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STERILE NEUTRINOS, DARK MATTER, AND
RESONANCES in ¢¥'MSSM

Introduction

e The subgroup SO(10) x U(1), of Es can be decomposed, via
SU(5), to the MSSM gauge group times U(1), x U(1)y.

e One combination of these U(1)’s, denoted as U(1),, is assumed

here to be broken at a scale at least an order of magnitude greater
than the TeV scale of soft SUSY breaking.

o We refer to the MSSM accompanied by U(1),s as 1'MSSM.
e The RH neutrino in the 16-plet of SO(10) is a U(1), singlet.

e This enables the three RH neutrinos to acquire large masses, so
that the seesaw and leptogenesis scenarios can apply.

e We employ a U(1) R symmetry such that dimension five and
higher operators potentially causing proton decay are eliminated.

e The MSSM (i problem is resolved and the usual LSP of MSSM

remains a compelling dark matter candidate.

e The three SO(10) singlet sterile neutrino matter fields can only
acquire tiny masses S 0.1 eV if U(1), is broken around 10 TeV.

e The effective number of neutrinos at NS is changed by ~ 0.29.

e The lightest sterile sneutrino and two more particles stabilized by
discrete symmetries, can be additional CDM candidates.

o If the breaking scale of U(1),/ is increased to 10° TeV, the sterile
neutrinos become plausible candidates for keV scale warm DM.



e The contribution of the D-term for U(1),s to the mass my, of the
lightest Higgs boson of MSSM can be appreciable.

e So, in the decoupling limit, the observed value of m; = 125 GeV
can be obtained with relatively light stop quarks.

e In addition to the Z’ gauge boson associated with U(1),, the
model predicts diphoton and diquark resonances in the TeV range.

e A high luminosity or energy LHC upgrade may find them.

e The U(1),s breaking produces superconducting strings which may
be present in our galaxy.

e |f the breaking scale is not too high, a 100 TeV collider may be
able to make these strings.

2 The model

e Consider a SUSY model with gauge group G'sn x U(1),s, where
Gsyvi is SM gauge group.

e The GUT-normalized generator ),y of U(1),/ is given by

Qw' - i(QX + \/175@1#)

e Here (), and () are, respectively, the GUT-normalized generators
of the U(1), in SO(10) which commutes with SU(5) and the
U(1)y in Eg which commutes with SO(10).

e U(1), is to be spontaneously broken at a scale M.



e The important part of the W is

1
W= yuH,qu’ + yaHqd" + y, H,lv" + ye Hyle + oMy v*
+AN,NH H}+ kS(NN — M?) + X\pND;D§ + X, Djqq
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® Yy, Yd, Yu, Ye are the Yukawa couplings.

o g, u’, d° I, v° e are the usual quark and lepton superfields of
MSSM including the right handed neutrinos °.

o Hi, H) (i,j =1,2,3) are SU(2);, doublets with Y = 1/2, —1/2.
e N, N is a conjugate pair of SM singlets and S is a gauge singlet.

e The coupling AijHéHé is diagonalized and a Z5 symmetry under
which H and H{ (o = 2,3) are odd is imposed.

e So, only H;, H} couple to quarks and leptons and are the standard
electroweak Higgs superfields.

e D;and Df (i = 1,2,3) are color triplets and antitriplets with
Y = —1/3 and 1/3 and the coupling A\j) N D; D¢ is diagonalized.

e N; (i = 1,2,3) are SM singlets and \Y N;N;N?/2mp is again
diagonalized.

e We impose an extra Z; under which the N;'s are odd.

e To achieve MSSM gauge couplings unification, we introduced a
pair of SU(2), doublets L and L with Y = —1/2 and 1/2.

e q, ut, d° I, v° e, Hfb Hé, D;, D¢, and N; form three com-
plete E; 27-plets, while N, N and L, L are conjugate pairs from
incomplete F/g multiplets.



Superfields Representions Extra Symmetries
under Ggu Zo Z R 2\/EQ¢/
Matter Superfields
q (3,2,1/6) + + 1/2 1
ut (3,1,-2/3) + + 1/2 1
d° (3,1,1/3) + + 1/2 2
l (1,2,-1/2) + + 0 2
Ve (1,1,0) + + 1 0
e (1,1,1) + + 1 1
He (1,2,1/2) - + 1 —2
He (1,2,-1/2) - + 1 -3
D; (3,1,-1/3) + + 1 —2
D¢ (3,1,1/3) + + 1 -3
N; (1,1,0) + - 1 5
Higgs Superfiel
H! (1,2,1/2) + + 1 —2
H} (1,2,-1/2) + + 1 -3
S (1,1,0) + + 2 0
N (1,1,0) + + 0 5
N (1,1,0) + + 0 -5
Extra SU(2);, Doublet Superfields

L (1,2,-1/2) — n 0 -3
L (1,2,1/2) — + 0 3

e Here, we summarize the fields and their transformation properties.

e The symmetries allow also the following higher order terms:

V'HOLN, e HSLN, H H NI, H*HOI, H HSIL, HOHIL,

HIH]LL, HC?‘HC?[_/Z, qu‘qd°N, qu‘e‘IN, gd“V°IN,
ev'LLN, H qdIL, H' H*ILN, H' H.LLN N,

HYHPLLNN, H*qulLN, Hqd“ILLN,v*"H}LLN,

e“HNLLN,qd Lqd°L, D‘u‘uLLN, D¢d°d°LLN,

e‘qdILL, H} qd"LLN, Hjqu'LLN, H;H}ILLLN,

HYe*LLLNN,v°qu‘lLLN N, qu‘qu°LLN N,

e ’LLLLNN, H}qu‘lILLLN N .

e All the couplings can be multiplied by NN/m%, LL/m%, and



LINLIN /m$ arbitrarily many times.
e We assign baryon number B = —2/3 and 2/3 to D, and D¥.

e We then see that U(1)p is automatically present to all orders in
W and, thus, fast proton decay is avoided.

3 U(l)y breaking

e Assume that the breaking scale of U(1),/ is much bigger than the
electroweak scale so that this breaking is not affected by it.

e So, the U(1), breaking can be discussed by considering only
SW = kS(NN — M?).

e This gives the scalar potential
V = &’|NN — M|+ &*|S]*(IN|* + [N]?)
+ (AKSNN — (A — 2mg39)kM*S + H.c.)
+mi(|N|* + |[N|* 4+ |S]*) + D — terms.

e VM and k are made real and positive by field rephasing.

® M3/, is the gravitino mass, A ~ my); is the coefficient of the
trilinear soft terms taken real and positive, and mg ~ ms3)s.

e We assumed minimal SUGRA so that the coefficients of the tri-
linear and linear soft terms are related as shown.

e Vanishing of the D-terms = |N| = |[N| = N* = €N, while
minimization of the potential requires that ¥ = 0.

e So, N and N can be rotated to the positive real axis by U(1),.



e We find that the scalar potential is minimized at

(5) = ——2 <1+Z (m3/2)>,

n>1

<N>:<N>E\£/_M<1+Zd ( 3/2))

n>1
where ¢, d,, are numerical coefficients of order unity.

e For M > my)y, these formulas can be approximated as follows:

m N2 Ams ;s — m?2,, —md
(S) ~ — 3/2) 0~ M2+ / 3/2 0

K 2 K2

e The trilinear and linear soft terms play an important role.

e Substituting (IV), (IV), these terms yield a linear term in .S which,
together with the mass term of S, generates a VEV ~ TeV for S.

e Then substituting (S) in A\;.SLL, the superfields L, L acquire a
mass my, = A[(S)| = Armse/k.

e The MSSM y; term is obtained by substituting (N) in A\ NH, H
with 11 = X No/v/2.

o Also H, H} (v = 2,3) and D;, DY acquire masses ~ TeV from
Ny NHHY and NyN D; D¢ respectively.

e The mass spectrum of the scalar S — N — NN system can be
constructed by substituting N = (N)+dN and N = (N) +JN.

e For exact SUSY, we find two complex scalar fields .S and 0 =
(6N + 0N)//2 with equal masses mg = my = V2xM.

e Soft SUSY breaking mixes these fields yielding a mass splitting.

e The U(1),s breaking generates superconducting strings with rel-
atively small tension, which satisfies all the experimental bounds.



4 Electroweak Symmetry Breaking

e The standard V' for the radiative electroweak symmetry breaking
in MSSM is modified in the present model.

e One modification originates from the D-term for U(1),:

2
g _
Vp = % [—2|H,|* = 3|Ha> + 5 (IN|> = [N]))]”.

e g, is the GUT-normalized gauge coupling for U(1),s and H,,, H,
are the neutral components of the scalar parts of H., H}.

e To integrate out to one loop NV and IV, we express them in terms
of the canonically normalized real scalars 0V, 0N, @, ©:
1 1

(Ny+ 6N)elo.
V2 V2

N =——(Ny+6N)eMo, N=

e The combination |N|> — |N|? in the D-term then becomes
IN|? = |N|* = V2Noy + 1€,

with _
0N =N

_ ON+6N
TI \/5 Y :

S

e The D-term can now be expanded up to second order in 7, &:
2
g
Vp = % [EQ +10vV2NyEn + 50N2n* + - - } ,
where £ = —2|H,|* — 3| Hy|*.

e Note that we ignored the mixed quadratic term o< né since its
coefficient is much smaller than the coefficient of the n? term.



e We see that integrating out the heavy states reduces to the cal-
culation of a path integral over .

e Substitute N, N in terms of N, 6N, ¢, @, keeping only 7-
dependent terms up to 2nd order and substituting (S) and Ny,
the potential V' becomes

SV ~min* with mi = m§/2 +mg.

e Adding 6V to the D-term potential, we obtain the potential

92 12 2 A2\ 1 2 AT2
QWE 5g¢/N0 9 5g¢,N0
V, = 1
T TR0 ( R R A R A

e Calculating the path integral

/[&hﬂe_“@v

(V=the spacetime volume), we then find the term

gi/ 9 m2 -
oVp ~ =2 [21H,|? + 3| Hy?]" (1 Z
b = gy HF + S| ( +2m%>

to be added to the usual electroweak symmetry breaking potential.
e Here my = \/ggwao/Q is the mass of the Z’ gauge boson.

e Another modification of the electroweak potential comes from the
integration of the heavy field S with mass 2k M.



e This gives the extra term in the electroweak potential

1: I 1
—S A H[HA, with A, = EA;,
which reduces the well-known NMSSM term }i\Hu\z\Hd\z.

e From the modified electroweak V', we find the mass? of the lightest
neutral CP-even Higgs boson in the decoupling limit (m 4 > my):

m; = m% cos 23 + 4cv?(2sin? B + 3cos? B)% + )\202 sin? 23.

e Here )\, = S\M/\/? v = 246 GeV and

5 Diphoton Resonances

e The real (pseudo)scalar components 6 (65) of @ = (6 +i6)/v/2
with mass mg = /2kM can be produced at the LHC by gluon
fusion via a fermionic D;, Df loop.

e They can then decay into two photons via the same loop diagram
as well as a similar fermionic H!, H’ loop.

e The cross section of the diphoton excess is

Og 9

mesly,

where m = 1,2, C,, ~ 3163, /s ~ 13 TeV, and Iy, is the total
decay width of 6,,.

L0 — g9)U(0n — 77),

o(pp = O, — 7y) =~



e The decay widths of 6, to two gluons or two photons are

3.2 3 2
Mty
i=1
3.2 4 3
myos- cos” Oy
i=1
§23:A (1) 1+a2tan29w
5 - m\Yi Oy

o Ai(x) = 22 + (1 — 2)Ay(x), Ay(x) = 2z arcsin®(1/\/z), v; =
Amip, fmg, yi = dmi, fmg, mp, = Xp(N), mpy; = X, (N).

e The cross section simplifies if 6,,, decay predominantly into gluons,
ie. Iy, ~T(6,, — g9):

L0, — v7y)
me

o(pp = O, — vy) ~ 7.3 x 10° fh.

e Assume that x;, y; are just above unity, which maximizes A (z;),
As(y;) while still blocks the decay of 6, to D;, D¢ and H!, H},.

e We also consider the decay of 65 since As(z) > Aj(x).
e In this case, the cross section becomes

2
o(pp — 0y — yy) ~ 5.5 (—> fb ~ 11 k* fb.
(V)

e 0 could also decay into a bosonic L, L pair.

e Our estimate of the cross section holds if that the direct decay of
0 into a D;, Dy, or Hﬁ Hfl, or L, Lis kinematically blocked.



e This is achieved for

K 5 \/5)\3)7 \/5)\;“ 2)\Lm3/2.

mg

e Note that our estimate of the maximal diphoton excess corre-
sponds to saturating the first two of these inequalities.

e For simplicity and for not disturbing the MSSM gauge coupling
unification, we choose to saturate the third inequality too.

6 A Numerical Example

e g, unifies with the MSSM gauge couplings provided that its value
at low energies is equal to about 0.45.

e Demanding that the Z’ gauge boson mass my ~ /59, M /\/2 >
3.8 TeV, say, we then find M = 5.34 TeV.

e As an example, we will set M = 10 TeV.

e We can show that &, S\M remain perturbative up to the GUT scale
provided that they are not much bigger than about 0.7,

e Requiring that the diphoton resonance mass my = v2xM >
4.5 TeV as indicated by CMS, implies that x = 0.32.

e If the first two inequalities above are saturated, we have 0.5 >
Apy A, 2 0.22.

o We set \j) ~ X/ ~ 0.3 = Ay~ 0.3, k= 042, mp, ~ my, ~
3TeV (>~ 3 TeV), my>~6TeV, my ~ 7.1 TeV.

e Saturating the third inequality too, we obtain m; ~ 3 TeV.

e For k < 0.7, the resonance mass remains below 9.9 TeV.
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Figure 1: Higgs boson mass my, in the decoupling limit and for maximal stop quark mixing
versus Mgygy for M = 10 TeV, A, = 0.3, tan 8 = 20, and m3/, = 4 TeV. The bold horizontal

line corresponds to m;, = 125 GeV.

e We plot the Higgs mass m, in the decoupling limit versus Mgysy,
which is the geometric mean of the stop quark mass eigenvalues.

e \We assume maximal stop quark mixing, which maximizes my, and
include the two-loop radiative corrections to m;, in MSSM.

e The NMSSM and D-term contributions to m,, are also included.
e In this figure, tan 8 = 20 and mg/,, = 4 TeV.
e The NMSSM correction is very small since S\M is relatively small.

e [he D-term correction, however, is sizable and allows us to obtain
the observed my with much smaller stop quark masses than the
ones required in MSSM or NMSSM.

e Indeed, the inclusion of the D-term from U(1),s reduces Msysy
from about 1900 GeV to about 1200 GeV.



7 Sterile Neutrinos

e The sterile neutrinos, which are the fermionic parts of V;, acquire
masses ~ 107! eV for M ~ 10 TeV via Aj, N;N;N?/2mp.

e These fermionic fields, which are stable on account of the Z}
symmetry, can act as sterile neutrinos.

e In the early universe, sterile neutrinos are in equilibrium through
reactions like N;IN; <+ a pair of SM particles via a Z’ exchange.

e The interaction rate per sterile neutrino is 'y, ~ T°/M?*.

e The decoupling temperature T is then found from the condition
['n, ~ H =the Hubble parameter, which implies that

1

M\ 3

o~ 0t (50
mp

e The strategy is the same as the one used for the SM neutrino
decoupling via processes involving weak gauge boson exchange.

e For SM neutrinos, M should be the electroweak scale ~ 100 GeV,
and the decoupling temperature turns out to be ~ 1 MeV.,

e So, for M ~ 10 TeV, T is expected to be ~ 460 MeV, which is
well above the critical temperature for the QCD transition.

e The effective number of massless degrees of freedom in equilibrium
right after the decoupling of sterile neutrinos is 61.75.

e At decoupling of the SM neutrinos, this number becomes 10.75.

e Due to entropy conservation, the T" of SM neutrinos is raised rel-
ative to that of the sterile neutrinos by a factor (61.75/10.75)"/3.



e Consequently, the contribution of the three sterile neutrinos to the
effective number of neutrinos at big bang nucleosynthesis is

4
10.75\3
AN, =3 x [ —— | =~0.29.
61.75
e This is perfectly compatible with the Planck satellite bound

N, =3.154+0.23.

Dark Matter

e The bosonic N; with mass ~ mj3/5 can decay into a fermionic 1V;
and a particle-sparticle pair via a Z’ gaugino exchange.

e A necessary condition for this is that there exist sparticles which
are lighter than the scalar MV;.

e If the decay of the lightest scalar N; (denoted as N) is kinemati-
cally blocked, this particle can contribute to the CDM.

e We estimate the freeze-out temperature T} of N and its relic
abundance QNh2 for the lowest M ~ 5.34 TeV.

e The requirement that QNhQ equals the Qcpyh? ~ 0.12 implies
that m ~ 1.25 TeV and Tf ~ 51 GeV.

e The model possesses an accidental lepton parity symmetry Zép
under which [, €, ¢, L, L are odd.

e Combining Z;” with the Z,” C U(1)p, we obtain a matter parity
symmetry Z,* under which ¢, u¢, d¢, [, ¢, v°, L, L are odd.

e A R-parity is then generated combining Z;"" with fermion parity.



e Particles with negative R-parity except the bosonic L, L and the
fermionic H, H{, N; decay to the LSP which is CDM candidate.

e 75 and R-parity = the lightest state in the bosonic (fermionic)
L, L and fermionic (bosonic) HY, H¢ is stable.

e \We thus have two more candidates for CDM with their relic abun-
dances depending on details.

e Finally, if (IV) is increased to ~ 10° TeV, the sterile neutrinos
become plausible candidates for keV scale warm dark matter.

9 Summary

e We appended U(1),s to the MSSM gauge group.
e This U(1), is a linear combination of U(1),, U(1)y C E.

e The three matter 27-plets in Ej give rise to three SO(10) singlet
fermions V;, called sterile neutrinos.

e For a relatively low (~ 10 TeV) breaking scale of U(1),, the
sterile neutrinos acquire masses < 0.1 eV.

e Their contribution as fractional cosmic neutrinos is acceptable.
e The model possesses many possible candidates for DM.

e The D-term for U(1),s contributes appreciably to my, and, thus
my, = 125 GeV can be obtained with relatively light stop quarks.

e The model predicts superconducting cosmic strings as well as di-
quark and diphoton resonances.

e The i problem is naturally solved and the RH neutrinos masses
are large allowing the seesaw and leptogenesis scenarios to apply.

e Baryon number is conserved to all orders in perturbation theory.



