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› Simple extensions of the SM that allow for CP violation.

› Possibility for Dark Matter

› CP conserving 2HDM is part of SUSY-models

› Rich (but not too rich) particle zoo

› Large portions of parameter space testable at LHC.

Motivations for 2HDM, 3HDM (and NHDM):
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› Standard parametrization(s) of the general 2HDM potential.

› Second form most convenient in the study of invariants.

The general 2HDM potential
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Choice of basis is not unique
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› Initial expression of potential is defined with respect to doublets         and         .

› We may rotate to a new basis by the following transformation

where U is any U(2) matrix.

› Potential parameters change under change of basis.

› Physics is the same regardless of our choice of basis.

› Observables cannot depend on choice of basis – they should be basis-independent, 

i.e. invariant under a change of basis.

› Most general U(2) matrix:



› All the parameters of the potential 

change under a U(2) basis 

transformation.

› Meaning: None of the parameters 

represent physical observables.

› Combinations of parameters can remain 

unchanged, for instance

› Meaning: These combinations represent 

physical observables.

Parameters transform under change of basis
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› VEVs also change under basis 
transformations: 

› It is easy to show that

› Meaning:                          is a basis-
invariant quantity, hence a physical 
observable.        

Vacuum expectation values (VEVs)
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Most general form that conserves electric charge:

› We demand that the VEVs should 
represent a minimum of the potential

› Electroweak Symmetry Breaking:
Work out stationary-point equations by 
differentiating the potential with respect to 
the fields and put these to zero. 
[JHEP11(2014)084]. 

› Minimum enforced by demanding all 
physical scalars have positive squared 
masses (later).



› Each doublet is parametrized as:

› Massless charged goldstone fields G±

are extracted by introducing orthogonal 

states:

› H± represent the massive charged 

scalars 

› We work out the mass of the charged 

scalars:

› Performing a change of basis we find 

that  

› telling us that             is a basis invariant 

and therefore a physical observable 

(as it must be).

Parametrization of the doublets and the charged fields
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› Massless neutral goldstone field G0 is 
also extracted by introducing orthogonal 
states:

› We are left with three massive fields:
η1, η2 and η3, but these are not mass 
eigenstates.

› Mass terms given as

› Matrix elements are given  in 
[JHEP11(2014)084].

› We rotate into the physical fields by 

diagonalizing        using an orthogonal 

matrix R:

› Physical fields are now given as

Parametrization of the doublets and the neutral fields
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Transformations of mass matrix elements and rotation matrix 

elements under change of basis
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None of the squared mass

matrix elements or rotation

matrix elements are

invariants, and therefore

they are not observables:



Invariance of the neutral masses

› Combinations of squared mass matrix 

elements that are invariant are the trace, 

the sum of principal cofactors and the 

determinant, i.e.

› Are all found to be basis invariant, 

hence observable

› The eigenvalues of the squared mass 

matrix gives us the three neutral 

masses.

› Characteristic equation for eigenvalues:

› Eigenvalues (masses) are found to be

All neutral masses are basis 

invariant, hence observable
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Invariance of scalar couplings

› Some important scalar couplings

› Couplings also turn out to be basis 

invariant, hence observables. 
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Invariance of gauge couplings

› Gauge couplings 

› Showing that these gauge couplings are 

invariant under a change of basis, 

hence they are observables.

› Most couplings are invariants. Some 

(the complex ones) are pseudo-

invariants (their absolute value is 

invariant).

› No surprise: Masses and couplings are 

invariants and possible to measure in 

experiments.
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› Yab, Zabcd tensors already known.

› Introduce Vab tensor as:

› Transformation rules of Vab,Yab, and

Zabcd tensors under change of basis:

Systematic construction of invariants by use of tensors.

13

› We may now put together an arbitrary 
number of Y-, Z- and V-tensors and 
contract the odd-numbered indices with 
the even-numbered indices to get an 
invariant quantity.

› Simple examples

› We already know these to be invariant!



› The real part of invariants constructed 

this way will be a CP-even invariant.

› The imaginary part of invariants 

constructed this way will be a CP-odd 

invariant.

› To find conditions for CP-violation, we 

systematically construct invariants and 

check if they have imaginary parts.

› Many invariants exist, but only three are 

needed to check for CP violation:

Systematic construction of CP-violating invariants by use of tensors
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› These invariants are observables and 

so they must be expressible in terms of 

observable couplings and masses

› How do we translate from potential 

parameters/VEVs to masses and 

couplings?

› Choose to work in a particular basis (the 

Higgs-basis) and establish identities 

between invariant quantities in this 

basis.

› The identities established must then be 

valid in any basis.



From parameters to masses and couplings in the Higgs-basis

› Only one VEV is non-zero.

› Not unique, as one may still perform a 

U(1) transform on        without giving

a non-zero VEV.

› Stationary-point equations 
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› Charged scalar mass:

› Neutral mass matrix:

› Treat the above as seven equations and 

solve to get



› Gauge couplings in the Higgs-basis

› Combinations of rotation matrix 

elements appearing in the invariants 

can all be expressed in terms of the 

three ei by utilizing the orthogonality of 

R. 

› One immediately finds

From parameters to masses and couplings

› Scalar couplings in the Higgs-basis.

› Treat as four equations and solve to get

› All parameters of the potential has now 

been replaced by scalar couplings and 

masses (and elements from the rotation 

matrix).
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› Put Im J1 = Im J2 = Im J30 = 0 and solve

6 distinct cases of CP conservation:

› Case 1: M1=M2=M3. Full mass 
degeneracy.

› Case 2: M1=M2 and e1q2 = e2q1

› Case 3: M2=M3 and e2q3 = e3q2

› Case 4: e1=0 and q1=0

› Case 5: e2=0 and q2=0

› Case 6: e3=0 and q3=0

If none of the above occur, then CP is 
broken!

From parameters to masses and couplings

› Im J3 is a little more complicated:

› Only independent part is Im J30 :
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Vanishes when

Im J1 = Im J2 = 0



CP violating observables

› ZZZ and ZWW vertex both contain CP-

violating form factors.

› Summing over all possible combinations 

of i,j,k, we find
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CP violating observables

› Z→VVH+H-

› Summing over all possible combinations 

of i,j,k, we find 

› Z→H+H-

› Summing over all possible combinations 

of i,j,k, we find 
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From 2HDM to 3HDM

› CP violation in the 2HDM has been 

extensively studied and is well 

understood both in terms of invariants 

and masses/couplings.

› Not the case for 3HDM.

› Irremovable phases in 3HDM?

Want list:

› A set of invariants that guarantees CP 

conservation if all vanish, and CP 

violation when one is non-zero.

› Translation of this set into 

masses/couplings and a physical 

interpretation of the results.
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Work in progress:

› Doable by working in the Higgs-basis as 

has been shown for 2HDM.

› Identify masses and couplings.

› Perform translation from potential 

parameters into masses/couplings.

› Systematic construct of invariants with 

imaginary part.

› Interpretation.



Very preliminary results for 3HDM

› Three invariants with imaginary parts 

that has been translated into 

masses/couplings. 

› More to appear in an arXiv near you…

› Stay tuned!
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