

Physics prospects at HL-LHC with the ATLAS detector

Lydia ICONOMIDOU-FAYARD LAL-Univ. Paris Sud-CNRS/IN2P3-Paris Saclay CORFU September 2017 04/09/2017

The ATLAS path to HL-LHC

- Submission of Letter of Intent, December 2012
- Publication of Scoping Document , September 2015
- Publication of Strip-ITK TDR, April 2017

ATLAS

Phase-II Upgrade coping Documer

[] CERN-2012-022 LHCC-5-023 December, 2012

ATLAS

CORFU September 2017 04/09/2017

Time, Energy, Luminosity

4

CORFU September 2017 04/09/2017

CORFU September 2017 04/<mark>09/20117</mark>

CORFU September 2017 04/<mark>09/20117</mark> LHC **HL-LHC** Run 1 Run 2 Run 3 Run 4 - 5... EYETS 13.5-14 TeV LS1 LS2 14 TeV LS3 14 TeV 13 TeV energy injector upgrade cryo Point 4 DS collimation 5 to 7 x splice consolidation nominal **HL-LHC** cryolimit interaction 8 TeV button collimators luminosity 7 TeV P2-P7(11 T dip.) regions installation R2E project Civil Eng. P1-P5 2011 2012 2013 2014 2015 2016 2018 2019 2020 2021 2022 2023 2024 2025 2026 2037 radiation damage experiment 2 x nominal luminosity experiment experiment upgrade upgrade phase 2 75% beam pipes nominal luminosity phase 1 nominal luminosity integrated 30 fb⁻¹ 150 fb⁻¹ 300 fb⁻¹ 1000 fb⁻¹ Super Cells NSW: Precision tracking Higher granularity for Track information at the LAr trigger towers trigger level

10

March 2016 : HL-LHC classified as landmark-project by the European Strategy Forum on Research Infrastructures (ESFRI) June 2016: HL-LHC approved by the CERN council

- Stand the 5-7 10³⁴ /cm²/s instantaneous luminosity is beyond the capabilities of the current detectors
- Replace several parts to achieve a robuster, faster, radiation harder and lighter detector.
- Goal : have the same-or better- performances in HL-LHC harsh conditions than in Run2
- Upgrade: fruit of permanent feedback between physics requirements and detectors' component design

- Stand the 5-7 10³⁴ /cm²/s instantaneous luminosity is beyond the capabilities of the current detectors
- Replace several parts to achieve a robuster, faster, radiation harder and lighter detector.
- Goal : have the same-or better- performances in HL-LHC harsh conditions than in Run2
- Upgrade: fruit of permanent feedback between physics requirements and detectors' component design

→ Protect against high fluencies
→ Mitigate pileup rates and occupancy
→ Keep low P_T requirements for main triggers
→ Guarantee precise measurements up to large rapidity
→ Lighten the detector , dropping material

Current detector

CORFU September 2017 04/09/2017

TDAQ upgrade →Increased latencies and rates : --L0[10µs,2-4MHz] --Possibly L0/L1

CORFU September 2017 04/09/2017

TDAQ upgrade →Increased latencies and rates : --L0[10µs,2-4MHz] --Possibly L0/L1

Muon readout and trigger upgrades. New Barrel trigger layer

TDAQ upgrade →Increased latencies and rates : --L0[10µs,2-4MHz] --Possibly L0/L1

Muon readout and trigger upgrades. New Barrel trigger layer

CORFU September 2017 04/09/2017

16

LArg; new FrontEnd and BackEnd electronics for faster readout

TDAQ upgrade →Increased latencies and rates : --L0[10µs,2-4MHz] --Possibly L0/L1

Muon readout and trigger upgrades. New Barrel trigger layer

LArg; new FrontEnd and BackEnd electronics for faster readout

Tile Calorimeter : upgrade of electronics and HV distribution

TDAQ upgrade →Increased latencies and rates : --L0[10µs,2-4MHz] --Possibly L0/L1

Muon readout and trigger upgrades. New Barrel trigger layer

Inner Detector: full replacement by a allsilicon one ($\frac{1}{6}$ 65m2), extending up $\frac{1}{2}$ $|\eta|=4$ At most $1.\overline{7}5 X_0$

18

Tracker extension up to $|\eta| = 4$ crucial for pileup rejection and VBF sensitivity

TDAQ upgrade →Increased latencies and rates : --L0[10µs,2-4MHz] --Possibly L0/L1

Muon readout and trigger upgrades. New Barrel trigger layer

forward regions a muon Liau Muon Detectors **Tile Calorimeter** tagger and a timing detector Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Decker

Proposals for adding in

Inner Detector: full replacement by a allsilicon one (165m2), extending up to |η|=4 At most 1.75 X0

19

Tracker extension up to |η|=4 crucial for pileup rejection and VBF sensitivity

LArg; new FrontEnd and BackEnd electronics for faster readout

Tile Calorimeter : upgrade of electronics and HV distribution

Simulating Physics channels at HL-LHC²⁰

1) Extrapolate from Run1,2 results. Scale both signal and background to 14TeV and 3000fb⁻¹

2) Assume similar detector performances and apply same analyses

CASE

CORFU September 2017 04/09/2017

Simulating Physics channels at HL-LHC²¹

1) Extrapolate from Run1,2 results. Scale both signal and background to 14TeV and 3000fb⁻¹

2) Assume similar detector performances and apply same analyses

OR

CASE 2

-

CASE

 Smear event-generator level particles with parameterized functions
 Functions are determined from full simulation of the upgraded ATLAS detector and reconstructed assuming pileup of 140 (5x10³⁴) or 200 (7x10³⁴)
 Analyses as for 8 and (or) 13TeV with some updates for high luminosity

Simulating Physics channels at HL-LHC²²

1) Extrapolate from Run1,2 results. Scale both signal and background to 14TeV and 3000fb⁻¹

2) Assume similar detector performances and apply same analyses

OR

-

CASE

2

CASE

 Smear event-generator level particles with parameterized functions
 Functions are determined from full simulation of the upgraded ATLAS detector and reconstructed assuming pileup of 140 (5x10³⁴) or 200 (7x10³⁴)
 Analyses as for 8 and (or) 13TeV with some updates for high luminosity

What about systematics? Difficult to predict.

Experimental Systematics: so far , scaled from current knowledge **Theory Systematics** : current numbers, half of them, or none.

Expected performances at HL-LHC

CASE 2:

Shown next the expectations for the main objects (tracks, electrons, photons, jets) Obtained with the most up-to-date detector simulation and fully reconstructed. Optimization : very likely to improve

CORFU September 2017 04/09/2017

23

Pileup treatment :

Use a library made out of generated and fully reconstructed minimum-bias jets At $<\mu>= 140$ and $<\mu>=200$ Read one "pileup" event with each "physics" event

Object performances: Track Reconstruction

CORFU September 2017 04/09/2017

24

ATL-TDR-025 · LHCC-2017-005

Object performances: Track Reconstruction

CORFU September 2017 04/09/2017

25

ATL-TDR-025 · LHCC-2017-005

Object performances: Track Reconstruction 26 25 ATLAS Simulation Hits on Track ITk Inclined CORFU Sep⁻ 04/09/2017 single μ , $p_{\pm} = 10 \text{ GeV}, \mu = 0$ - Pixel+Strip Efficiency ___ Strip 1.2 ATLAS Inclined Pixel 20 ATLAS – Run-2 Simulation 1 — tī u = 0 0.8 0.6 Effect of failing sensors Efficiency: 85-93% 0.4 Fake rate : <10-4 0 0.2 1.15 Efficiency ATLAS >=14 hits per track % Inefficience Simulation 1.05 tt, μ = 200 0.95E 1.3 Efficiency 0.9 ATLAS Simulation < 2.7 2.7 < |n| < 3.5 1.2 ITk Inclined 0.85 |n| < 4.01.1 -tt, p, > 1 GeV, √s = 14 TeV 08 0.75 Stable performance 0.7 with pileup 0.9 0.652 3 0.8 η 0.7 ATL-TDR-025 · LHCC-2017-005 0.6<mark>0</mark> 50 100 150 200 250

u

Pileup jet mitigation

The high expected pileup (µ=140->200) was one key factor for the design of the upgraded tracker detector (ITK) Need precise track and Vertex reconstruction

CORFU September 2017 04/09/2017

Pileup jet mitigation

The high expected pileup (µ=140->200) was one key factor for the design of the upgraded tracker detector (ITK) Need precise track and vertex reconstruction

At <µ>=200, 5 pileup jets/event with PT>30 GeV Distinguish between hard scattered and pileup using Rp_T

 $R_{\rm PT} = \frac{\Sigma_k p_{\rm T}^{\rm trk_k}({\rm PV}_0)}{n_{-}^{\rm jet}}$

CERN-LHCC-2015-020

Pileup jet mitigation

The high expected pileup (µ=140->200) was one key factor for the design of the upgraded tracker detector (ITK) Need precise track and vertex reconstruction

At <µ>=200, 5 pileup jets/event with PT>30 GeV Distinguish between hard scattered and pileup using Rp_T

 $R_{\rm pT} = \frac{\Sigma_k p_{\rm T}^{{\rm tr}k_k}({\rm PV}_0)}{\frac{1}{2}}$

For 80% hard scattered jet efficiency, keep at most 2% pileup jets

Electron Identification efficiencies

→Using Z->ee full simulation with pileup ~200

→Cut based tuning for 3 working points, Loose, Medium and Tight
 →Pt>7 GeV and |eta|<2.47 (need specific tuning of the Forward Calos to go further)
 →Di-jet sample for studying background rejection

CORFU September 2017 04/09/2017

Electron Identification efficiencies

→Using Z->ee full simulation with pileup ~200

→Cut based tuning for 3 working points, Loose, Medium and Tight
 →Pt>7 GeV and |eta|<2.47 (need specific tuning of the Forward Calos to go further)
 →Di-jet sample for studying background rejection

Almost flat in $|\eta|$

$\mu = 190-210$	Loose	Medium	Tight
	Identification Efficiency (%)		
Electrons	$92.4 {\pm} 0.1$	85.2 ± 0.1	65.3 ± 0.1
Jet Fakes	6.2 ± 0.2	2.7 ± 0.1	0.9 ± 0.1
Hadrons	5.0 ± 0.1	2.0 ± 0.1	$0.72 {\pm} 0.04$
Conversions	10 ± 2	$4.4{\pm}1.5$	$0.6 {\pm} 0.5$
Heavy Flavour	42 ± 6	23 ± 5	11 ± 3
	Total Efficiency (%)		
Electrons	88.9±0.1	82.0±0.1	62.8±0.1
Jet Fakes	0.150 ± 0.005	0.065 ± 0.003	0.022 ± 0.002

Total eff= Identification x Reco

ATL-TDR-025 · LHCC-2017-005

Electron Identification efficiencies

→Using Z->ee full simulation with pileup ~200

→Cut based tuning for 3 working points, Loose, Medium and Tight
 →Pt>7 GeV and |eta|<2.47 (need specific tuning of the Forward Calos to go further)
 →Di-jet sample for studying background rejection

Almost flat in | η |

$\mu = 190-210$	Loose	Medium	Tight	
	Identification Efficiency (%)			
Electrons	92.4±0.1	85.2 ± 0.1	65.3±0.1	
Jet Fakes	6.2 ± 0.2	2.7 ± 0.1	0.9 ± 0.1	
Hadrons	5.0 ± 0.1	2.0 ± 0.1	$0.72 {\pm} 0.04$	
Conversions	10 ± 2	$4.4{\pm}1.5$	0.6 ± 0.5	
Heavy Flavour	42 ± 6	23±5	11±3	
	Total Efficiency (%)			
Electrons	88.9±0.1	82.0 ± 0.1	62.8 ± 0.1	
Jet Fakes	$0.150 {\pm} 0.005$	0.065 ± 0.003	0.022 ± 0.002	
Total eff= Identification x Rec				

ATL-TDR-025 · LHCC-2017-005

Almost flat in PT

Photon Identification Efficiency

- \rightarrow Using H->yy fully simulated samples with pileup 140 and 200
- → Distinct identifications for no-converted, single and double conversions
- → Use Multijet sample for background

→ Multivariate signal-background separation based on shower shapes in the calorimeter→Look at photons with $P_T>20$ GeV, $|\eta|<2.4$ excluding crack

 \rightarrow Check additional isolation requiring E_T (R<R_C, R_C=0.2,0.4) < 6 GeV

Photon Identification Efficiency

- \rightarrow Using H->yy fully simulated samples with pileup 140 and 200
- Distinct identifications for no-converted, single and double conversions
- Use Multijet sample for background

LHCC-2017-005

→ Multivariate signal-background separation based on shower shapes in the calorimeter→Look at photons with $P_T>20$ GeV, $|\eta|<2.4$ excluding crack → Check additional isolation requiring E_T (R<R_C, R_C=0.2,0.4) < 6 GeV

B-tagging at HL-LHC

B-tagging== Probability to identify a jet containing a B hadron → Evaluated using multivariate techniques applied to the new detector exploiting impact parameter and secondary vertex informations → Studied using ttbar events with at least one semi-leptonic decay → For fixed b-tag efficiency→ extract light and c-jet mis-tag CORFU September 2017 04/09/2017

B-tagging at HL-LHC

LHCC-2017-005

•

-TDR-025

IF

B-tagging== Probability to identify a jet containing a B hadron → Evaluated using multivariate techniques applied to the new detector exploiting impact parameter and secondary vertex informations → Studied using ttbar events with at least one semi-leptonic decay → For fixed b-tag efficiency→ extract light and c-jet mis-tag

Both algorithms without any further tuning. Run2 versions
B-tagging at HL-LHC

B-tagging== Probability to identify a jet containing a B hadron → Evaluated using multivariate techniques applied to the new detector exploiting impact parameter and secondary vertex informations → Studied using ttbar events with at least one semi-leptonic decay → For fixed b-tag efficiency→ extract light and c-jet mis-tag

et Rejection

LHCC-2017-005

•

-TDR-025

IF

Both algorithms without any further tuning. Run2 versions

For 70% efficiency, ITK gives twice the Run2 rejection

Some physics channels Hi-Lumi LHC for what?

The portal of the Higgs discovery

1) Detect all production modes

2) Its low mass allows a precise study of couplings to fermions and bosons.

3) Investigate differential distributions -> gives also access to eventual BSM effects

4) Study Higgs' rare decays

5) Stress of the Higgs potential: measure the self-coupling **Also**

Test further the EWS breaking : Vector Boson Scattering

For more ATLAS results on Higgs (current or prospects) See the talks of:

> Yann Coadou Antonio de Maria Chao Wang Pippa Wells

ATL-PHYS-PUB-2014-016

Full projection from Run1 results. Without upgraded detector simulation nor tuned analyses.
→ "Old" theory uncertainties.
→ 2014 experimental uncertainties CORFU September 2017 74/09/2017

ATL-PHYS-PUB-2014-016

Full projection from Run1 results. Without upgraded detector simulation nor tuned analyses.
→ "Old" theory uncertainties.
→ 2014 experimental uncertainties

Higgs Production modes

$\Delta \mu / \mu$	3	300 fb ⁻¹	3000 fb^{-1}		
	All unc.	No theory unc.	All unc.	No theory unc.	
$gg \rightarrow H$	0.12	0.06	0.11	0.04	
VBF	0.18	0.15	0.15	0.09	
WH	0.41	0.41	0.18	0.18	
qqZH	0.80	0.79	0.28	0.27	
ggZH	3.71	3.62	1.47	1.38	
ttH	0.32	0.30	0.16	0.10	

CORFU September 2017 14/09/2017

Full projection from Run1 results. Without upgraded detector simulation nor tuned analyses.
→ "Old" theory uncertainties.
→ 2014 experimental uncertainties

Higgs Production modes

$\Delta \mu / \mu$	3	600 fb ⁻¹	3000 fb^{-1}		
	All unc.	No theory unc.	All unc.	No theory unc.	
$gg \rightarrow H$	0.12	0.06	0.11	0.04	
VBF	0.18	0.15	0.15	0.09	
WH	0.41	0.41	0.18	0.18	
qqZH	0.80	0.79	0.28	0.27	
ggZH	3.71	3.62	1.47	1.38	
ttH	0.32	0.30	0.16	0.10	

ATL-PHYS-PUB-2014-016

41

Dashed bands: theory

Full projection from Run1 results. Without upgraded detector simulation nor tuned analyses.
→ "Old" theory uncertainties.
→ 2014 experimental uncertainties

Higgs Production modes

$\Delta \mu / \mu$	3	300 fb ⁻¹	3000 fb ⁻¹		
	All unc.	No theory unc.	All unc.	No theory unc.	
$gg \rightarrow H$	0.12	0.06	0.11	0.04	
VBF	0.18	0.15	0.15	0.09	
WH	0.41	0.41	0.18	0.18	
qqZH	0.80	0.79	0.28	0.27	
ggZH	3.71	3.62	1.47	1.38	
ttH	0.32	0.30	0.16	0.10	

Pessimistic projections Probably much better in both experimental and theory sides

ATL-PHYS-PUB-2014-016

42

Dashed bands: theory

The Higgs boson self-coupling

The Higgs potential
$$V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$$

$$\lambda = \frac{m_{H}^{2}}{2v^{2}} = -0.12 \text{ in SM}$$

The Higgs boson self-coupling

The Higgs potential
$$V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$$

CORFU Septembrian

$$\lambda = \frac{m_H^2}{2v^2} = ~0.12 \text{ in SM}$$

44

In SM: gg->HH through two diagrams interfering destructively, XS=~40fb at 14TeV Only one is related to trilinear coupling (3H)

The Higgs boson self-coupling 45 CORFU Se 04/09/201 The Higgs potential $\lambda = \frac{m_H^2}{2v^2}$ $V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$ = ~0.12 in SM

After detecting HH events, one has to unfold the box-diagram (dominant) contribution to reach trilinear coupling

The trilinear Higgs coupling

Phys.Lett. B732(2014) 142-149

Outside $\lambda = \lambda_{SM}$ the HH cross-section can increase by a factor up to 10 ! Interesting for BSM signals CORFU September 2017 04/09/2017

The trilinear Higgs coupling

47

Phys.Lett. B732(2014) 142-149

Outside $\lambda = \lambda_{SM}$ the HH cross-section can increase by a factor up to 10 ! Interesting for BSM signals Expected yields in HL-LHC for 3000fb-1

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	4.1×10^{4}
$b\overline{b} + W^+W^-$	25%	3.1×10^{4}
$b\overline{b} + \tau^+\tau^-$	7.4%	9.0×10^{3}
$W^+W^- + \tau^+\tau^-$	5.4%	6.6×10^3
$ZZ + b\overline{b}$	3.1%	3.8×10^{3}
$ZZ + W^+W^-$	1.2%	1.4×10^{3}
$\gamma\gamma + b\overline{b}$	0.3%	3.3×10^2
$\gamma\gamma + \gamma\gamma$	0.0010%	1

Low statistics in the cleanest channels. Combine several decay modes to enhance sensitivity

Trilinear coupling : HH->yybb (BR=0.3%)48

Cut-based analysis

Selection requirement	Efficiency (%)
trigger + \geq 2 tight photons with $p_{\rm T}$ > 25 GeV	32.0
\geq 2 photon candidates with $p_{\rm T}$ > 30 GeV	27.4
≥ 2 jet candidates	21.7
$\geq 2 b$ -jet candidates	7.73
< 6 jet candidates	7.46
isolated lepton veto	6.96
$0.4 < \Delta R_{b\overline{b}} < 2.0, \Delta R_{\gamma\gamma} < 2.0$	5.25
$122 < m_{\gamma\gamma} < 128 \text{ GeV}$	3.95
$100 < m_{b\bar{b}} < 150 \text{ GeV}$	2.90
H candidates $p_{\rm T} > 80 \text{ GeV}$	2.89

ATL-PHYS-PUB-2017-001

For 3000fb-1, one expects 9.54+-0.03 signal events with 90.9+-2.0 background events Significance : 1.05 σ

Trilinear coupling : HH->yybb (BR=0.3%)49

Cut-based analysis

Selection requirement	Efficiency (%)
trigger $+ \ge 2$ tight photons with $p_{\rm T} > 25$ GeV	32.0
\geq 2 photon candidates with $p_{\rm T}$ > 30 GeV	27.4
≥ 2 jet candidates	21.7
$\geq 2 b$ -jet candidates	7.73
< 6 jet candidates	7.46
isolated lepton veto	6.96
$0.4 < \Delta R_{b\overline{b}} < 2.0, \Delta R_{\gamma\gamma} < 2.0$	5.25
$122 < m_{\gamma\gamma} < 128 \text{ GeV}$	3.95
$100 < m_{b\bar{b}} < 150 \text{ GeV}$	2.90
H candidates $p_{\rm T} > 80 \text{ GeV}$	2.89

Main reducible backgrounds bbyj, ccyy,ccyj, bbjj, jjyy

For 3000fb-1, one expects 9.54+-0.03 signal events with 90.9+-2.0 background events Significance : 1.05 σ

Trilinear coupling : HH->yybb (BR=0.3%)⁵⁰

Cut-based analysis

Selection requirement	Efficiency (%)
trigger $+ \ge 2$ tight photons with $p_{\rm T} > 25$ GeV	32.0
\geq 2 photon candidates with $p_{\rm T}$ > 30 GeV	27.4
≥ 2 jet candidates	21.7
$\geq 2 b$ -jet candidates	7.73
< 6 jet candidates	7.46
isolated lepton veto	6.96
$0.4 < \Delta R_{b\overline{b}} < 2.0, \Delta R_{\gamma\gamma} < 2.0$	5.25
$122 < m_{\gamma\gamma} < 128 \text{ GeV}$	3.95
$100 < m_{b\bar{b}} < 150 \text{ GeV}$	2.90
H candidates $p_{\rm T} > 80 \text{ GeV}$	2.89

Main reducible backgrounds bbyj, ccyy,ccyj, bbjj, jjyy

For 3000fb-1, one expects 9.54+-0.03 signal events with 90.9+-2.0 background events Significance : 1.05σ

-0.8< λ/λsm < 7.7

Trilinear couplings: HH cumulative

Channel	Significance	Coupling limit	BR	Remarks
HH->bbyy	1.05 σ	-0.8<λ/λ _{SM} <7.7	0.3%	Reducible background
HH->bbbb	0.6 σ	-3.5<λ/λ _{SM} <11.0	33.%	Ttbar dominant. Sensitivity to PT jet threshold
HH->bbtt	0.6 σ	-4<λ/λ _{SM} <12.0	7.4%	Several categories combined
ttHH (HH->4b)	0.35 σ			Main background mistagged c-jets

For the (near) future:

- \rightarrow Need to include more channels
- \rightarrow Need to optimize the analyses
- \rightarrow Special care to fight the reducible backgrounds
- \rightarrow Develop intelligent MV techniques

CORFU September 2017 04/09/2017

Higgs production via VectorBosonFusion 52 H->ZZ*->4leptons

4 leptons (e, μ) and 2 jets P_T(jet)>30GeV, Mjj>130GeV Leptons within $|\eta| < 2.4$, jets up to $|\eta| = 4$

BDT to distinguish VBF from ggF Simultaneous fit of 3 BDT regions to take profit from different S/B ratios

Tracker extension to |η|=4: +14% on Z and +6% on Δμ/μ wrt current geometry

Higgs production via VectorBosonFusion 53 H->ZZ*->4leptons

4 leptons (e, μ) and 2 jets P_T(jet)>30GeV, Mjj>130GeV Leptons within |η|<2.4, jets up to |η|=4

BDT to distinguish VBF from ggF Simultaneous fit of 3 BDT regions to take profit from different S/B ratios

Tracker extension to |η|=4: +14% on Z and +6% on Δμ/μ wrt current geometry

Higgs production via VectorBosonFusion 54 H->ZZ*->4leptons

4 leptons (e, μ) and 2 jets P_T(jet)>30GeV, Mjj>130GeV Leptons within |η|<2.4, jets up to |η|=4

BDT to distinguish VBF from ggF Simultaneous fit of 3 BDT regions to take profit from different S/B ratios

Statistica	al uncertainty only	With 3000	fb-1
VBF + $2j$ events	ggF + 2j events	Z ₀ (VBF vs. ggF)	$\Delta \mu / \mu$
237 (206)	324 (159)	11.4	±0.134
Statistical uncert	tainty + QCD scale	var. uncertainty (S-T method
Statistical uncert VBF + $2j$ events	$\frac{\text{tainty} + \text{QCD scale}}{\text{ggF} + 2j \text{ events}}$	var. uncertainty (Z ₀ (VBF vs. ggF)	S-T method $\Delta \mu/\mu$

Tracker extension to |η|=4: +14% on Z and +6% on Δμ/μ wrt current geometry

Higgs production via VectorBosonFusion 55 H->WW*->4leptons

No W resonant mass. High ttbar background PTJet>60(50) GeV in opposite hemispheres **Require rapidity Gap**, **Mjj>1250GeV** Cut based analysis CORFU September 2017 04/09/2017

Using jets up to $|\eta|=4$: up to 50% gain in significance

Higgs production via VectorBosonFusion 56 H->WW*->4leptons

No W resonant mass. High ttbar background PTJet>60(50) GeV in opposite hemispheres **Require rapidity Gap**, **Mjj>1250GeV** Cut based analysis

N _{VBF}	Nbkg	NggF	N _{WW}	N _{VV}	$V = N_{ti}$	$\bar{t} = N_t$	NZ/	γ*+jets	N_{W+jets}
200	410	57	48	55	140	6 20)	27	0
			Δ_{μ}		Sign	ifican	$ce(\sigma)$		
		Full	1/2	None	Full	1/2	None		
		0.20	0.16	0.14	5.7	7.1	8.0		
					1				

Sensitivity given for 3 theoretical uncertainties scenarii

Using jets up to $|\eta|=4$: up to 50% gain in significance

ember 2017

Higgs production via VectorBosonFusion 57 H->WW*->4leptons ATL-PHYS-PUB-2016-018

GeV

40

200

150

No W resonant mass. High ttbar background PTJet>60(50) GeV in opposite hemispheres Require rapidity Gap, Mjj>1250GeV Cut based analysis

N _{VBF}	Nbkg	NggF	N _{WW}	V N _{VV}	V N _{ti}	N_t	N_{Z/γ^*}	+jets	N_{W+jets}
200	410	57	48	55	146	5 20) 27	1	0
			Δ_{μ}		Signi	ifican	$ce(\sigma)$		
		Full	1/2	None	Full	1/2	None		
		0.20	0.16	0.14	5.7	7.1	8.0		
					i		1.		

Events / 100 50 100 200 m_τ [GeV] $m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |p_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss}|^2},$

Single Top

Z+jets 🔜 W+jets

ggFH VBFH

ATLAS Simulation

√s=14 TeV, 3.0 ab⁻¹

VBF H \rightarrow WW \rightarrow evµv

Sensitivity given for 3 theoretical uncertainties scenarii

Using jets up to $|\eta| = 4$: up to 50% gain in significance

Higgs coupling to light leptons: H-> $\mu\mu$ ⁵⁸

Coupling to second generation **Candle for HL-LHC** Small BR ~ 2x10-4 ATLAS Run2 (36 fb-1) 13 TeV : µ=-0.1+-1.5 CORFU September 2017 04/09/2017

ATL-PHYS-PUB-2013-014

Higgs coupling to light leptons: H-> $\mu\mu$ ⁵⁹

Coupling to second generation **Candle for HL-LHC** Small BR ~ 2x10-4 ATLAS Run2 (36 fb-1) 13 TeV : µ=-0.1+-1.5

Projections for HL-LHC \rightarrow With Run 1-like cuts, cut based analysis \rightarrow Main background from Z/ γ^* , ttbar and WW

> With 3000 fb-1 \rightarrow 7.0 σ $\Delta \mu/\mu \rightarrow$ +- 20%

CORFU September 2017 04/09/2017

ATL-PHYS-PUB-2013-01

Ъ

Higgs coupling to light leptons: H->µµ 60 ATLAS Simulation Preliminary Ge CORFU September 2017 04/09/2017 $\sqrt{s} = 14 \text{ TeV}$ ŝ Events / 0. H $\rightarrow \mu\mu$, m_.=125 GeV L dt = 3000 fb — Z → μμ 10^{8} 10^{7} = WW → μνμν 10⁶ 10⁵ ATL-PHYS- 10^{4} 10^{3} 10^{2} 160 180 200 80 100 120 140 m_{uu} [GeV] PUB > 5000 9 4000 5 c = 14 TeV20 With 3000 fb-1 \rightarrow 7.0 σ 0 3000 $= 3000 \, \text{ft}$ 220 $\Delta \mu / \mu \rightarrow +-20\%$ Backgrour ယု Ż Ь et-200 ov Monte Carlo -400 110 120 140 150 m_{µµ} [GeV]

Coupling to second generation Candle for HL-LHC Small BR ~ 2x10-4 ATLAS Run2 (36 fb-1) 13 TeV : μ=-0.1+-1.5

Projections for HL-LHC \rightarrow With Run 1-like cuts, cut based analysis \rightarrow Main background from Z/ γ^* , that and WW

 \rightarrow Optimized analysis ready, coming soon public in the Muon – TDR.

Higgs coupling to light quarks H->J/ Ψ γ 61

Allows to probe the Higgs coupling to c quark Very small expected yield in SM, room for BSM

> Two OS muons Pt> 20GeV $|M \mu\mu-M (J/\Psi)| < 0.2 \text{ GeV}$ Isolated muons and photon PTy >36GeV $\Delta \phi(\mu\mu,\gamma) > 0.5$

CORFU September 2017 04/09/2017

Higgs coupling to light quarks H->J/ Ψ γ 62

Allows to probe the Higgs coupling to c quark Very small expected yield in SM, room for BSM

> Two OS muons Pt> 20GeV $|M \mu\mu-M (J/\Psi)| < 0.2 \text{ GeV}$ Isolated muons and photon PT $\gamma > 36 \text{GeV}$ $\Delta \phi(\mu\mu,\gamma) > 0.5$

	Expected branching ratio limit at 95% CL						
	$\mathcal{B}(H)$	$\rightarrow J/\psi\gamma)$ [10 ⁻⁶]	$\mathcal{B}\left(Z\to J/\psi\gamma\right)[\;10^{-7}\;]$				
	Cut Based	Multivariate Analysis	Cut Based				
300fb^{-1}	185^{+81}_{-52}	153^{+69}_{-43}	$7.0^{+2.7}_{-2.0}$				
3000fb^{-1}	55^{+24}_{-15}	44^{+19}_{-12}	$4.4^{+1.9}_{-1.1}$				
		Standard Model ex	pectation				
	$\mathcal{B}(H)$	$\rightarrow J/\psi\gamma)$ [10 ⁻⁶]	$\mathcal{B}\left(Z\to J/\psi\gamma\right)[\;10^{-7}\;]$				
		2.9 ± 0.2	0.80 ± 0.05				
	H-> J/	Ψγ : 15xSM	Z->J/Ψ γ : 4xSM				

Vector Boson Scattering

Check the damping of the longitudinal component boson cross section divergence around ~1TeV

Look at W+-W+-JJ : highest EW production cross-section wrt QCD

VV->WW+ 2jets (V=Z or W) 2 same sign leptons in |η|<4 and pt>25GeV 2 jets in |η|<4.5 and Pt>30 GeV CORFU September 2017 04/09/2017

Profit a lot from ITK extension

Vector Boson Scattering

Check the damping of the longitudinal component boson cross section divergence around ~1TeV

Look at W+-W+-JJ : highest EW production cross-section wrt QCD

VV->WW+ 2jets (V=Z or W) 2 same sign leptons in |η|<4 and pt>25GeV 2 jets in |η|<4.5 and Pt>30 GeV

Profit a lot from ITK extension

Vector Boson Scattering

Check the damping of the longitudinal component boson cross section divergence around ~1TeV

Look at W+-W+-JJ : highest EW production cross-section wrt QCD

VV->WW+ 2jets (V=Z or W) 2 same sign leptons in |η|<4 and pt>25GeV 2 jets in |η|<4.5 and Pt>30 GeV

Profit a lot from ITK extension

Since : optimization of the analysis to deal with pileup

ATL-TDR-025 · LHCC-2017-005

CORFU Sept 04/09/2017

Conclusions

---HL-LHC will reach unprecedented running conditions, very challenging for the detectors and offering exciting physics perspectives

--- Major upgrades are in preparation for the ATLAS detectors for robuster, faster, lighter and wider components

--- Various Physics prospects are under study in ATLAS with simulations that are continuously optimized.

--- Several properties of the Higgs sector will be measured with high precision, testing further the SM and constraining BSM

--- The HL-LHC program is a high-value and flag program of the HEP scientific community.

CORFU September 2017 04/09/2017

BACKUP

Few numbers on expected events with 3000fb-1

Decay Channel	Branching Ratio	Total Yield (3000 fb^{-1})
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
$b\overline{b} + au^+ au^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^- + au^+ au^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma \gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

HH decays

CORFU September 2017 04/09/2017

Tracks & vertex finding

Figure 4.12: Left: The number of primary reconstructed vertices per event in a $t\bar{t}$ sample with average μ = 200. Right: The number of reconstructed vertices versus μ for Run-2.

Level the luminosity

CORFU Septen@er 2017 04/09/2017

Tune the "crab" angleat Interaction points to

→keep luminosity ~constant along the fil
→Minimize the pileup

Leveling at 5x10**34 -> pileup ~140 Plan to register 3-4 fb-1/day 250-300 fb-1/year

Can go up to $7x10^{**}34$ -> pileup ~200

Inclined geometry.

71

CORFU September 2017 04/09/2017

The expected fluences

Charge particle fluence

Total ionizing dose

1 MeV neutron equivalent
Track reconstruction efficiency vs PT and η

CORFU September 2017 04/09/2017

Track resolutions

Transverse (d0) impact resolution : as in Run2 for Pt<100GeV **Longitudinal (z0) impact resolution**: Better than Run2 (smaller pixel pitch) **Momentum resolution :** 50% better than Run2 thanks to the higher nb of strip layers, degrades in forward regions

ATL-PHYS-PUB-2016-008

		C \			
		CORFU Septem 04/09/2017			
		ıber 20			
Pile-up impurity (%)					
BDTG > 0.8	0.6 < BDTG < 0.8	0 < BDTG < 0.6			
VBF Sample					
2.0	4.6	13.1			
ggF Sample					
23.2	37.9	52.1			

Events with >=1 pileup jet, in ggF or VBF

H->J/ψ γ

$J/\psi \gamma$ Final state							
	Expected Background				Signal		
	Inclusive QCD Other Backgrounds						
	Mass Range [GeV]		$Z \rightarrow \mu^+ \mu^- \gamma$	$H_{\gamma^*\gamma} \to \mu^+ \mu^- \gamma$			
	80-100	115-135			Ζ	Н	
Cut Based Analysis	7800 ± 500	3500 ± 400	780 ± 100	15.1 ±1.4	50 ± 3	3.2±0.1	
Aultivariate Analysis		1700 ± 200		13.7 ± 1.3		2.9 ± 0.1	

	Expected $\sigma \times \mathcal{B}$ limit at 95% CL			
	$\sigma (pp \to H) \times \mathcal{B} (H \to J/\psi\gamma) [\text{fb}]$			
	Cut Based	Multivariate Analysis		
$300 {\rm fb}^{-1}$	$10.4^{+2.9}_{-4.5}$	$8.6^{+2.4}_{-3.7}$		
$3000 {\rm fb^{-1}}$	$3.1^{+0.9}_{-1.3}$	$2.5^{+0.7}_{-1.0}$		

Higgs couplings: Extrapolating from Run1

ATLAS Simulation Preliminary √s = 14 TeV: [Ldt=300 fb⁻¹ ; [Ldt=3000 fb⁻¹ H→γγ (comb. (1j) (VBF-like) (WH-like) (ZH-like) (ttH-like) H→ZZ (comb. (VH-like (ttH-like) (VBF-like) (ggF-like) H→WW (comb. (Oj) (1j) (VBF-like) H→Zγ (incl $H \rightarrow b\overline{b}$ (comb. (WH-like) (ZH-like) H→ττ (VBF-like) H→uu (comb. (incl. (ttH-like) 0.2 0.4 0 Δμ/μ

77

Distinguish BSM from SM in HH looking at Mhh distribution

78

C.R.Chen and Ian Low

The tools for HL-LHC : the machine

To achieve high luminosities

- 1) Higher injected power (Linac4 under commissioning)
- 2) Better focusing (Nb³Sn triplets)
- 3) Powerful and longer collimation needs more free space. New 11T shorter dipoles introduced in some places

79

4) Level the delivered luminosity for the experiment (crab cavities) to deal with rates.

Trilinear couplings: HH->4b (BR=33%)

Require four b-tag jets Total acceptance ~4% 95% of the background: multijets 5% : ttbar events

80

Jet Threshold [GeV]	Background Systematics	σ/σ _{SM} 95% Exclusion	λ _{ΗΗΗ} /λ _{ΗΗΗ} Lower Limit	λ _{HHH} /λ SM Upper Limit
30 GeV	Negligible	1.5	0.2	7
30 GeV	Current	5.2	-3.5	11
75 GeV	Negligible	2.0	-3.4	12
75 GeV	Current	11.5	-7.4	14

Sensitivity to P_{T} (jet) and to systematics

H->µµ: Mass resolution

81