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Why rare b decays
• In the SM, processes involving flavour changes between two up-type quarks 

(u,c,t) or between two down-type quarks (d,s,b) are forbidden at tree level and 
can only occur at loop level (penguin and box) → Rare 

• A new particle, too heavy to be produced at the LHC, can give sizeable effects 
when exchanged in a loop 

• Indirect approach to New Physics searches, complementary to that of ATLAS/CMS 
• Strategy: use well-predicted observables to look for deviations
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No tree-level flavour 
changing neutral 
currents, FCNC 



A window on 
NP at high 

scales



LHCb: a forward spectrometer for 
flavour physics
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JINST 3 (2008) S08005

Forwards acceptance
Efficient trigger for leptonic 
and hadronic modes
Precision tracking & 
vertexing (Vertex Locator 
@ 8 mm from beam)
Excellent PID 



Luminosity @ LHCb

• Experiment designed to run at constant luminosity throughout fills                                    
- 4 x1032 cm-2 sec -1 

- mean number of interactions/bunch crossing ~1     
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Run 1  
3 fb-1 

Run 2 
2.7 fb-1 

bb̄

cc̄

~1011         decays/fb 
  in acceptance 
~1012       decays/fb

….



B leptonic decays 



     One of the milestones of 
flavour programme     

• Very suppressed in the SM 

- Loop, CKM (          for Bs ) and helicity 

• Theoretically “clean” → precisely predicted 

• Sensitive to NP 
- A large class of NP theories, such as SUSY, predict significantly 

higher values for the B(s) decay probability  

•  Very clean experimental signature 
- Studied by all high-energy hadron collider experiments
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B(s) ! µ+µ�
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Bobeth et al. 
PRL 112 (2014) 101801
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(~6%)B(B0
s ! µ+µ�) = (3.65± 0.23)⇥ 10�9

B(B0 ! µ+µ�) = (1.06± 0.09)⇥ 10�10



30 years of effort!

“I’m too old for limits! I want to see signals! “ (F.Halzen, EPS 2015)
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Era of precision measurements  
                    of      
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Finding a needle in a haystack!
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We found it! 

We found  
Bs→µ+µ-!



LHCb update with Run 2 data
• Recent LHCb analysis based on Run 1 and Run 2 data (3+1.4 fb-1) 

• First observation from a single experiment with a significance of 7.8 σ 

• Consistent with SM expectation at current level of precision

B(B0
s ! µ+µ�) = (3.0± 0.6+0.3

�0.2)⇥ 10�9 ( 20%)

B(B0 ! µ+µ�) < 3.4⇥ 10�10 at 95% CL

BSM = (3.65± 0.23)⇥ 10�9

PRL 118 (2017) 191801

Bobeth et al. 
PRL 112 (2014) 101801
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The SM stands its ground
• Sizeable effects expected in many MSSM models (cancellation of 

helicity suppression)

Pre-LHC

Straub, arXiv:1107.0266
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The SM stands its ground
• Sizeable effects expected in many MSSM models (cancellation of 

helicity suppression)

Now

Straub, arXiv:1107.0266



Effective Bs lifetime
• A new observable sensitive to NP and complementary to branching fraction 
• For Bs mesons, the sizeable difference between the decay widths of the light and 

heavy mass eigenstates         allows us to define:  
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⌧µ+µ� ⌘
R1
0 t�(Bs(t) ! µ+µ�)dt
R1
0 �(Bs(t) ! µ+µ�)dt

Expectation value  of 
untagged time-dependent rate

De Bruyn et al,
PRL 109 (2012) 041801

• In SM AΔΓ= 1, i.e. Bs system evolves 
with the lifetime of the heavy Bs mass 
eigenstate, but in NP scenarios AΔΓ 
could be anywhere in range [-1,1]

��s
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Results on τeff
• LHCb measured effective lifetime from the decay time distributions of 

the samples of untagged Bs events used for the branching fraction 
measurements by fitting a single exponential function

16

• First measurement by LHCb, not yet 
sensitive to AΔΓ, but interesting as a 
proof-of-principle measurement, which 
can be scaled to higher luminosities

⌧e↵ =
⌧Bs

1� y2s

1 + 2A��ys + y2s
1 +A��ys

, where ys = ⌧Bs

��

2

PRL 118 (2017) 191801

⌧e↵(Bs(t) ! µ+µ�) = (2.04± 0.44± 0.05) ps



• In the SM, larger BF due to larger τ mass 

• But experimentally challenging due to undetected neutrinos in final state
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Bs,d ! ⌧+⌧�

Bobeth et al. 
PRL 112 (2014) 101801

⌧� ! ⇡�⇡+⇡�⌫⌧
• Searched by LHCb through the decay                              

• Bs,d unresolvable in mass → analysis 
optimised for Bs  

• Exploit intermediate ρ(770)0 resonance to 
define signal/control regions of             , 
then fit MVA 

• Limits set:

m⇡�⇡+

(m2
⌧/M

2
B)

B(Bs ! ⌧+⌧�) < 6.8⇥ 10�3 at 95% C.L.

B(Bd ! ⌧+⌧�) < 2.1⇥ 10�3 at 95% C.L.

→ first direct limit 
→ best limit

PRL 118 (2017) 251802

B(B0
s ! ⌧+⌧�) = (7.73± 0.49)⇥ 10�7

B(B0 ! ⌧+⌧�) = (2.22± 0.19)⇥ 10�8
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b ! s`+`� transitions



Another interesting rare decay: 

• A b →s transition that only proceeds via loop diagrams 

• NP can be competitive with SM processes 

• Four final state particles with rich phenomenology, plethora of 
observables, which can be built from the measured amplitudes 

• Rates, angular distributions and asymmetries sensitive to NP 

• A lot of phenomenological work invested in defining observables 
with “clean” theoretical predictions. 
- Observables form-factor free at leading order 
- Still susceptible to non-factorisable corrections 

• Question: how clean?
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B0 ! K⇤0(! K+⇡�)µ+µ�

   
c 

   γ
g



P5’ anomaly
• One such observable is so-called P’5, not intuitive, but constructed 

from angular observables to be robust from ‘form-factor uncertainties’ 

• Is the SM prediction less precise than what is claimed?
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Intriguing set of results in differential 
branching fractions for b→sµµ transitions 

• In general, data tend to be lower than theory predictions
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JH
EP 06 (2014) 133                         Bs ! �µ+µ�

JHEP 09 (2015) 179

⇤0
b ! ⇤0µ+µ�

JHEP 06 (2015) 115 LHCb: JHEP 11 (2016) 047, JHEP 04 (2017) 142 
CMS:   PLB 753 (2016) 424

B0 ! K⇤0µ+µ�

CMS 
LHCb



Tests of Lepton Flavour Universality



Lepton Flavour Universality
• The property that the three charged leptons (e, µ , τ) couple 

in a universal way to the SM gauge bosons 

• In the SM the only flavour non-universal terms are the three 
lepton masses 

• If NP couples in a non-universal way to the three lepton 
families, then we can discover it by comparing classes of 
rare decays involving different lepton pairs (e.g. e/µ or µ/τ )

23



The family of R ratios
• Comparing the rates of                          and                             allows precise testing 

of lepton flavour universality 

•                flavour-changing neutral currents with amplitudes involving loop diagrams 

• These ratios are clean probes of NP : 

- Sensitive to possible new interactions that couple in a non-universal way to electrons 
and muons   

- Small theoretical uncertainties because hadronic uncertainties cancel:                                                                
in SM,                  neglecting lepton masses, with QED corrections at ~% level
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• LHCb performed measurement 
in two q2 bins that are sensitive 
to different NP contributions: 

- Low-q2 bin: [0.045,1.1] GeV2 

- Central-q2 bin: [1.1,6.0] GeV2
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A very challenging measurement
• Lepton identification is anything but universal! 

- Electrons emit a large amount of bremsstrahlung, 
degrading momentum and mass resolution  

- Recovery procedure in place for bremsstrahlung 
but incomplete  
- energy threshold of bremsstrahlung photons ET>75 

MeV, calorimeter acceptance and resolution, presence 
of energy deposits wrongly interpreted as 
bremsstrahlung clusters 

- Due to higher occupancy of calorimeters, trigger 
thresholds are higher for electrons (~2.5 to 3.0 GeV) 
than for muons (~1.5 to 1.8 GeV) . 

- Mitigated by selecting decays with electrons 
using hadron trigger either fired either by K* 
products (hadron) or by any other particle in the 
event not associated with signal  (TIS)

26

JHEP 08 (2017) 055



A very challenging measurement

• Due to bremsstrahlung  the reconstructed B mass is shifted towards 
lower values and events leak into the central-q2 bins
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Partially rec.
background

Central-q2

Low-q2

 (2S)

J/ 

Number of candidates for 
B0 ! K⇤0µ+µ� B0 ! K⇤0e+e�

Number of candidates for 

Partially rec.
background

JHEP 08 (2017) 055



• To mitigate muon and electron differences due to bremsstrahlung and trigger, 
measurement performed as a double ratio with “resonant” control modes                                                                         
which are not expected to be affected by NP:                        

→ Relevant experimental quantities: yields & efficiencies for the four decays 

• Similarities between the experimental efficiencies of the non resonant and resonant 
modes ensure a substantial reduction of systematic uncertainties in the double ratio  

• Efficiencies evaluated from simulation, tuned to data using dedicated control samples 

• Blind analysis to avoid experimental biases
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RK⇤0 =
B(B0 ! K⇤0µ+µ�)

B(B0 ! K⇤0J/ (! µ+µ�))

,
B(B0 ! K⇤0e+e�)

B(B0 ! K⇤0J/ (! e+e�))

Measure as a double ratio
B0 ! J/ K⇤



Fit to the invariant masses

• Precision of measurement driven by statistics of electron sample : ~90 and 
110 signal candidates in low-q2 and central-q2 , muon sample 3-5 times larger
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Central-q2

Low-q2
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274 k
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Low-q2 Central-q2 B0 ! K⇤J/ (! `+`�)

JHEP 08 (2017) 055



Results
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RK⇤
=

(
0.66+0.11

�0.07 (stat)± 0.03 (syst) for 0.045 < q2 < 1.1GeV

2

0.69+0.11
�0.07 (stat)± 0.05 (syst) for 1.1 < q2 < 6.0GeV

2

BaBar:     PRD 86 (2012) 032012 
Belle:       PRL 103 (2009) 171801

BIP:        arXiv:1605.07633 
CDHMV: arXiv:1510.04239, 1605.03156, 1701.08672 
EOS:       arXiv:1610.08761, https://eos.github.io 
flav.io:  arXiv:1503.05534, 1703.09189, flav-io/flavio 
JC:       arXiv:1412.3183

2.1 - 2.3 σ 
2.4 - 2.5 σ

LHCb:     JHEP 08 (2017) 055

Comparison with SM predictions Comparison with BaBar & Belle



 Crosschecks
•                                                                                              

- very stringent test of absolute scale of efficiencies that does not benefit from 
the cancellation of the experimental systematics from the double ratio  

- compatible with being independent of decay kinematics (pT, η of the B0 
candidate) and track multiplicity                                                                             

•                           

•                                in agreement with JHEP 04 (2017) 142 

•                           compatible with expectations 

• If corrections to simulation are not accounted for, the ratio of the efficiencies 
(and thus       ) changes by less than 5%
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rJ/ =
B(B0 ! K⇤0J/ (! µ+µ�))

B(B0 ! K⇤0J/ (! e+e�))
= 1.043± 0.006± 0.045

B(B0 ! K⇤0µ+µ�)

R (2S) =
B(B0 ! K⇤0 (2S)(! µ+µ�))

B(B0 ! K⇤0J/ (! µ+µ�))

,
B(B0 ! K⇤0 (2S)(! e+e�))

B(B0 ! K⇤0J/ (! e+e�))
→ compatible with 

expectation

B(B0 ! K⇤0�)

RK⇤

JHEP 08 (2017) 055



Electron-trigger categories
• Delta log-likelihood for the three electron-trigger categories, 

separately and combined
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Low-q2 Central-q2JHEP 08 (2017) 055



A reminder: RK
• LHCb published an analysis of RK based on Run 1 data: 

• Compatible with SM at 2.6 σ 
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What happens next?
• Work in progress in LHCb to update RK with additional Run 2 data  

- from ~250 B+ →e+e- candidates to ~800, plus analysis is being 
improved 

• Can make analogous measurement with                                    and 
other similar modes 

• Run 2 update of RK* 
• Extend the analysis to high-q2 region, above 
• Available data should be sufficient to clarify the picture
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Bs ! �`+`� ! R�

 (2S)



Anothe

Another puzzling result 
in tree-level b → c transitions



 LFU studies in                        decays          
•   

• Different class of decays (charged current) 
- precisely predicted:    

• Latest LHCb measurement : 

- A semileptonic decay with no (charged) lepton in final state (one K, five π) 
→ Zero background from  

•                                                                               → not at all rare! 
- However,  signal to noise ratio less than 1% → need at least 103 rejection! 
- Large background, notably from                                 (ΒF~100 x signal)  

and                                  (BF~10 x signal)      
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B ! D(⇤)⌧⌫

Berlochner et al 
arXiv:1703.05330

R(D⇤) = B(B0 ! D⇤�⌧+⌫⌧ )/B(B0 ! D⇤�µ+⌫µ)

R(D⇤)SM = 0.257± 0.03

(
⌧+ ! ⇡+⇡�⇡+(⇡0)⌫̄⌧

D⇤� ! D
0
(! K+⇡�)⇡�

3-prong

B ! D⇤�3⇡X
B ! D⇤�D+

s (X)

Tree level 
b→c transition

B0 ! D⇤�µ+⌫µX

B
�
B0 ! D⇤�⌧+(! ⇡+⇡�⇡+(⇡0)⌫̄⌧ )⌫⌧

�
' 0.2%



Analysis strategy

• Signal and normalization channel share same final state → 
most systematics cancel in ratio (trigger, PID, selection…) 

• Separation between B and 3π vertices (Δz>4σΔz) crucial to 
obtain the required rejection of                         )
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R(D⇤) =
B(B0 ! D⇤�⌧+⌫⌧ )

B(B0 ! D⇤�⇡+⇡�⇡+)

B(B0 ! D⇤�⇡+⇡�⇡+)

B(B0 ! D⇤�µ+⌫µ)

Measured External inputs

Signal Background

~4%

~2%

B ! D⇤3⇡X



Background reduction
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XπππD*

D*DX
ντD*

• Remaining double-charm background 
(D*D(s)X) suppressed by employing a 
multivariate analysis based on isolation 
variables, 3π dynamics, reconstruction 
under signal and background hypotheses…. 

• Blind analysis
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3π decay time q2 = (pB � pD⇤)2

• Requiring a minimum distance between B and τ vertices gives factor 103 
suppression while retaining ~35% of signal

Signal yield ~1300 events
arXiv:1708.08856



 Results
• This measurement: 

consistent with SM and with previous determinations  

• LHCb muonic: 

• Preliminary LHCb average: 

• New HFLAV preliminary world average
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R(D⇤) = 0.285± 0.019
stat

± 0.025
syst

± 0.014
ext

R(D⇤) = 0.336± 0.027stat ± 0.030syst

R(D⇤) = 0.306± 0.027

~3.4 σR(D⇤) = 0.304± 0.015

arXiv:1708.08856
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R(D) vs R(D*) 

~4.1 σ

R(J/ ) : B+
c ! J/ ⌧+⌫⌧

R(D�) : B0 ! D�⌧+⌫⌧

R(D0) : B+ ! D0⌧+⌫⌧

R(D(⇤)
s ) : B0

s ! D(⇤)
s ⌧+⌫⌧

R(⇤b) : ⇤b ! ⇤(⇤)
c ⌧+⌫⌧

• LHCb: a whole programme of 
semi-tauonic measurements :

Prospects



Rarest charm-hadron decays ever observed !

•                        FCNC transitions (             in SM), potentially sensitive to NP 
• However, “long-distance” contributions, are expected to be large, reducing 

sensitivity to short-distance amplitudes
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arXiv:1707.08377 
submitted to PRL



Conclusions
• Precise measurements of flavour observables provide a powerful 

way to probe for NP effects beyond the SM, complementing direct 
searches for NP 

• Flavour-physics measurements at the LHC, in particular by LHCb, 
are dramatically adding to the already impressive knowledge 
accumulated by the B-factories and Tevatron  

• Many world record results. For some topics we have moved from 
exploration to precision measurements 

• Most of these results show good compatibility with the SM, but some 
signs of tension are emerging 

• Need more data to test these hints. These data are arriving in Run 2!
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A few extra slides



Crosschecks on 
bremsstrahlung recovery

• Relative population of bremsstrahlung categories compared 
between data and simulation using B0→K*0J/ψ(ee) and 
B0→K*0γ(ee) events 
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LHC Schedule & LHCb
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• LHCb is currently 
building its upgrade to 
be installed in LS2 

• Aim: to collect 50 fb-1 at     
ℒ = 2 x 1033 cm-2 s-1

Run1 Run2 Run3 Run4 Run5LS1 LS2 LS3 LS4 LS5

2012 2014 2018 2020 2023 2025 2029 2031 2034

LHCb
Upgrade

HL-LHC

Integrated Luminosity (fb-1)                               
LHCb  ATLAS/CMS

Run 1 3 30

Run 2 8 100

Run 3 25 300

Run 4 50   …3000

7,8 TeV    13->14 TeV 14 TeV

We are 
here !
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LHCb Upgrade
•  Requirements: 

- 40 MHz readout 

- Event selection performed by HLT software only 

-                      
                               

(x 5) 

➔ 5.5 visible interactions/crossing 

➔ Higher track multiplicity (from ~ <70> to <180>) 

•  Implications: 
- New detector front-end electronics because of new readout requirement 

- New HLT farm and network 

- New trackers with finer granularity to reduce occupancy  

- What is not changed needs to be consolidated to sustain higher Luminosity
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L = 2⇥ 1033cm�2sec�1



The upgraded detector
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VELO 
pixel detector

RICH Photon  Detectors 
& (partially) mechanics

Upstream Tracker (UT) 
silicon strips

Tracker 
scintillating fibres

Calo reduce PMT gains 
replace RO electronics 
 & innermost ECAL cells

Muon MWPC 
update RO & 

control electronics



The future after the future

• While working for the upgrade, discussion started on what to do 
during the very long shutdown for HL-LHC (LS3) planned for 2024 

• Several ideas on the table to consolidate and enhance LHCb with new 
capabilities that will bring extended physics opportunities in Run 4 

• Lay the foundations for a phase-2 Upgrade to be installed during LS4 with 
a target Lumi of  ~2 x 1034 cm-2 s-1 (x10 wrt phase-1 upgrade) integrating 
300 fb-1. With pileup of ~50, adding timing information will be key
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Z
L dt ' 50 [fb�1]

LHCb upgrade
HL-LHC



Strong arguments to continue flavour physics after Run 3
Many measurements of suppressed decays of heavy-flavoured 
hadrons, which are interesting to probe New Physics effects,  

will still be statistically limited after the LHCb phase-1 upgrade


