 and 32) bounding a triangle is glued on the edge 02 (resp. 12 and 32) bounding the second triangle,
and similarly for points. This construction yields the pseudo-manifold dual to a (3 + 1)-colored graph.

Alternatively the same graph with 3 + 1 colors can be seen as the gluing of the e�ective interactions, B which are
graphs with 3 colors, along the lines of color 0. Following the above construction, each e�ective interaction by itself,
being a graph with 3 colors, represents a surface. The (black and white) vertices are dual to triangles, and the edges
bounding the triangles are colored 1, 2 and 3. The surface represented by an interaction is the unique one obtained
by gluing the triangles along their edges (as indicated by the graph with three colors) respecting all the colorings (i.e.
those of the edges and of the points). In figure 3(a) for instance we represented such a surface obtained by gluing
eight triangles.

Adding the lines of color 0 results in taking the topological cone over this pseudo-manifold, CM = (M � [0, 1])/(M �
{1}). Let us first examine the e�ect of this coning on one triangle (represented in figure 3(b)). The original triangle
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Melons	are	branched	polymers.

Want	to	find	a	way	to	escape	from	the	branched	polymer	phase	from	more	

physical	phase	with	large	and	smooth	structure	of	our	universe.

R. Gurau and J. Ryan, “Melons are branched polymers,” Annales Henri Poincare 15, no. 11, 2085 (2014) 

Our Problem

Enhancing	tensor	models	by	statistical	weights	
V. Bonzom, T. Delepouve, V. Rivasseau, “Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps,” Nucl. Phys. B 895, 161 (2015)

Derivative	couplings	are	quite	natural	in	field	theories.	e.g.,	in	Yang-Mills	theory,

Our immediate goal is to launch the program of enhancing non-melonic graphs with derivative couplings in a field 
theory setting in a systematic way. Namely, the first step is to find renormalizable models.

V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, “Critical behavior of colored tensor models in the large N limit,” 
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The classical symmetry properties of the models + and ⇥ can be addressed. It is an
interesting question to list the symmetries of these models given by the generalized Noether
theorem for such non-local theories as formulated in [99, 98]. To apply the Lie symmetry
algorithm as worked out in these references could be an interesting exercise for derivative
coupling theories.

The present theory space is clearly much more involved than the usual unitary invariant
theory space where the vertices of the model do not have any momentum weight. It will
result from our analysis that a new combinatorics provides our models with a genuinely
different renormalization procedure. Then, the comparison could be made with the models
in Table 8 in [93] which are unitary invariant models. We seize this opportunity to correct
that table: the just-renormalizable �6-models should be UV asymptotically safe (rather than
free) under the light of many recent results [95, 96, 44, 45, 46, 69].
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possible color indices and obtain colored symmetric interactions:
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We might regard of the momentum weights in the interactions Tr
4

(p2a �4) and Tr
4

([p2ap02a]�4)
as called coupling derivatives for particular choices of a. This is why, at times, we will call
them coupling derivatives. Written in the momentum space, the interactions are however put
in a more general setting using |p|2a, for positive values of a. Once again, acheiving renor-
malizability will be our sole constraint for fixing a. These interactions are called enhanced
compared to Tr

4

(�4) (the usual quartic melonic graph studied for instance in [?]) because
they can generate amplitudes which are more divergent, and so enhanced, compared to those
generated by Tr

4

(�4) alone. As a second property, we discussed that enhanced interactions
represent weighted discrete geometries. The contraction pattern of the four tensors shows
us that the weight here has a subtle sense: we are weighting a particular (d� 1)-simplex in
the (d+ 1)-simplex representing the interaction.
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We might regard of the momentum weights in the interactions Tr
4

(p2a �4) and Tr
4

([p2ap02a]�4)
as called coupling derivatives for particular choices of a. This is why, at times, we will call
them coupling derivatives. Written in the momentum space, the interactions are however put
in a more general setting using |p|2a, for positive values of a. Once again, acheiving renor-
malizability will be our sole constraint for fixing a. These interactions are called enhanced
compared to Tr

4

(�4) (the usual quartic melonic graph studied for instance in [?]) because
they can generate amplitudes which are more divergent, and so enhanced, compared to those
generated by Tr

4

(�4) alone. As a second property, we discussed that enhanced interactions
represent weighted discrete geometries. The contraction pattern of the four tensors shows
us that the weight here has a subtle sense: we are weighting a particular (d� 1)-simplex in
the (d+ 1)-simplex representing the interaction.
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The classical symmetry properties of the models + and ⇥ can be addressed. It is an
interesting question to list the symmetries of these models given by the generalized Noether
theorem for such non-local theories as formulated in [99, 98]. To apply the Lie symmetry
algorithm as worked out in these references could be an interesting exercise for derivative
coupling theories.

The present theory space is clearly much more involved than the usual unitary invariant
theory space where the vertices of the model do not have any momentum weight. It will
result from our analysis that a new combinatorics provides our models with a genuinely
different renormalization procedure. Then, the comparison could be made with the models
in Table 8 in [93] which are unitary invariant models. We seize this opportunity to correct
that table: the just-renormalizable �6-models should be UV asymptotically safe (rather than
free) under the light of many recent results [95, 96, 44, 45, 46, 69].
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The classical symmetry properties of the models + and ⇥ can be addressed. It is an
interesting question to list the symmetries of these models given by the generalized Noether
theorem for such non-local theories as formulated in [99, 98]. To apply the Lie symmetry
algorithm as worked out in these references could be an interesting exercise for derivative
coupling theories.

The present theory space is clearly much more involved than the usual unitary invariant
theory space where the vertices of the model do not have any momentum weight. It will
result from our analysis that a new combinatorics provides our models with a genuinely
different renormalization procedure. Then, the comparison could be made with the models
in Table 8 in [93] which are unitary invariant models. We seize this opportunity to correct
that table: the just-renormalizable �6-models should be UV asymptotically safe (rather than
free) under the light of many recent results [95, 96, 44, 45, 46, 69].
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In [73], a power counting theorem was proved for the model + using Tr
4;1

([p2a + p02a]�4)
restricted at rank d = 3 and d = 4 and D = 1. Nevertheless, the optimization procedure to
reach a power counting was quite complicated. There were indications of potentially super-
renormalizable enhanced models without finalizing the proof of such a renormalizability. In
this work, we will improve that analysis by noting that the relevant interaction is rather
Tr

4

(p2a �4). Before reaching this point, our next task is to express generic amplitudes in the
enhanced models.

3 Amplitudes

Models + and ⇥ associated with actions given by (13) and (14), respectively, give the
quantum models determined by the partition function

Z• =

Z
d⌫C•(�̄,�) e

�Sint

• [

¯�,�] , (15)

where • = +,⇥, and d⌫C•(�̄,�) is a field Gaussian measure with covariance C• given by the
inverse of the kinetic term:

C•(P;P0) = C̃•(P) �P,P0 , C̃•(P) =
1P

⇠ P
2⇠ + µ

. (16)

where, if • = +, ⇠ = a, b and if • = ⇥, ⇠ = a, 2a, b. Dealing with the interactions, we have
the vertex kernels V

4;s and V
+;4;s associated with (13) and V

4;s and V⇥;4;s associated with (14)
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Feynman tensor graphs. There are two equivalent graphical representations of Feynman
graphs in tensor models. The first one is called “stranded graphical representation” and it
incorporates more details of the structure of the Feynman graph (used and explained in [22]
and [93]). The other representation of a Feynman graph in this theory is by a bipartite colored
graph [22, 70, 33, 25]. We mostly use the latter representation because it is convenient and
economic. The first representation will be used in this section to make explicity the notion
of faces associated with momentum loops.

At the graphical level the propagator is represented by a collection of d segments called
strands (see Figure 1).

p
1

p
2

...
pd

Figure 1: The propagator of the theory: the stranded representa-
tion (left) made with d segments representing d momenta; the colored
representation (right) denoted by a dotted line.

Each interaction is represented by a stranded vertex or by a d-regular colored bipartite
graph called a “bubble.” In the second picture, the bipartiteness comes from the represen-
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Our enhanced model x 



Note that in (5), (6) and (7), the color index 1 plays a special role. We sum over all possible
color indices and obtain colored symmetric interactions:

Tr
4

(�4) := Tr
4;1

(�4) + Sym(1 ! 2 ! · · · ! d) ,

Tr
4

(p2a �4) := Tr
4;1

(p2a �4) + Sym(1 ! 2 ! · · · ! d) ,

Tr
4

([p2ap02a]�4) := Tr
4;1

([p2ap02a]�4) + Sym(1 ! 2 ! · · · ! d) . (8)

We might regard of the momentum weights in the interactions Tr
4

(p2a �4) and Tr
4

([p2ap02a]�4)
as called coupling derivatives for particular choices of a. This is why, at times, we will call
them coupling derivatives. Written in the momentum space, the interactions are however put
in a more general setting using |p|2a, for positive values of a. Once again, acheiving renor-
malizability will be our sole constraint for fixing a. These interactions are called enhanced
compared to Tr

4

(�4) (the usual quartic melonic graph studied for instance in [86]) because
they can generate amplitudes which are more divergent, and so enhanced, compared to those
generated by Tr

4

(�4) alone. As a second property, we discussed that enhanced interactions
represent weighted discrete geometries. The contraction pattern of the four tensors shows
us that the weight here has a subtle sense: we are weighting a particular (d� 1)-simplex in
the (d+ 1)-simplex representing the interaction.

It turns out that the renormalization analysis performed in sections 6 and 7 leads us to
new 2-point diverging graphs. Then we must add to the kinetic term the new terms:

Tr
2

(p2⇠�2) = Tr
2

(�̄ ·K⇠ · �) , ⇠ = a, 2a . (9)

We will need counter-terms for each terms in the action. In particular, counter-terms of
the form of the mass CT

2

, the wave function CT
2;b, and new 2-point interactions CT

2;a and
CT

2;2a, that will be important for renormalizing two-point functions. We define

CT
2

[�̄,�] = �µTr2(�
2) , CT

2;⇠[�̄,�] = Z⇠Tr2(�̄ ·K⇠ · �) , ⇠ = a, 2a, b , (10)

where �µ and Z⇠ are counter-term couplings. Note that, in the following, Zb is called wave
function renormalization.

The models that we will study have the following interactions:

model + : Sint

+

[�̄,�] =
�

2
Tr

4

(�4) +
⌘
+

2
Tr

4

(p2a �4) + CT
2

[�̄,�] +
X

⇠=a,b

CT
2;⇠[�̄,�]

Skin

+

[�̄,�] =
X

⇠=a,b

Tr
2

(�̄ ·K⇠ · �) + µTr
2

(�2) , (11)

model ⇥ : Sint

⇥ [�̄,�] =
�

2
Tr

4

(�4) +
⌘⇥
2

Tr
4

([p2ap02a]�4) + CT
2

[�̄,�] +
X

⇠=a,2a,b

CT
2;⇠[�̄,�] ,

Skin

⇥ [�̄,�] =
X

⇠=a,2a,b

Tr
2

(�̄ ·K⇠ · �) + µTr
2

(�2) (12)

model + : Sinteraction

+

['̄,'] =
�

2
Tr

4

('4) +
⌘
+

2
Tr

4

(p2a '4) +
X

⇠=a,b

CT
2;⇠['̄,'] + CT

2

['̄,']
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2
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model ⇥ : Sint

⇥ [�̄,�] =
�

2
Tr
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2

Tr
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X
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Tr
2

('̄ ·K⇠ · ') + µTr
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('2) ,

Skinetic

+

['̄,'] =
X

⇠=a,b

Tr
2

(p2⇠'2) + µTr
2

('2) , (15)

model ⇥ : Sinteraction

⇥ ['̄,'] =
�

2
Tr

4

('4) +
⌘⇥
2

Tr
4

([p2ap02a]'4) +
X

⇠=a,2a,b

CT
2;⇠['̄,'] + CT

2

['̄,'] ,

Skinetic

⇥ ['̄,'] =
X
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Tr
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Tr
2

(p2⇠'2) + µTr
2
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where �, ⌘
+

and ⌘⇥ are called �4- and p2a�4-coupling constants.
The classical symmetry properties of the models + and ⇥ can be addressed. It is an

interesting question to list the symmetries of these models given by the generalized Noether
theorem for such non-local theories as formulated in [99, 98]. To apply the Lie symmetry
algorithm as worked out in these references could be an interesting exercise for derivative
coupling theories.

The present theory space is clearly much more involved than the usual unitary invariant
theory space where the vertices of the model do not have any momentum weight. It will
result from our analysis that a new combinatorics provides our models with a genuinely
different renormalization procedure. Then, the comparison could be made with the models
in Table 8 in [93] which are unitary invariant models. We seize this opportunity to correct
that table: the just-renormalizable �6-models should be UV asymptotically safe (rather than
free) under the light of many recent results [95, 96, 44, 45, 46, 69].

In [73], a power counting theorem was proved for the model + using Tr
4;1

([p2a + p02a]�4)
restricted at rank d = 3 and d = 4 and D = 1. Nevertheless, the optimization procedure to
reach a power counting was quite complicated. There were indications of potentially super-
renormalizable enhanced models without finalizing the proof of such a renormalizability. In
this work, we will improve that analysis by noting that the relevant interaction is rather
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represent the presence of external fields. In the following, a Feynman tensor graph is simply
called a graph and is denoted by G.

1

1

22

1

1

22

Figure 3: Rank d = 3 Feynman graphs.

In the stranded picture, closed cycles (homeomorphic to circles) in the graphs are called
closed or internal faces and strands homeomorphic to segments are called open or external
faces. The set of closed faces is denoted by F

int

and the set of open faces F
ext

. As expected,
the presence of an internal face is associated with a sum over infinite values of momenta,
hence the need of regularization and renormalization for the model. In the colored graph
representation, note that an extra color 0 could be attributed to a dotted propagator line.
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Power Counting is achieved

Then, we note that a V
2;⇠;s vertex has a single strand with enhanced momentum p2⇠s , ⇠ = a, b.
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Model ⇥ - The analysis is completely similar to the above. We count how many times a
face fs passes through all vertices of the type V⇥;s and this defines the following quantities
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With a similar calculation as above, using (
sumsfinABDCsumsfinABDC

33) with 3a  2b, introducing also V
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a, 2a, b, and ⇢
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From (
deg+deg+

44) and (
degxdegx

47), we can use, for convenience, unified notations !
d;•, with • = +,⇥, the

sum of ⇠ being appropriately chosen.

5 Analyses of the potentially renormalizable models

sect:enhancedmelon
In this section, we explore the parameter spaces of potentially renormalizable models both
+ and ⇥.

In the analyses below, we need the number of internal faces of a connected graph G, in
any rank d � 3 tensorial model, which is given in
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Degree	of	the	colored	tensor	graph:	extension	of	genus	and	allows	large	N	expansion

Non-locality	of	interactions	are	reflected	in:

Amplitude:

In [73], a power counting theorem was proved for the model + using Tr
4;1

([p2a + p02a]�4)
restricted at rank d = 3 and d = 4 and D = 1. Nevertheless, the optimization procedure to
reach a power counting was quite complicated. There were indications of potentially super-
renormalizable enhanced models without finalizing the proof of such a renormalizability. In
this work, we will improve that analysis by noting that the relevant interaction is rather
Tr

4

(p2a �4). Before reaching this point, our next task is to express generic amplitudes in the
enhanced models.

3 Amplitudes

Models + and ⇥ associated with actions given by (25) and (26), respectively, give the
quantum models determined by the partition function

Z• =

Z
d⌫C•(�̄,�) e

�Sint

• [

¯�,�] , (27)

where • = +,⇥, and d⌫C•(�̄,�) is a field Gaussian measure with covariance C• given by the
inverse of the kinetic term:

C•(P;P0) = C̃•(P) �P,P0 , C̃•(P) =
1P

⇠ P
2⇠ + µ

. (28)

C•(P;P0) =
1P

⇠ P
2⇠ + µ

�P,P0 , (29)

where, if • = +, ⇠ = a, b and if • = ⇥, ⇠ = a, 2a, b. Dealing with the interactions, we have
the vertex kernels V

4;s and V
+;4;s associated with (25) and V

4;s and V⇥;4;s associated with (26)
with

V
4;s(P;P0;P00;P000) =

�

2
�
4;s(P;P0;P00;P000) ,

V
+;4;s(P;P0;P00;P000) =

⌘
+

2
|ps|2a �4;s(P;P0;P00;P000) ,

V⇥;4;s(P;P0;P00;P000) =
⌘⇥
2
|ps|2a|p0s|2a �4;s(P;P0;P00;P000) , (30)

s = 1, 2, . . . , d, where the operator �
4;s(�) is a product of Kronecker deltas identifying the

different momenta according to the pattern dictated by the interaction Tr
4;s(�4). Note that

V•;4;s has a color index. Similarly, the vertex operator V
2

associated with the mass counter-
term is a delta function �P;P0 ; the vertex operators V

2;⇠;s, ⇠ = a, 2a, b, associated with the
counter-terms CT

2;⇠[�̄,�] are delta functions weighted by momenta |ps|2⇠.

Feynman tensor graphs. There are two equivalent graphical representations of Feynman
graphs in tensor models. The first one is called “stranded graphical representation” and it
incorporates more details of the structure of the Feynman graph (used and explained in [22]
and [93]). The other representation of a Feynman graph in this theory is by a bipartite colored
graph [22, 70, 33, 25]. We mostly use the latter representation because it is convenient and
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Figure 3: Rank d = 3 Feynman graphs.

In the stranded picture, closed cycles (homeomorphic to circles) in the graphs are called
closed or internal faces and strands homeomorphic to segments are called open or external
faces. The set of closed faces is denoted by F

int

and the set of open faces F
ext

. As expected,
the presence of an internal face is associated with a sum over infinite values of momenta,
hence the need of regularization and renormalization for the model. In the colored graph
representation, note that an extra color 0 could be attributed to a dotted propagator line.
The cycles in that (d + 1) colored graph have two colors. The internal faces of G, elements
of F

int

, are associated with bicolored cycles of colors 0s, with s = 1, 2, . . . , d. To obtain the
subset of F

int

(or of F
ext

) of faces of colors 0s from the d+1 colored graph, we remove all edges
except those of colors 0 and s and observe the remaining cycles (or strands, respectively).
In the end, for simplicity, we omit the color 0 in the couple 0s and claim that a (internal or
external) face is of color s.

Amplitudes. Given a connected graph G with vertex set V (with V = |V|) and line or
propagator set L (with L = |L|), we formally write the amplitude of G

AG =
X

Pv

Y

l2L

C•;l(Pv(l);P
0
v0(l))

Y

v2V

(�Vv({Pv})) . (31)

The above formula shows that propagators Cl have a line index l and momentum arguments
Pv(l), with v(l) the source or target of the line l. The vertex constraints Vv convolute the
set of momenta and can be of the form V

4;s, V•;4;s, V2

, V
2;⇠;s, ⇠ = a, 2a, b. Unlike the vertices

of usual tensor invariant theory, the present vertex kernels are not simple products of delta
functions. This makes the amplitude quite different from those of unitary invariant theories.
For instance, as opposed to invariant theories, the amplitudes do not directly factorize in
terms of internal faces.

To derive a power counting theorem we need to study graph amplitudes AG coming from
the perturbative expansion of correlators of the form

h�P�̄P0�P0�̄P000i , (32)
h|p

1

|2a �P�̄P0�P0�̄P000�
4;s(P;P0;P00;P000)i (33)

h|p
1

|2a|p
1

0 |2a �P�̄P0�P0�̄P000�
4;s(P;P0;P00;P000)i . (34)
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With	multi-scale	analysis,	we	optimally	bound	the	amplitude	and	get:

Putting a to 0 leads to the ordinary power counting theorem of usual tensor field theories.

Model ⇥ - The analysis is very similar to the above. We count how many times a face fs
passes through all vertices of the type V⇥;s and this defines the following quantities

%fs =
X

vs0 ,fs00

✏vs0fsfs00 , ⇢⇥(G) =
X

s

X

fs

%fs . (60)

With a similar calculation as above, using (48) with 3a  2b, introducing also vertices of
V
2;⇠;s, ⇠ = a, 2a, b, and ⇢

2;⇠;fs as the number of times that a closed face fs runs through
vertices of V

2;⇠;s and ⇢
2;⇠ still obeys (56), we obtain the power counting of the model ⇥ as
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From (59) and (62), we can use, for convenience, unified notations !
d;•, with • = +,⇥, the

sum of ⇠ being appropriately chosen.

5 Analyses of the potentially renormalizable models

In this section, we explore the parameter spaces of potentially renormalizable models + and
⇥.

In the analyses below, we need the number of internal faces of a connected graph G, in
any rank d � 3 tensorial model, which is given in [90]:

F
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2
N

ext

+ d� � d�

4
(4� 2n) · V, (63)

where d� = d� 1 with d being the rank of the tensor, G
color

is the colored extension of G, @G
denotes the boundary of G [80], with C@G the number of connected components of @G, N

ext

is
the number of external legs of the graph, Vk is the number of vertices of cordination number k,
V =

P
k Vk is the total number of vertices in G, and n·V =

P
k kVk is the number of half lines

emanating from vertices. !(G
color

) =
P

J gJ , !(@G) = P
J@G

gJ@G !(G
color

) =
P

JG
color

g eJG
color

,
!(@G) =

P
J@G

gJ@G with genus gJ , the genus of a ribbon graph J called jacket [21]; the
jackets of G

color

are JG
color

and they must be “pinched” to defined a closed surface eJG
color

on
which a genus g eJG

color

could be identified; the jackets of the boundary graph are denoted by
eJ .

The quantity !(G
color

) is called the degree of the colored tensor graph G
color

. It replaces
the genus and allows one to define a large N expansion for the colored tensor model [21]. A
graph G is called a melon if and only if its colored extension G

color

is a melon and that is if
!(G

color

) = 0 (all pinched jackets are planar). We shall need a few properties of the quantity
!(G

color

)� !(@G) withdrawn from [81] that we will recall at some point.
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Putting a to 0 leads to the ordinary power counting theorem of usual tensor field theories.

Model ⇥ - The analysis is very similar to the above. We count how many times a face fs
passes through all vertices of the type V⇥;s and this defines the following quantities

%fs =
X

vs0 ,fs00

✏vs0fsfs00 , ⇢⇥(G) =
X

s

X

fs

%fs . (60)

With a similar calculation as above, using (48) with 3a  2b, introducing also vertices of
V
2;⇠;s, ⇠ = a, 2a, b, and ⇢

2;⇠;fs as the number of times that a closed face fs runs through
vertices of V

2;⇠;s and ⇢
2;⇠ still obeys (56), we obtain the power counting of the model ⇥ as

|AG;µ|  
Y

(i,k)⇢N2

M!
d;⇥(Gi

k) , (61)

with
!
d;⇥(G

i
k) = �2b L(Gi

k) +DF
int

(Gi
k) + 2a⇢⇥(G

i
k) +

X

⇠=a,2a,b

2⇠⇢
2;⇠(G

i
k) . (62)

From (59) and (62), we can use, for convenience, unified notations !
d;•, with • = +,⇥, the

sum of ⇠ being appropriately chosen.

5 Analyses of the potentially renormalizable models

In this section, we explore the parameter spaces of potentially renormalizable models + and
⇥.

In the analyses below, we need the number of internal faces of a connected graph G, in
any rank d � 3 tensorial model, which is given in [90]:

F
int

= � 2

(d�)!
(!(G

color

)� !(@G))� (C@G � 1)� d�

2
N

ext

+ d� � d�

4
(4� 2n) · V, (63)

where d� = d� 1 with d being the rank of the tensor, G
color

is the colored extension of G, @G
denotes the boundary of G [80], with C@G the number of connected components of @G, N

ext

is
the number of external legs of the graph, Vk is the number of vertices of cordination number k,
V =

P
k Vk is the total number of vertices in G, and n·V =

P
k kVk is the number of half lines

emanating from vertices. !(G
color

) =
P

J gJ , !(@G) = P
J@G

gJ@G !(G
color

) =
P

JG
color

g eJG
color

,
!(@G) =

P
J@G

gJ@G with genus gJ , the genus of a ribbon graph J called jacket [21]; the
jackets of G

color

are JG
color

and they must be “pinched” to defined a closed surface eJG
color

on
which a genus g eJG

color

could be identified; the jackets of the boundary graph are denoted by
eJ .

!d(G) = · · ·+ c V + · · · (64)

A(G) ⇠ Nd� 2

(d�1)!

!(G
color

) (65)
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d;•, with • = +,⇥, the

sum of ⇠ being appropriately chosen.

5 Analyses of the potentially renormalizable models

In this section, we explore the parameter spaces of potentially renormalizable models + and
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where d� = d� 1 with d being the rank of the tensor, G
color

is the colored extension of G, @G
denotes the boundary of G [80], with C@G the number of connected components of @G, N

ext

is
the number of external legs of the graph, Vk is the number of vertices of cordination number k,
V =
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k Vk is the total number of vertices in G, and n·V =
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k kVk is the number of half lines
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J@G

gJ@G !(G
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) =
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gJ@G with genus gJ , the genus of a ribbon graph J called jacket [21]; the
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are JG
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which a genus g eJG
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• Super-renormalizable:	c	<	0.	Amplitudes	of	graphs	become	more	and	more	

convergent	as	you	go	higher	orders	of	perturbation	theory,	i.e.,	only	finite	number	of	

graphs	are	divergent.

• Just-renormalizable:		c	=	0. wd	 is	independent	of	orders	of	perturbation,	i.e.,	infinite	
number	of	graphs	are	divergent.

• Non-renormalizable:	c	>	0.	Amplitudes	of	graphs	become	more	and	more	

divergent	as	you	go	higher	orders	of	perturbation	theory.

Superficial	degree	of	divergence	of	a	graph

Classification of renormalizability

Putting a to 0 leads to the ordinary power counting theorem of usual tensor field theories.

Model ⇥ - The analysis is very similar to the above. We count how many times a face fs
passes through all vertices of the type V⇥;s and this defines the following quantities
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In this section, we explore the parameter spaces of potentially renormalizable models + and
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In the analyses below, we need the number of internal faces of a connected graph G, in
any rank d � 3 tensorial model, which is given in [90]:
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is the colored extension of G, @G
denotes the boundary of G [80], with C@G the number of connected components of @G, N
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is
the number of external legs of the graph, Vk is the number of vertices of cordination number k,
V =
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and they must be “pinched” to defined a closed surface eJG
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on
which a genus g eJG
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could be identified; the jackets of the boundary graph are denoted by
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The quantity !(G
color

) is called the degree of the colored tensor graph G
color

. It replaces
the genus and allows one to define a large N expansion for the colored tensor model [21]. A
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However (91) also entails a > �Dd�

12

. Restricting to a > 0, the bound of b given can
be improved. For just-renormalizability (i.e., the equality in (84), and (86) together with
a > 0), we impose

Dd�

4
< b  Dd�

2
, a = b� 1

4
Dd� > 0 (92)

whose values for given positive integer values of D and d are given in Table 3.

d = 3 d = 4 d = 5 d = 6

D = 1
0 < a  1

2

1

2

< b  1
0 < a  3

4

3

4

< b  3

2

0 < a  1
1 < b  2

0 < a  5

4

5

4

< b  5

2

D = 2
0 < a  1
1 < b  2

0 < a  3

2

3

2

< b  3
0 < a  2
2 < b  4

0 < a  5

2

5

2

< b  5

D = 3
0 < a  3

2

3

2

< b  3
0 < a  9

4

9

4

< b  9

2

0 < a  3
3 < b  6

0 < a  15

4

15

4

< b  15

2

D = 4
0 < a  2
2 < b  4

0 < a  3
3 < b  6

0 < a  4
4 < b  8

0 < a  5
5 < b  10

Table 3: Allowed region of the values of a and b for potentially just-renormalizable models
⇥.

Let us understand what is entailed by the just-renormalizability condition Dd� � 4 b +
4 a = 0, at N

ext

= 4. We have
!
d;⇥(G)|N

ext

=4

< 0 (93)

!
d;⇥(Gnon�melon)|N

ext

=4

 �D(d� � 1)� D(C@G � 1)� 1

2


Dd�

2
· 4� 2Dd�

�

�2bV
2

� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a

 �D(d� � 1) < 0 , (94)

since we only consider tensors of rank d � 3. Thus, we find that non-melonic graphs with
N

ext

= 4 are all convergent. Similarly for melonic graphs, requiring the necessity condition
for just-renormalizability Dd� � 4 b+ 4 a = 0,

!
d;⇥(Gmelon)|N

ext

=4

 �D(C@G � 1)� 1

2


(2a+

Dd�

2
)4� 2Dd�

�
(95)

�2bV
2

� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a  �4a < 0 .

Therefore, all melonic graphs with N
ext

= 4 are also convergent.
Further, we analyze graphs of N

ext

= 2 under the same condition and find

!
d;⇥(Gmelon)|N

ext

=2

 �D(C@G � 1)� 1

2

⇥
2b · 2� 2Dd�

⇤
(96)

�2bV
2

� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a  �2b+Dd� <

Dd�

2

26

d = 3 d = 4 d = 5 d = 6

D = 1
0 < a < 2

3

1

2

< b < 5

6

0 < a < 7

6

3

4

< b < 4

3

0 < a < 5

3

1 < b < 11

6

0 < a < 13

6

5

4

< b < 7

3

D = 2
0 < a < 4

3

1 < b < 5

3

0 < a < 7

3

3

2

< b < 8

3

0 < a < 10

3

2 < b < 11

3

0 < a < 13

3

5

2

< b < 14

3

D = 3
0 < a < 2
3

2

< b < 5

2

0 < a < 7

2

9

4

< b < 4
0 < a < 5
3 < b < 11

2

0 < a < 13

2

15

4

< b < 7

D = 4
0 < a < 8

3

2 < b < 10

3

0 < a < 14

3

3 < b < 16

3

0 < a < 20

3

4 < b < 22

3

0 < a < 26

3

5 < b < 28

3

Table 1: Allowed region of the values of a and b for potentially just-renormalizable models
+.

This table shows that there might be uncountable models which could be just renormal-
izable. We note that the limit cases a = 0 lead to the renormalizable invariant tensor models
studied in [86] (d = 3, D = 1, b = 1

2

) and [93] [(d = 4, D = 1, b = 3

4

); (d = 5, D = 1^b =
1); (d = 3, D = 2, b = 1)].

Let us seek further conditions leading to interesting models with a > 0. One of these
conditions is to achieve logarithmic divergence for non-melonic graphs at N

ext

= 4. For this,
we impose

!
d;+

(Gnon�melon)|N
ext

=4

= 0 (73)

which entails

b =
1

2
D(d� � 1

2
) (74)

which is consistent with (71), since 1

2

D(d�� 1

2

) < D(3d��1)

6

for D > 0 and Dd�

4

< 1

2

D(d�� 1

2

)
for d� > 1. In Table 2, we explicitly show the valid values of b given in (74) and the
corresponding a = 2b� 1

2

Dd� given in (64).

d = 3 d = 4 d = 5 d = 6

D = 1
a = 1

2

b = 3

4

a = 1
b = 5

4

a = 3

2

b = 7

4

a = 2
b = 9

4

D = 2
a = 1
b = 3

2

a = 2
b = 5

2

a = 3
b = 7

2

a = 4
b = 9

2

D = 3
a = 3

2

b = 9

4

a = 3
b = 15

4

a = 9

2

b = 21

4

a = 6
b = 27

4

D = 4
a = 2
b = 3

a = 4
b = 5

a = 6
b = 7

a = 8
b = 9

Table 2: Values of a and b for potentially just-renormalizable theories with
!
d;+

(Gnon�melon)|N
ext

=4

= 0.

Table 1 and Table 2 are consistent for just-renormalizable models with the superficial
degree of divergence which does not depend on V

4

, the logarithmic superficial degree of

22

Potentially just-renormalizable models

�2 b V
2

� 2
X

⇠=a,2a

(b� ⇠)V
2;⇠ + (Dd� � 4b+ 4a)V

(4)

, (83)

!
d;⇥(Gnon�melon)  �D(d� � 1)�D(C@G � 1)� 1

2

⇥
(Dd� � 2 b+ 2 a)N

ext

� 2Dd�
⇤

�2bV
2

� 2
X

⇠=a,2a

(b� ⇠)V
2;⇠ + (Dd� � 4b+ 4a)V

(4)

. (84)

Seeking renormalizable models, we require

Dd� � 4 b+ 4 a  0 , 2a  b , (85)

where the second condition, more stringent than 3a  2b, will be kept. This gives for a,

a  b� 1

4
Dd� , a  b

2
. (86)

To achieve just-renormalizability, we use a = b� 1

4

Dd� (which implies b  Dd�

2

), (86), in (83)
and (84) and require that, for a number of external legs higher than 4, we have convergence:

!d(G)|N
ext

�6

< 0 (87)

!
d;⇥(Gmelon)|N

ext

�6

< 0
!
d;⇥(Gnon�melon)|N

ext

�6

< 0 (88)

From (83) and (84), we have:

!
d;⇥(Gmelon)|N

ext

�6

h
�D(C@G � 1) +Dd� � bN

ext

� 2bV
2

� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a

i���
N

ext

�6

,

(89)
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�6
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D �D(C@G � 1)� 1
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� 2bV
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� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a

i���
N

ext

�6
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(90)

The maximum value for !
d;⇥(G) is reached at N

ext

= 6, so we can always write an upper
bound and further require convergence:

!
d;⇥(Gmelon)|N

ext

=6

 Dd� � 6b < 0, (91)

!
d;⇥(Gnon�melon)|N

ext

=6

 �D(
3

2
d� � 1) < 0 . (92)

We note here that d� > 2

3

(92) is trivially satisfied in our study in which we only consider
tensors with rank d � 3. Hence, for just renormalizabilty, we impose

Dd�

6
< b  Dd�

2
, a = b� 1

4
Dd� . (93)
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However (93) also entails a > �Dd�

12

. Restricting to a > 0, the bound of b given can
be improved. For just-renormalizability (i.e., the equality in (86), and (88) together with
a > 0), we impose
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4
< b  Dd�

2
, a = b� 1

4
Dd� > 0 (94)

whose values for given positive integer values of D and d are given in Table 3.
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0 < a  4
4 < b  8
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5 < b  10

Table 3: Allowed region of the values of a and b for potentially just-renormalizable models
⇥.

Let us understand what is entailed by the just-renormalizability condition Dd� � 4 b +
4 a = 0, at N
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= 4. We have
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since we only consider tensors of rank d � 3. Thus, we find that non-melonic graphs with
N

ext

= 4 are all convergent. Similarly for melonic graphs, requiring the necessity condition
for just-renormalizability Dd� � 4 b+ 4 a = 0,
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Therefore, all melonic graphs with N
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= 4 are also convergent.
Further, we analyze graphs of N
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= 2 under the same condition and find
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6
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3
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2
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3
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Table 1: Allowed region of the values of a and b for potentially just-renormalizable models
+.

This table shows that there might be uncountable models which could be just renormal-
izable. We note that the limit cases a = 0 lead to the renormalizable invariant tensor models
studied in [86] (d = 3, D = 1, b = 1

2

) and [93] [(d = 4, D = 1, b = 3

4

); (d = 5, D = 1^b =
1); (d = 3, D = 2, b = 1)].

Let us seek further conditions leading to interesting models with a > 0. One of these
conditions is to achieve logarithmic divergence for non-melonic graphs at N

ext

= 4. For this,
we impose

!
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=4

= 0 (74)

which entails
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for d� > 1. In Table 2, we explicitly show the valid values of b given in (75) and the
corresponding a = 2b� 1
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Table 2: Values of a and b for potentially just-renormalizable theories with
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c=0  in	

However (91) also entails a > �Dd�

12

. Restricting to a > 0, the bound of b given can
be improved. For just-renormalizability (i.e., the equality in (84), and (86) together with
a > 0), we impose

Dd�

4
< b  Dd�

2
, a = b� 1

4
Dd� > 0 (92)

whose values for given positive integer values of D and d are given in Table 3.
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Table 3: Allowed region of the values of a and b for potentially just-renormalizable models
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Let us understand what is entailed by the just-renormalizability condition Dd� � 4 b +
4 a = 0, at N

ext

= 4. We have
!
d;⇥(G)|N

ext

=4

< 0 (93)

!
d;⇥(Gnon�melon)|N

ext

=4

 �D(d� � 1)� D(C@G � 1)� 1

2


Dd�

2
· 4� 2Dd�

�

�2bV
2

� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a

 �D(d� � 1) < 0 , (94)

since we only consider tensors of rank d � 3. Thus, we find that non-melonic graphs with
N

ext

= 4 are all convergent. Similarly for melonic graphs, requiring the necessity condition
for just-renormalizability Dd� � 4 b+ 4 a = 0,

!
d;⇥(Gmelon)|N

ext

=4

 �D(C@G � 1)� 1

2


(2a+

Dd�

2
)4� 2Dd�

�
(95)

�2bV
2

� 1

2
Dd�V

2;a � (Dd� � 2b)V
2;2a  �4a < 0 .

Therefore, all melonic graphs with N
ext

= 4 are also convergent.
Further, we analyze graphs of N

ext

= 2 under the same condition and find

!
d;⇥(Gmelon)|N

ext

=2

<
D(d� 1)

2

!
d;⇥(Gnon�melon)|N

ext

=2

 1

2
D(3� d)  0 , (96)
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Putting a to 0 leads to the ordinary power counting theorem of usual tensor field theories.

Model ⇥ - The analysis is very similar to the above. We count how many times a face fs
passes through all vertices of the type V⇥;s and this defines the following quantities

%fs =
X

vs0 ,fs00

✏vs0fsfs00 , ⇢⇥(G) =
X

s

X

fs

%fs . (60)

With a similar calculation as above, using (48) with 3a  2b, introducing also vertices of
V
2;⇠;s, ⇠ = a, 2a, b, and ⇢

2;⇠;fs as the number of times that a closed face fs runs through
vertices of V

2;⇠;s and ⇢
2;⇠ still obeys (56), we obtain the power counting of the model ⇥ as

|AG;µ|  
Y

(i,k)⇢N2

M!
d;⇥(Gi

k) , (61)

with
!
d;⇥(G

i
k) = �2b L(Gi

k) +DF
int

(Gi
k) + 2a⇢⇥(G

i
k) +

X

⇠=a,2a,b

2⇠⇢
2;⇠(G

i
k) . (62)

From (59) and (62), we can use, for convenience, unified notations !
d;•, with • = +,⇥, the

sum of ⇠ being appropriately chosen.

5 Analyses of the potentially renormalizable models

In this section, we explore the parameter spaces of potentially renormalizable models + and
⇥.

In the analyses below, we need the number of internal faces of a connected graph G, in
any rank d � 3 tensorial model, which is given in [90]:

F
int

= � 2

(d�)!
(!(G

color

)� !(@G))� (C@G � 1)� d�

2
N

ext

+ d� � d�

4
(4� 2n) · V, (63)

where d� = d� 1 with d being the rank of the tensor, G
color

is the colored extension of G, @G
denotes the boundary of G [80], with C@G the number of connected components of @G, N

ext

is
the number of external legs of the graph, Vk is the number of vertices of cordination number k,
V =

P
k Vk is the total number of vertices in G, and n·V =

P
k kVk is the number of half lines

emanating from vertices. !(G
color

) =
P

J gJ , !(@G) = P
J@G

gJ@G !(G
color

) =
P

JG
color

g eJG
color

,
!(@G) =

P
J@G

gJ@G with genus gJ , the genus of a ribbon graph J called jacket [21]; the
jackets of G

color

are JG
color

and they must be “pinched” to defined a closed surface eJG
color

on
which a genus g eJG

color

could be identified; the jackets of the boundary graph are denoted by
eJ .

!d(G) = · · ·+ c V + · · · (64)

The quantity !(G
color

) is called the degree of the colored tensor graph G
color

. It replaces
the genus and allows one to define a large N expansion for the colored tensor model [21]. A
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Primitively divergent graphs

Figure 7: A family of melonic graphs (a,b and c) with N
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= 2 and
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and a family of log-divergent melonic graphs (d and f) with
N
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= 2.

(ii) We now consider 4-point functions, N
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= 4. First, we consider V
+;4

= 2. The non-
melonic graph a of Figure 8, is logarithmic-divergent since L = 2, F
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= 1, ⇢
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= 2, ⇢
2;a = 0,

and ⇢
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4 and V
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C Divergences in model ⇥ (d = 3, D = 1, a = 1
2, b = 1)

We illustrate some divergent amplitudes in the model ⇥ with parameters given above. We
keep the same meaning of the graphical representation for graphs as in appendix B.

The superficial degree of divergence of a graph G has been given in (53) and that we
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B Divergences in model + (d = 3, D = 1, a = 1
2, b =

3
4)

We illustrate graphs which satisfy the power counting achieved in Table 4 in section 6.1. The
superficial degree of divergence of a graph G is given in (50) that we specialize for D = 1,
a = 1

2

, and b = 3

4

as

!
d;+

(G) = �3

2
L+ F

int

+ ⇢
+

+ ⇢
2;a +

3

2
⇢
2;b . (B.8)

We use the bipartite colored graph representation of the Feynman graphs of the model.
Edges which are dashed are propagators; edges in the interaction vertex can be in bold or
not. If they are in bold that means that they receive an enhancement factor of p2a. The
figures illustrating graphs have red lines that facilitate the identification of the face structure
of the graphs. Given a colored graph, we emphasize a red cycle (made with alternating edges
and dashed edges with red color) that indicates a particular closed face. Naturally, this face
will be the source of an enhanced power counting if it contains a bold edge.

We only list here some divergent graphs contributing to the renormalization of the inter-
actions.

(i) We consider 2-point functions, N
ext

= 2.
(i1) We consider V

(4)

= 1 or divergent tadpoles given in Figure 6. The graphs a and b are
melonic with V

(4)

= 1, ⇢
+

+⇢
2;a+

3

2

⇢
2;b = 0, and !

d;+

= 1

2

, whereas the graph c is non-melonic
with V

+;4

= 1, ⇢
+

= 1, ⇢
2;a +

3

2

⇢
2;b = 0 and !

d;+

= 1

2

. The graphs d and e with V
(4)

= 1 and
V
2;a = 1, ⇢

+

+ 3

2

⇢
2;b = 0, ⇢

2;a = 1 are melonic and log-divergent with !
d;+

= 0; the graph f
is non-melonic with V

+;4

= 1, V
2;a = 1, ⇢

+

= 1 = ⇢
2;a, ⇢2;b = 0, and also log-divergent with

!
d;+

= 0.
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1 1

Figure 6: Divergent graphs with N
ext

= 2 and V
(4)

= 1.

(i2) We consider V
(4)

= 2 (in particular, (V
4

, V
+;4

) = (1, 1) or (0, 2)) and its generaliza-
tions given in Figure 7. Note that if we increase V

+;4

in the way of producing c (V
+;4

= 3
given by the graph b), then we have for arbitrary V

+;4

, L = 1 + 2(V
(4)

� 1) = 2V
(4)

� 1,
F
int

= 2V
(4)

, and ⇢
+

= V
(4)

� 1, ⇢
2;a = 0, and ⇢

2;b = 0, therefore !
d;+

= 1

2

, and is indepen-
dent of V

(4)

(or V
+;4

) which is expected. To these graphs, we can add the enhanced 2-point
function V

2;a = 1 to any of the internal lines as illustrated in the graphs d and e. We have
for arbitrary V

+;4

and V
2;a = 1, L = 2V

(4)

, F
int

= 2V
(4)

, ⇢
+

= V
(4)

� 1, ⇢
2;a = 1, and ⇢

2;b = 1
therefore !

d;+

= 0 is independent of V
(4)

(or V
+;4

).
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Edges which are dashed are propagators; edges in the interaction vertex can be in bold or
not. If they are in bold that means that they receive an enhancement factor of p2a. The
figures illustrating graphs have red lines that facilitate the identification of the face structure
of the graphs. Given a colored graph, we emphasize a red cycle (made with alternating edges
and dashed edges with red color) that indicates a particular closed face. Naturally, this face
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C Divergences in model ⇥ (d = 3, D = 1, a = 1
2, b = 1)

We illustrate some divergent amplitudes in the model ⇥ with parameters given above. We
keep the same meaning of the graphical representation for graphs as in appendix B.
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Conclusions and Outlook
• Model	+:	a	just-renormalizable	model	

• Model	x:	a	new	type	of	renormalizable	model	(neither	just- nor	super-)

• …We	have	established	the	mechanism	of	enhancing	non-melonic	graphs	
in	a	tensor	field	theory	setting.	These	models	are	renormalizable.	This	is	

encouraging	for	analyses	at	next	level…

• Beta	functions	of	coupling	constants	can	be	computed.

• Non-perturbative	analysis	to	be	applied.
• Other	types	of	interactions	to	be	enhanced	by	derivative	couplings.

Infinite	number	of	graphs	renormalizes	l (f4)	and	h+ (p2a f4)	couplings.	

No	graphs	renormalize	l (f4)	and	hx (p2a f4)	couplings.
But	infinite	number	of	graphs	renormalize	mass,	Za (p2a f2)	and	Z2a (p4a f2)	couplings.	


