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Università di Genova

Corfou

Testing Fundamental Physics Principal

23rd September 2017



Introduction

Noncommutative geometry [NCG] provides a common geometrical framework for
the standard model of elementary particles [SM] and (Euclidean) general
relativity.

Assuming space-(time) is the product of a Riemannian manifold by some “matrix
geometry”, then the SM Lagrangian together with Einstein-Hilbert action follow
from a single action formula: the spectral action. Chamseddine, Connes 1996

Bonus: the Higgs field comes out as the noncommutative part of the connection.
Its mass is a function of the other parameters of the theory, and can be
calculated.

I Under the big desert hypothesis: mH = 170 Gev.

I Physical motivations to question the big desert (instability in the Higgs
potential).

How to go beyond the Standard Model with noncommutative geometry ?



1. Noncommutative geometry of the Standard Model in a nutshell

2. Grand symmetry and twisted spectral triple

3. Gauge transformation

4. Lorentz signature



1. The noncommutative geometry of the Standard Model in a nutshell

Gelfand duality

commutative C∗-algebras ⇐⇒ locally compact topological spaces

I Noncommutative C∗-algebra should play the role of “functions on a
noncommutative space”.

I To go beyond topology (e.g. differential structure, metric, homology,
integration etc) one needs more than just an algebra.



Spectral triple

A ∗-algebra A, faithful representation on H, operator D on H with compact
resolvent such that [D, a] is bounded for all a ∈ A. With extra-conditions:

Theorem Connes 1996-2008-2013

i. M compact Riemann spin manifold, then

(C∞(M), L2(M,S), ∂/)

is a spectral triple, where L2(M,S) is the Hilbert space of square integrable
spinors on M while

∂/ := −i
dimM∑
µ=1

γµ∇µ with γµγν + γνγµ = 2gµνI

is the Dirac operator, where ∇µ := ∂µ + ωµ with ωµ is the spin connection.

ii. (A,H,D) a spectral triple with A unital commutative, then there exists a
compact Riemannian spin manifold M such that A = C∞(M).



A noncommutative geometry is a spectral triple (A,H,D) where A is non
necessarily commutative.

commutative spectral triple → noncommutative spectral triple

l ↓
Riemannian geometry non-commutative geometry



The spectral triple of the Standard Model

Asm = C∞ (M)⊗AF , H = L2(M,S)⊗HF , D = ∂/⊗ IF + γ ⊗ DF .

with M a closed Riemannian spin manifold, while

AF = C⊕H⊕M3(C), HF = C96, DF = matrix of fermion masses.

The gauge fields are obtained by fluctuation of the metric:

D → DA := D + A + ε′JAJ−1

where ε′ = ±1, while A = A∗ is a generalized 1-form, element of

Ω1
D(A) :=

{∑
i

ai [D, bi ], ai , bi ∈ Asm

}
.

Explicitly, A = γ ⊗ H − i
∑
µ

γµ ⊗ Aµ,

I H: scalar field on M with value in AF → Higgs.

I Aµ: 1-form field with value in Lie(U(AF )) → gauge field.



There is a part D ′ of the mass matrix DF that does not fluctuate:

[γ ⊗ D ′, a] = 0 ∀a ∈ Asm.

I This became relevant after the discovery of the Higgs boson in 2012:
instability in the Standard Model & wrong mass of the Higgs can be cured
by turning the constant component of D ′ into a field. Chamseddine, Connes 2012.

How to justify this ?

I Drop out the first-order condition (Chamseddine, Connes, van Suijlekom),

a[D, JbJ−1] = 0 ∀a, b ∈ A.

I Take advantage of the “over size” of the Hilbert space H in the spectral
triple of the SM (the fermion doubling problem), so that to generate the
field σ without violating the first-order condition.



2. Grand Symmetry and twisted spectral triple

Devastato, Lizzi, P.M. 2014.

The action of C∞ (M) on spinors is the direct sum of two representations

π(f )ψ =

(
f I2 02

02 f I2

) (
ψl

ψr

)
.

So on L2(M,S) there is enough space to represent twice the algebra C∞ (M):

π(f , g)ψ =

(
f I2 02

02 gI2

) (
ψl

ψr

)
.

On H = L2(M,S)⊗HF , there is enough space to represent the grand algebra

AG := Asm ⊗ C2 = (C∞ (M)⊗AF )⊗ C2.

I γ ⊗D ′ no longer commutes with AG : fluctuations generate the extra-field σ.

I Problem: [∂/⊗ IF , a] is no longer bounded.



Actually, what is bounded is the twisted commutator

[∂/⊗ IF , a]ρ := (∂/⊗ IF ) a− ρ(a) (∂/⊗ IF )

where ρ is the flip

ρ((f , g)⊗m) = (g , f )⊗m ∀(f , g) ∈ C∞ (M)⊗ C2, m ∈ AF .

One generates the required extra-scalar field (together with an additional vector
field) by considering twisted fluctuations:

D → D + Aρ + ε′ JAρJ
−1

where Aρ is in

Ω1
D(AG , ρ) :=

{∑
i

ai [D, bi ]ρ, ai , bi ∈ AG

}
.

Twisted spectral triple: given a triple (A,H,D), instead of asking [D, a] to be
bounded, one asks the boundedness of the twisted commutator Connes, Moscovici 2008

[D, a]ρ := Da− ρ(a)D for some ρ ∈ Aut(A).

I Relevant to deal with conformal transformation.

I Makes sense mathematically.



3. Gauge transformation

Non-twisted case

Fluctuations of the metric arise as a particular case of a general construction
allowing to export a spectral triple (A,H,D) to a Morita equivalent algebra B
(namely the case of self-Morita equivalence: B = A).

A connection is required on the A-B-bimodule E that implements the Morita
equivalence. A gauge transformation is a change of this connection, implemented
by a unitary endomorphism u of E .

In case of self-Morita equivalence, this boils down to

D + A + ε′JAJ−1 −→ D + Au + ε′JAuJ
−1

where u is a unitary of A and

Au := u[D, u∗] + uAu∗.

Equivalently, a gauge transformation is the conjugate action of U := uJuJ−1:

UDAU
∗ = D + Au + ε′JAuJ−1.



Twisted case Landi, PM 2017

D + Aρ + J Aρ J
−1 −→ D + Au

ρ + ε′ J Au
ρJ
−1

where
Au
ρ := ρ(u) [D, u∗]ρ+ ρ(u)Au∗.

Furthermore,
DAu

ρ
= ρ(U)DAρU

−1 for U = Ad(u).

The law of transformation of the twisted-gauge potential

Aρ → Au
ρ

is simply the twisted version of the usual transformation A→ Au. The same is
true for the conjugate action of U.

I However, usual gauge transformations

D → UDU∗

preserve selfadjointness of the Dirac operator, whereas DAu
ρ

has no reason to
be selfadjoint, even if DAρ

is.



4. Lorentz signature in progress with Devastato, Farnsworth and Lizzi.

H an Hilbert space with inner product 〈·, ·〉, and ρ an automorphism of B(H).

Definition

A ρ-twisted inner product 〈·, ·〉ρ is an inner product on H such that

〈Ψ,OΦ〉ρ = 〈ρ(O)†Ψ,Φ〉ρ ∀O ∈ B(H), Ψ, Φ ∈ H,

where † is the adjoint with respect to the initial inner product. We denote

O+ := ρ(O)†.

the ρ-adjoint of O.

I The ρ-twisted inner product is non necessarily definite positive.

If ρ an inner automorphism of B(H),

ρ(O) = ROR† ∀O ∈ B(H)

for a unitary operator R on H, then a natural ρ-product is

〈Ψ,Φ〉ρ = 〈Ψ,RΦ〉.



In the twisted spectral triple of the Standard Model, the flip ρ is an inner
automorphism of B(L2(M,S)), with R = γ0 the first Dirac matrix.

I The ρ-twisted inner product is the Krein product for the space of spinors on
a Lorentzian manifold.

I Furthermore, extending ρ to the whole of B(L2(M,S)), one finds

ρ(γ0) = γ0, ρ(γj) = −γj for j = 1, 2, 3.

The flip is the square of the Wick rotation

W (γ0) = γ0, W (γj) = iγj .

that is ρ = W 2.

I Krein selfadjointness is preserved by twisted fluctuations.



Conclusion

I SM is obtained as the (untwisted) vacuum of higher symmetry theory,
described by a twisted spectral triple.

I The field σ together with an additional vector field Xµ encode small
excitations around this vacuum.

I Similar result as the one obtained by Chamseddine, Connes and van
Suijlekom by considering “fluctuations without first-order condition”.

I Fluctuations of the metric and gauge transformations straightforwardly
generalized to twisted spectral triples.

I Twisted gauge transformations do not preserve selfadjointness, but do
preserve Krein-adjointness of Lorentzian spinors.
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