## Rare decays and tests of lepton flavour universality in (b-)quark flavour physics Monica Pepe Altarelli (CERN)

On behalf of LHCb, also including material from Belle, BaBar, ATLAS and CMS

### Corfu Summer Institute Workshop on the Standard Model and Beyond, September 2-10 2017









when exchanged in a loop



 Indirect approach to New Physics searches, complementary to that of ATLAS/CMS • Strategy: use well-predicted observables to look for deviations

## Why rare b decays

• In the SM, processes involving flavour changes between two up-type quarks (u,c,t) or between two down-type quarks (d,s,b) are forbidden at tree level and can only occur at loop level (penguin and box)  $\rightarrow$  Rare

changing neutral currents, FCNC

• A new particle, too heavy to be produced at the LHC, can give sizeable effects







## LHCb: a forward spectrometer for flavour physics LHCb Detector Weight: 5,600 tonnes Height : 10 m Length: 20 m Electromagnetic

Calorimeter



### RICH1



### Tracker Turicensis

JINST 3 (2008) S08005



4

Tracking

Stations

### **Forwards acceptance** Efficient trigger for leptonic and hadronic modes Precision tracking & ertexing (Vertex Locator @ 8 mm from beam) **Excellent PID**

### Hadron Calorimeter

RICH2



### Muon Chambers

## $-4 \times 10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$

(1/fb) O



## Luminosity @ LHCb

5



### ~10<sup>11</sup> $b\bar{b}$ decays/fb in acceptance ~10<sup>12</sup> $c\bar{c}$ decays/fb



### CMS experiment Run: 208307 Event: 997510994 Date: 30 Nov 2012 Time: 07:19:44 GMT









## One of the milestones of flavour programme $B_{(s)} \rightarrow \mu^+ \mu^-$ Very suppressed in the SM - Loop, CKM ( $|V_{ts}|^2$ for $B_s$ ) and helicity $\sim \left(\frac{m_\mu}{M_B}\right)^2$ $\xrightarrow{b}$ $\xrightarrow{W^-}$ $\xrightarrow{s}$ $\mu_+^+$ • Theoretically "clean" $\rightarrow$ precisely predicted $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9} ~(\sim 6\%)$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$ Sensitive to NP - A large class of NP theories, such as SUSY, predict significantly higher values for the $B_{(s)}$ decay probability • Very clean experimental signature - Studied by all high-energy hadron collider experiments





Bobeth et al.









## 30 years of effort!

8













## Finding a needle in a haystack!

## LHCb update with Run 2 data

 Recent LHCb analysis based on Run 1 and Run 2 data (3+1.4 fb<sup>-1</sup>) • First observation from a single experiment with a significance of 7.8  $\sigma$ 



 $^{\prime}c^{2}$ Yog WeV 20 WeV Candidates /



 $\mathcal{B}(B_{\rm s}^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \quad (20\%) \quad \mathcal{B}_{\rm SM} = (3.65 \pm 0.23) \times 10^{-9}$  $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at } 95\% \text{ CL}$ Bobeth et al. PRL 112 (2014) 101801

Consistent with SM expectation at current level of precision

### PRL 118 (2017) 191801

### Sizeable effects expected in many MSSM models (cancellation of helicity suppression) Straub, arXiv:1107.0266



![](_page_12_Picture_3.jpeg)

 $ext{BR}(B_s \rightarrow \mu \mu) \times 10^9$ 13

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

## The SM stands its ground Sizeable effects expected in many MSSM models (cancellation of

## helicity suppression)

1.51.00.5

2.0

![](_page_13_Figure_3.jpeg)

0.0

 ${
m BR}(B_s \to \mu\mu) imes 10^9$ 

### Straub, arXiv:1107.0266

![](_page_13_Picture_8.jpeg)

![](_page_13_Picture_9.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_14_Picture_2.jpeg)

 $\Gamma(B_s(t) \to \mu^+ \mu^-) \equiv \Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\overline{B}_s^0(t) \to \mu^+ \mu^-)$  $\propto (1 - A_{\Delta\Gamma_s})e^{-\Gamma_L t} + (1 + A_{\Delta\Gamma_s})e^{-\Gamma_H t}$ 

 $A_{\Delta\Gamma} \equiv \frac{\Gamma(B_s^H \to \mu^+ \mu^-) - \Gamma(B_s^L \to \mu^+ \mu^-)}{\Gamma(B_s^H \to \mu^+ \mu^-) + \Gamma(B_s^L \to \mu^+ \mu^-)}$ 

In SM  $A_{\Delta\Gamma}$  = 1, i.e.  $B_s$  system evolves with the lifetime of the heavy  $B_{\rm s}$  mass eigenstate, but in NP scenarios  $A_{\Delta\Gamma}$ could be anywhere in range [-1,1]

![](_page_14_Picture_6.jpeg)

• A new observable sensitive to NP and complementary to branching fraction • For  $B_{\rm s}$  mesons, the sizeable difference between the decay widths of the light and heavy mass eigenstates  $\Delta\Gamma_s$  allows us to define:

15

![](_page_14_Figure_12.jpeg)

$$\tau_{\rm eff} = \frac{\tau_{B_{\rm s}}}{1 - y_{\rm s}^2} \frac{1 + 2}{1}$$

• First measurement by LHCb, not yet

## Results on teff

measurements by fitting a single exponential function

 $2A_{\Delta\Gamma}y_{\rm s} + y_{\rm s}^2$ where  $+ A_{\Delta\Gamma} y_{\rm s}$ 

 $\tau_{\rm eff}(B_{\rm s}(t) \to \mu^+ \mu^-) = (2.04 \pm 0.44 \pm 0.05) \, ps$ 

sensitive to  $A_{\Delta\Gamma}$ , but interesting as a proof-of-principle measurement, which can be scaled to higher luminosities

### LHCb measured effective lifetime from the decay time distributions of the samples of untagged $B_{\rm s}$ events used for the branching fraction

$$y_{\rm s} = \tau_{B_{\rm s}} \frac{\Delta \Gamma}{2}$$

![](_page_15_Figure_12.jpeg)

PRL 118 (2017) 191801

- In the SM, larger BF due to larger  $\tau$  mass  $(m_{\tau}^2/M_{\rm B}^2)$  $\mathcal{B}(B_{s}^{0} \to \tau^{+} \tau^{-}) = (7.73 \pm 0.49) \times 10^{-7}$  $\mathcal{B}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$
- But experimentally challenging due to undetected neutrinos in final state
- Searched by LHCb through the decay  $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$
- $B_{s,d}$  unresolvable in mass  $\rightarrow$  analysis optimised for  $B_{\rm S}$ 
  - then fit MVA
- Limits set:

![](_page_16_Picture_6.jpeg)

• Exploit intermediate  $\rho(770)^0$  resonance to define signal/control regions of  $m_{\pi^-\pi^+}$ ,

PRL 118 (2017) 251802  $\mathcal{B}(B_{\rm s} \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$  at 95% C.L.  $\mathcal{B}(B_{\rm d} \to \tau^+ \tau^-) < 2.1 \times 10^{-3}$  at 95% C.L.

![](_page_16_Picture_9.jpeg)

### Bobeth et al. PRL 112 (2014) 101801

![](_page_16_Figure_13.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

![](_page_17_Picture_10.jpeg)

## Another interesting rare decay: $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$

- NP can be competitive with SM processes
- Four final state particles with rich phenomenology, plethora of observables, which can be built from the measured amplitudes
- Rates, angular distributions and asymmetries sensitive to NP
- A lot of phenomenological work invested in defining observables with "clean" theoretical predictions.
  - Observables form-factor free at leading order - Still susceptible to non-factorisable corrections
- Question: how clean?

• A b  $\rightarrow$ s transition that only proceeds via loop diagrams

![](_page_18_Picture_12.jpeg)

![](_page_18_Picture_13.jpeg)

![](_page_18_Picture_18.jpeg)

![](_page_18_Picture_19.jpeg)

![](_page_18_Figure_20.jpeg)

![](_page_18_Figure_21.jpeg)

![](_page_19_Figure_1.jpeg)

Is the SM prediction less precise than what is claimed?

![](_page_19_Picture_3.jpeg)

### • One such observable is so-called P'<sub>5</sub>, not intuitive, but constructed from angular observables to be robust from 'form-factor uncertainties'

LHCb: JHEP 02 (2016) 104 Belle: PRL 118 (2017) 111801 ATLAS-CONF-2017-023 CMS-PAS-BPH-15-008

![](_page_19_Picture_9.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

## Intriguing set of results in differential branching fractions for $b \rightarrow s\mu\mu$ transitions

In general, data tend to be lower than theory predictions

![](_page_21_Picture_1.jpeg)

## Tests of Lepton Flavour Universality

![](_page_21_Picture_3.jpeg)

## Lepton Flavour Universality

• The property that the three charged leptons (e,  $\mu$ ,  $\tau$ ) couple in a universal way to the SM gauge bosons

• In the SM the only flavour non-universal terms are the three lepton masses

• If NP couples in a non-universal way to the three lepton families, then we can discover it by comparing classes of rare decays involving different lepton pairs (e.g.  $e/\mu$  or  $\mu/\tau$ )

![](_page_22_Picture_6.jpeg)

![](_page_22_Figure_9.jpeg)

of lepton flavour universality

•  $b \to s \ell \ell$  flavour-changing neutral currents with amplitudes involving loop diagrams

• These ratios are clean probes of NP :

- Sensitive to possible new interactions that couple in a non-universal way to electrons and muons

- Small theoretical uncertainties because hadronic uncertainties cancel: in SM,  $R_{\rm H} = 1$  neglecting lepton masses, with QED corrections at ~% level

![](_page_23_Picture_7.jpeg)

### • LHCb performed measurement $d\Gamma/dq^2$ in two $q^2$ bins that are sensitive to different NP contributions:

- Low-q<sup>2</sup> bin: [0.045,1.1] GeV<sup>2</sup>

- Central- $q^2$  bin: [1.1,6.0] GeV<sup>2</sup>

0

4m

25

![](_page_24_Figure_7.jpeg)

### • Lepton identification is anything but universal!

- but incomplete
  - bremsstrahlung clusters
- than for muons ( $\sim 1.5$  to 1.8 GeV).

## A very challenging measurement

- Electrons emit a large amount of bremsstrahlung, degrading momentum and mass resolution

- Recovery procedure in place for bremsstrahlung

energy threshold of bremsstrahlung photons  $E_T > 75$ MeV, calorimeter acceptance and resolution, presence of energy deposits wrongly interpreted as

- Due to higher occupancy of calorimeters, trigger thresholds are higher for electrons (~2.5 to 3.0 GeV)

- Mitigated by selecting decays with electrons using hadron trigger either fired either by  $K^*$ products (hadron) or by any other particle in the event not associated with signal (TIS)

![](_page_25_Figure_18.jpeg)

![](_page_25_Picture_22.jpeg)

![](_page_25_Picture_23.jpeg)

![](_page_25_Figure_24.jpeg)

![](_page_26_Picture_1.jpeg)

## A very challenging measurement

• Due to bremsstrahlung the reconstructed B mass is shifted towards lower values and events leak into the central-q<sup>2</sup> bins

### JHEP 08 (2017) 055

## Measure as a double ratio

• To mitigate muon and electron differences due to bremsstrahlung and trigger, measurement performed as a double ratio with "resonant" control modes  $B^0 \to J/\psi K^*$ which are not expected to be affected by NP:

 $R_{\mathrm{K}^{*0}} = \frac{\mathcal{B}(B^0)}{\mathcal{B}(B^0 \to K^*)}$ 

→ Relevant experimental quantities: yields & efficiencies for the four decays

 Similarities between the experimental efficiencies of the non resonant and resonant modes ensure a substantial reduction of systematic uncertainties in the double ratio

Efficiencies evaluated from simulation, tuned to data using dedicated control samples 

Blind analysis to avoid experimental biases 

$$\frac{\rightarrow K^{*0}\mu^+\mu^-)}{K^{*0}J/\psi(\rightarrow\mu^+\mu^-))} / \overline{\mathcal{B}}$$

 $\mathcal{B}(B^0 \to K^{*0}e^+e^-)$  $\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))$ 

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

![](_page_27_Picture_12.jpeg)

## Fit to the invariant masses

 $LOW-Q^2$ 

![](_page_28_Figure_2.jpeg)

### Precision of measurement driven by statistics of electron sample : ~90 and 110 signal candidates in low-q<sup>2</sup> and central-q<sup>2</sup>, muon sample 3-5 times larger 29

### Central- $q^2$

![](_page_28_Picture_6.jpeg)

### JHEP 08 (2017) 055

### $B^0 \to K^* J/\psi (\to \ell^+ \ell^-)$

![](_page_29_Figure_0.jpeg)

 $R_{K^*} = \begin{cases} 0.66^{+0.11}_{-0.07} \,(\text{stat}) \pm 0.03 \,(\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \,\text{GeV}^2 & 2.1 - 2.3 \,\sigma \\ 0.69^{+0.11}_{-0.07} \,(\text{stat}) \pm 0.05 \,(\text{syst}) & \text{for } 1.1 < q^2 < 6.0 \,\text{GeV}^2 & 2.4 - 2.5 \,\sigma \end{cases}$ 30

# -candidate) and track multiplicity

## Crosschecks

•  $r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} = 1.043 \pm 0.006 \pm 0.045$ 

very stringent test of absolute scale of efficiencies that does not benefit from the cancellation of the experimental systematics from the double ratio compatible with being independent of decay kinematics ( $p_{T}$ ,  $\eta$  of the  $B^0$ 

•  $R_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \left/ \begin{array}{c} \mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-)) \\ \mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-)) \end{array} \right. \rightarrow \text{compatible with}$ expectation

•  $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$  in agreement with JHEP 04 (2017) 142

•  $\mathcal{B}(B^0 \to K^{*0}\gamma)$  compatible with expectations

• If corrections to simulation are not accounted for, the ratio of the efficiencies (and thus  $R_{K^*}$ ) changes by less than 5%

### JHEP 08 (2017) 055

## Electron-trigger categories

### • Delta log-likelihood for the three electron-trigger categories, separately and combined

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Picture_6.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_3.jpeg)

## Areminder: Rk

• LHCb published an analysis of  $R_{k}$  based on Run 1 data:

![](_page_32_Figure_7.jpeg)

### $R_{\rm K} = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$

### LHCb: PRL 113 (2014) 151601

| aBar: | PRD 86 (2012) 032012  |
|-------|-----------------------|
| elle: | PRL 103 (2009) 171801 |

![](_page_32_Picture_16.jpeg)

## What happens next?

• Work in progress in LHCb to update  $R_{\rm K}$  with additional Run 2 data - from ~250 B+  $\rightarrow$  e+e- candidates to ~800, plus analysis is being improved • Can make analogous measurement with  $B_s \rightarrow \phi \ell^+ \ell^- \rightarrow R_\phi$  and other similar modes • Run 2 update of  $R_{K^*}$ • Extend the analysis to high-q<sup>2</sup> region, above  $\psi(2S)$ • Available data should be sufficient to clarify the picture

![](_page_33_Picture_3.jpeg)

![](_page_34_Picture_0.jpeg)

## Another puzzling result in tree-level $b \rightarrow c$ transitions

- precisely predicted:  $R(D^*)_{\rm SM} = 0.257 \pm 0.03$

![](_page_35_Picture_5.jpeg)

36

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

### • Signal and normalization channel share same final state $\rightarrow$ most systematics cancel in ratio (trigger, PID, selection...) • Separation between B and $3\pi$ vertices ( $\Delta z > 4\sigma_{\Delta z}$ ) crucial to obtain the required rejection of $B \rightarrow D^* 3\pi X$ )

![](_page_36_Figure_3.jpeg)

Analysis strategy

37

![](_page_36_Picture_9.jpeg)

![](_page_36_Figure_10.jpeg)

## Background reduction

### Requiring a minimum distance between B and $\tau$ vertices gives factor 10<sup>3</sup> arXiv:1708.08856 suppression while retaining ~35% of signal

![](_page_37_Figure_2.jpeg)

Blind analysis

Events

![](_page_37_Figure_5.jpeg)

![](_page_37_Figure_7.jpeg)

• This measurement:

• LHCb muonic:

• Preliminary LHCb average:  $R(D^*) = 0.306 \pm 0.027$ 

 $R(D^*) = 0.304 \pm 0.015$  ~3.4  $\sigma$ 

## Results

## $R(D^*) = 0.285 \pm 0.019_{\text{stat}} \pm 0.025_{\text{syst}} \pm 0.014_{\text{ext}}$ consistent with SM and with previous determinations

### $R(D^*) = 0.336 \pm 0.027_{\text{stat}} \pm 0.030_{\text{syst}}$

## New HFLAV preliminary world average

![](_page_38_Figure_11.jpeg)

![](_page_38_Figure_12.jpeg)

![](_page_38_Figure_14.jpeg)

### arXiv:1708.08856

![](_page_39_Figure_0.jpeg)

## $R(D) vs R(D^*)$

### Prospects • LHCb: a whole programme of semi-tauonic measurements : $R(J/\psi): B_c^+ \to J/\psi \tau^+ \nu_{\tau}$ $R(D^-): B^0 \to D^- \tau^+ \nu_{\tau}$ $R(D^0): B^+ \to D^0 \tau^+ \nu_{\tau}$ $R(D_{s}^{(*)}): B_{s}^{0} \to D_{s}^{(*)}\tau^{+}\nu_{\tau}$ $R(\Lambda_{\rm b}): \Lambda_{\rm b} \to \Lambda_{\rm c}^{(*)} \tau^+ \nu_{\tau}$

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_2.jpeg)

sensitivity to short-distance amplitudes

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48_{\text{stat}} \pm 0.51_{\text{syst}} \pm 0.97_{\text{norm}}) \times 10^{-7}$  $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27_{\text{stat}} \pm 0.09_{\text{syst}} \pm 0.16_{\text{norm}}) \times 10^{-7}$ 41

![](_page_40_Picture_8.jpeg)

### • $c \rightarrow u \mu^+ \mu^-$ FCNC transitions ( $\mathcal{O}(10^{-9})$ in SM), potentially sensitive to NP • However, "long-distance" contributions, are expected to be large, reducing

- searches for NP

- signs of tension are emerging

## Conclusions

• Precise measurements of flavour observables provide a powerful way to probe for NP effects beyond the SM, complementing direct

• Flavour-physics measurements at the LHC, in particular by LHCb, are dramatically adding to the already impressive knowledge accumulated by the B-factories and Tevatron

• Many world record results. For some topics we have moved from exploration to precision measurements

Most of these results show good compatibility with the SM, but some

• Need more data to test these hints. These data are arriving in Run 2!

A few extra slides

## Crosschecks on bremsstrahlung recovery

## • Relative population of bremsstrahlung categories compared between data and simulation using $B^0 \rightarrow K^{*0}J/\psi(ee)$ and $B^0 \rightarrow K^{*0}\gamma(ee)$ events

![](_page_43_Figure_2.jpeg)

![](_page_44_Picture_0.jpeg)

### LHC Schedule & LHCb We are here ! 2018 2020 2023 Run3 LS2 Run2 14 TeV 13->14 TeV • LHCb is currently building its upgrade to be installed in LS2 • Aim: to collect 50 fb<sup>-1</sup> at $\mathscr{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

![](_page_44_Figure_5.jpeg)

![](_page_44_Figure_6.jpeg)

• Requirements: - 40 MHz readout -  $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{sec}^{-1} (x 5)$ 

• Implications: - New HLT farm and network

## LHCb Upgrade

- Event selection performed by HLT software only  $\rightarrow$  5.5 visible interactions/crossing
  - $\rightarrow$  Higher track multiplicity (from ~ <70> to <180>)

- New detector front-end electronics because of new readout requirement - New trackers with finer granularity to reduce occupancy

## - What is not changed needs to be consolidated to sustain higher Luminosity

![](_page_46_Figure_2.jpeg)

### VELO pixel detector

![](_page_47_Figure_0.jpeg)

| ture                                      | e afte |  |  |  |  |
|-------------------------------------------|--------|--|--|--|--|
| $\simeq 50  [{\rm fb}^{-1}]$<br>o upgrade |        |  |  |  |  |
| <b>2027</b>                               |        |  |  |  |  |
| LS3                                       | Run 4  |  |  |  |  |

• While working for the upgrade, discussion started on what to do during the very long shutdown for HL-LHC (LS3) planned for 2024

 Several ideas on the table to consolidate and enhance LHCb with new capabilities that will bring extended physics opportunities in Run 4

• Lay the foundations for a phase-2 Upgrade to be installed during LS4 with a target Lumi of  $\sim 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$  (x10 wrt phase-1 upgrade) integrating 300 fb<sup>-1</sup>. With pileup of ~50, adding timing information will be key

## in the future 2030 2031 Run 5 LS4

![](_page_47_Picture_10.jpeg)

![](_page_47_Picture_11.jpeg)

![](_page_47_Picture_12.jpeg)

![](_page_47_Picture_13.jpeg)

Current detecto Phase-I Upgrad Phase-II Upgrad

Strong arguments to continue flavour physics after Run 3 Many measurements of suppressed decays of heavy-flavoured hadrons, which are interesting to probe New Physics effects, will still be statistically limited after the LHCb phase-1 upgrade

|               | LHC             | Period of                     | $\operatorname{Maximum} \mathcal{L}$ | $\mathbf{C}$ |
|---------------|-----------------|-------------------------------|--------------------------------------|--------------|
|               | Run             | data taking                   | $[{\rm cm}^{-2}{\rm s}^{-1}]$        | ſ            |
| or            | 1 & 2           | 2010-2012, 2015-2018          | $4 	imes 10^{32}$                    |              |
| le            | 3&4             | $2021 - 2023, \ 2026 - 2029$  | $2 	imes 10^{33}$                    |              |
| $\mathbf{de}$ | $5 \rightarrow$ | 2031–2033, 2035 $\rightarrow$ | $2 \times 10^{34}$                   |              |
|               |                 |                               |                                      |              |

![](_page_48_Figure_4.jpeg)