SUSY GUTs, DM and the LHC

Smaragda Lola
Dept. of Physics, University of Patras

Collaborators [JCAP 1603 (2016) and in progress]

R. de Austri, M. Canonni, J. Ellis, M. Gomez, Q. Shafi
No SUSY signal at the LHC (talks by G. Landsberg, J. Mamuzic) Severe constraints on at least the simplest realisations of susy

Still, we need to go beyond the SM, due to
- Neutrino masses & mixing
- Baryon asymmetry in the universe
- Origin of dark matter
- Large number of arbitrary parameters (mostly in mass sector)
- Hierarchy problem, especially if further unification exists

In this respect, SUSY GUTs have very attractive features

Non-minimal SUSY extensions
- Break unification conditions of minimal schemes &/or
- add new particles and interactions (softer fitting constraints)
- Combine GUTs, SUSY and Flavour Symmetries
- Different predictions in various GUTs
 - SO(10), Pati-Salam [NUHM]
 - SU(5), Flipped SU(5) [non-universal sfermions]
- Can we distinguish different scenarios?
- What are the expected sparticle correlations in each scheme?
 - Several constraints from DM considerations
 - What can the LHC tell us on the underlying symmetries?
SUSY – new particles and interactions

Minimal SUSY Lagrangian– very simple rule: all SM interactions + those where 2 particles are substituted by antiparticles

Simplest SUSY models:
- Missing Energy Signature
- LSP as Dark Matter (one of our basic requirements)
Soft SUSY breaking terms

Inspired from supergravity assume universal soft breaking, $\mathcal{L}_{\text{soft}}$:

$$\sum_{f,H} m_0^2 \tilde{f} \tilde{f} + \sum_{\lambda} m_{\frac{1}{2}} \lambda \lambda + \sum_{f} A_0 Y_f \tilde{f} \tilde{F} H_f + B \mu H_u H_d$$

m_0, $m_{\frac{1}{2}}$, A_0, $\tan \beta$, $\text{sign}(\mu)$
The simplest models may be too restrictive

To search for/exclude SUSY unification need to first consider several alternative possibilities

Vast number of models
How to distinguish between them?

Try to address at the same time the origin of mass, combining GUT and flavour symmetries
Fermion hierarchies from flavour symmetries

(i.e. Why the top quark mass so much larger?)

A family symmetry generates the observed hierarchies

<table>
<thead>
<tr>
<th>$U(1)$</th>
<th>Q_i</th>
<th>\bar{U}_i</th>
<th>\bar{D}_i</th>
<th>L_i</th>
<th>\bar{E}_i</th>
<th>H_2</th>
<th>H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)$</td>
<td>a_i</td>
<td>a_i</td>
<td>a_i</td>
<td>b_i</td>
<td>b_i</td>
<td>$-2a_3$</td>
<td>$w a_3$</td>
</tr>
</tbody>
</table>

Charges such that only 3 generation masses allowed
(0 flavour charges for 3rd generation)
The rest of the terms appear once the symmetry is broken

\[Q_i \bar{U}_j H_2 (^{\langle \theta \rangle} / M)^n \]

\[n \text{ depending on flavour charges} \]

Similarly for other fermions, including neutrinos
(i) Assume the family symmetry is combined with $SU(5)$

(ii) Use the GUT structure ONLY to constrain $U(1)$ charges

Under this group we have the following relations:

$$Q_{(q,u^c,e^c)}_i = Q^{10}_i$$

$$Q_{(l,d^c)}_i = Q^5_i$$

$$Q_{(\nu_R)}_i = Q^{\nu_R}_i$$

- M_{up} symmetric
- $M_{\ell \pm} = M_{down}^T$
- L lepton mixing \approx R down-quark one

$$Q_{1,2,3} = \bar{E}_{1,2,3} = 3, 2, 0$$

$$\bar{D}_{1,2,3} = L_{1,2,3} = 1, 0, 0$$

$SL, Ross$
SO(10)

- All L- and R-handed fermions in the 16 of SO(10)
- Both MSSM Higgs fields fit in a single 10 of SO(10)

For all fermions, *L-R symmetric textures*, similar structure (different expansion parameters due to Higgs mixing)

Flipped SU(5)

\[Q_{(q,d^c,\nu^c)}i = Q_{i}^{10}, \quad Q_{(l,u^c)}i = Q_{i}^{5}, \quad e^c \text{ singlet of } SU(5) \]

- Symmetric \(M_{\text{down}} \)
- \(m_{\nu}^D = M_{up}^T \)
Pati-Salam Unification

- Lepton number a 4th color – thus unifying quarks and leptons
- L-R symmetry

\[16 \xrightarrow{PS} (4, 2, 1) + (\overline{4}, 1, 2) \]

\[SU(4)_C \times SU(2)_L \times SU(2)_R \]

Fermions embedded as follows:

\[
\begin{array}{c|ccc|c}
\text{chirality} & SU(4)_C & SU(3)_C & & \\
\hline
L & r & y & b & \ell \\
| & u^r & u^y & u^b & \nu^e \\
| & d^r & d^y & d^b & e^- \ell \\
R & u^r & u^y & u^b & \nu^e \\
| & d^r & d^y & d^b & e^- \ell \\
\end{array}
\]

\[
\begin{align*}
& u_r \quad u_g \quad u_b \quad \nu_e \\
& d_r \quad d_g \quad d_b \quad e_e \\
& u'_c \quad u'_g \quad u'_b \quad \nu^c_e \\
& d'_c \quad d'_g \quad d'_b \quad e^c_e
\end{align*}
\]
\[F_{i \alpha} = (4, 2, 1) = \left(\begin{array}{cccc} u^R & u^B & u^G & \nu \\ d^R & d^B & d^G & e^- \end{array} \right)^i \]

\[\bar{F}^i_{\alpha \bar{\alpha}} = (\bar{4}, 1, 2) = \left(\begin{array}{cccc} \bar{d}^R & \bar{d}^B & \bar{d}^G & \bar{e}^+ \\ \bar{u}^R & \bar{u}^B & \bar{u}^G & \bar{\nu} \end{array} \right)^i \]

\[H^{\alpha \bar{\beta}} = (4, 1, 2) = \left(\begin{array}{cccc} u^R_H & u^B_H & u^G_H & \nu_H \\ d^R_H & d^B_H & d^G_H & e^-_H \end{array} \right) \]

\[\bar{H}_{\alpha \bar{\alpha}} = (\bar{4}, 1, 2) = \left(\begin{array}{cccc} \bar{d}^R_H & \bar{d}^B_H & \bar{d}^G_H & \bar{e}^+_H \\ \bar{u}^R_H & \bar{u}^B_H & \bar{u}^G_H & \bar{\nu}_H \end{array} \right) \]

\[< H > \equiv < \nu_H > \quad < \bar{H} > \equiv < \bar{\nu}_H > \]
MINIMAL MODIFICATIONS TO SOFT TERM UNIVERSALITY:

Non Universal SO(10)

\[W_{SO(10)} = \lambda_{ij}^{u} 16_i 10^u 16_j + \lambda_{ij}^{d} 16_i 10^d 16_j \]

\[Q_L, D, U, L, E, N \subseteq 16 \]

\[H_u \subseteq 10^u; \quad H_u \subseteq 10^u \]

The soft term masses are taken at GUT as:

\[m_{16} = m_0; \quad m_u = x_u m_0; \quad m_d = x_d m_0; \]

Trilinear terms:

\[A_0 = a_0 m_0 \]

- Fermion fields in the same 16
- 2 Higgs fields in different 10 representations
Non Universal SU(5)

\[W_{SU(5)} = Y_u^{ij} 10_i 10_j 5^u + Y_d^{ij} 10_i \bar{5}_j \bar{5}^d \]

\((Q_L, U, E) \subseteq 10 \)

\((D, L) \subseteq \bar{5} \)

\(H_u \subseteq 5^u; H_d \subseteq \bar{5}^d \)

The soft terms are taken at GUT as:

\[m_{10} = m_0; \]
\[m_5 = x_5 \cdot m_{10}; \]
\[m_u = x_u \cdot m_{10}; \]
\[m_d = x_d \cdot m_{10}. \]

\[A_{10,5} = a_0 \cdot m_0, \]

Okada, Shafi, Raza

- Fermions in different representations
- 2 Higgs fields in different 10 representations

Ellis, Mustafaev, Olive, Velasco-Sevilla
Flipped SU(5) - versus SU(5)

SU(5)

\[(Q, u^c, e^c)_i \in 10_i, \ (L, d^c)_i \in \overline{5}_i, \ \nu_i^c \in 1_i.\]

Flipped SU(5)

\[(Q, d^c, \nu^c)_i \in 10_i, \ (L, u^c)_i \in \overline{5}_i, \ e_i^c \in 1_i.\]

\[m_{10} = m_0, \ \ m_5 = x_5 \cdot m_{10} \ \ m_R = x_R \cdot m_{10} \]

\[m_{H_u} = x_u \cdot m_{10} \ \ m_{H_d} = x_d \cdot m_{10}.\]

Different field assignment in representations – different predictions (i.e. more freedom with stop masses as compared to SO(10), SU(5))
Could have gone even further *(model dependent)*
Flavour symmetries determine soft SUSY terms

\[\mathcal{L}_{m^2} = m_0^2 (\phi_1^* \phi_1 + \phi_2^* \phi_2 + \phi_3^* \phi_3) + \left(\frac{\langle \theta \rangle}{M_{\text{fl}}} \right)^{q_2-q_1} \phi_1^* \phi_2 + \left(\frac{\langle \theta \rangle}{M_{\text{fl}}} \right)^{q_3-q_1} \phi_1^* \phi_3 + \left(\frac{\langle \theta \rangle}{M_{\text{fl}}} \right)^{q_3-q_2} \phi_2^* \phi_3 + \text{h.c.}. \]

L-R symmetric

\[
\begin{pmatrix}
1 & \tilde{c}^{a+b} & \tilde{c}^{a+b} \\
\tilde{c}^{a+2b} & 1 & \tilde{c}^{b} \\
\tilde{c}^{a+b} & \tilde{c}^{b} & 1
\end{pmatrix}
\]

SU(5)

\[
E_L \sim \begin{pmatrix}
1 & \lambda^2 & \lambda^2 \\
\lambda^2 & 1 & 1 \\
\lambda^2 & 1 & 1
\end{pmatrix} \quad E_R \sim \begin{pmatrix}
1 & \lambda & \lambda^3 \\
\lambda & 1 & \lambda^2 \\
\lambda^3 & \lambda^2 & 1
\end{pmatrix}
\]

\[Q_{(q,u^c,c^c)}_i = Q^{10}_i\]
\[Q_{(l,d^c)}_i = Q^5_i\]
\[Q_{(\nu_R)}_i = Q^{\nu_R}_i\]

\[\frac{M_L}{m_\tau} = \begin{pmatrix}
\tilde{c}^4 & \tilde{c}^3 & \tilde{c} \\
\tilde{c}^3 & \tilde{c}^2 & 1 \\
\tilde{c}^3 & \tilde{c}^2 & 1
\end{pmatrix}\]

L: (1,0,0)
R: (3,2,0)
Dark Matter – various possibilities

Higgsino χ_1^0:

\[h_f \equiv |N_{13}|^2 + |N_{14}|^2, \]

\[h_f > 0.1, \quad |m_A - 2m_\chi| > 0.1 m_\chi. \]

A/H resonances:

\[|m_A - 2m_\chi| \leq 0.1 m_\chi. \]

$\tilde{\tau}$ coannihilations:

\[h_f < 0.1, \quad (m_{\tilde{\tau}_1} - m_\chi) \leq 0.1 m_\chi \]

$\tilde{\tau} - \tilde{\nu}_\tau$ coannihilations:

\[h_f < 0.1, \quad (m_{\tilde{\tau}_1} - m_\chi) \leq 0.1 m_\chi, \quad (m_{\tilde{\mu}_1} - m_\chi) \leq 0.1 m_\chi. \]

\tilde{t}_1 coannihilations:

\[h_f < 0.15, \quad (m_{\tilde{t}_1} - m_\chi) \leq 0.1 m_\chi. \]
Parameter space scans with 2 sets:

Set 1 is broader, up to 10 TeV
Combined data accommodated easier with a heavy spectrum and Higgsino LSP

Set 2 zooms to the lower mass spectrum where co-annihilations are expected

Complex computations:
→ SUSY Search: SuperBayeS, MultiNest
→ RGE's: SoftSusy
→ Direct DM detection: DarkSUSY
→ Relic Density: MicroOMEGAs
→ SusyBSG: B-Physics
Correlations between the non-universal soft scalar masses and DM in different SUSY GUTS
(CMSSM for $x u, d, 5, R = 1$ / too restrictive)

$SO(10)$ [and $SU(5)$]: stop mass tends to become very heavy
Flipped $SU(5)$: stop-coannihilations possible
Sparticle correlations

SO(10)

PS(4-2-2)
In addition to couplings generating fermion masses, Also $\lambda_{ijk} L_i L_j \bar{E}_k$, $\lambda'_{ijk} L_i Q_j \bar{D}_k$, $\lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$

VERY RICH FLAVOUR STRUCTURE

45 couplings violating lepton or baryon number

X: Unacceptable proton decay - kill all couplings via R-parity (Fayet)

✓ OR, allow subsets by baryon / lepton parities (i.e. Ibanez, Ross)

Colliders: Multi-lepton/jet events instead of missing energy

Single sparticle productions possible

LSP: unstable – but, gravitino DM a viable possibility

Its RPV-decays suppressed by:

- Gravitino vertex (~1/Mp)

- Phase space (light gravitino)

- Loop factors (~ fermion mass)

- Neutrino- neutralino mixing

[Takayama, Yamaguchi], [Chemtob, Moreau]
[Buchmuler, Covi, Hamaguchi, Ibarra, Yanagida]
[SL, P. Osland, A. Raklev]
Predictions for R-violating operators in different GUTS:
What type of processes favoured in different groups?
(proceed similarly to discussion for fermion mass terms)

L-R symmetric – SO(10):
similar LLE, LQD, UDD (only generation matters)

- Bounds on products of couplings, due to correlations, translated to individual bounds /very restrictive [Ellis, SL, Ross]
- 1 coupling dominance disfavoured
- Single sparticle productions disfavoured over MSSM ones, with RPV decays

SU(5) – with U(1) charges chosen to match lepton data

Very different expected correlations
Larger hierarchies and dominance of fewer couplings
Single sparticle productions better accommodated

Neutralinos-charginos couple to all 45 operators
Ideal channels to study simultaneously all hierarchies
[Bomark, Choudhury, Kvellenstad, SL, Osland, Raklev]
Conclusions

- Can identify patterns of soft SUSY-breaking terms at the GUT scale, *compatible with DM predictions and LHC spectra*

- The models predict different spectra for the same LSP mass, connecting possible observations with the underlying unified theory.

- In particular, SO(10), SU(5), flipped SU(5) and Pati-Salam lead to very different predictions, and are distinguishable in future searches.

- **Flipped SU(5) and PS predict stop-LSP coannihilations** that are absent in the other groups and can be explored in LHC searches.