STERILE NEUTRINOS, DARK MATTER, AND RESONANCES in ψ' MSSM

1 Introduction

- The subgroup $SO(10) \times U(1)_{\psi}$ of E_6 can be decomposed, via SU(5), to the MSSM gauge group times $U(1)_{\chi} \times U(1)_{\psi}$.
- ullet One combination of these U(1)'s, denoted as $U(1)_{\psi'}$, is assumed here to be broken at a scale at least an order of magnitude greater than the TeV scale of soft SUSY breaking.
- We refer to the MSSM accompanied by $U(1)_{\psi'}$ as $\psi' MSSM$.
- ullet The RH neutrino in the 16-plet of SO(10) is a $U(1)_{\psi'}$ singlet.
- This enables the three RH neutrinos to acquire large masses, so that the seesaw and leptogenesis scenarios can apply.
- ullet We employ a U(1) R symmetry such that dimension five and higher operators potentially causing proton decay are eliminated.
- ullet The MSSM μ problem is resolved and the usual LSP of MSSM remains a compelling dark matter candidate.
- The three SO(10) singlet sterile neutrino matter fields can only acquire tiny masses $\lesssim 0.1~{\rm eV}$ if $U(1)_{\psi'}$ is broken around 10 TeV.
- The effective number of neutrinos at NS is changed by $\simeq 0.29$.
- The lightest sterile sneutrino and two more particles stabilized by discrete symmetries, can be additional CDM candidates.
- If the breaking scale of $U(1)_{\psi'}$ is increased to 10^3 TeV , the sterile neutrinos become plausible candidates for keV scale warm DM.

- The contribution of the D-term for $U(1)_{\psi'}$ to the mass m_h of the lightest Higgs boson of MSSM can be appreciable.
- So, in the decoupling limit, the observed value of $m_h=125~{\rm GeV}$ can be obtained with relatively light stop quarks.
- In addition to the Z' gauge boson associated with $U(1)_{\psi'}$, the model predicts diphoton and diquark resonances in the TeV range.
- A high luminosity or energy LHC upgrade may find them.
- The $U(1)_{\psi'}$ breaking produces superconducting strings which may be present in our galaxy.
- If the breaking scale is not too high, a 100 TeV collider may be able to make these strings.

2 The model

- ullet Consider a SUSY model with gauge group $G_{\mathrm{SM}} imes U(1)_{\psi'}$, where G_{SM} is SM gauge group.
- ullet The GUT-normalized generator $Q_{\psi'}$ of $U(1)_{\psi'}$ is given by

$$Q_{\psi'} = \frac{1}{4}(Q_{\chi} + \sqrt{15}Q_{\psi}).$$

- Here Q_{χ} and Q_{ψ} are, respectively, the GUT-normalized generators of the $U(1)_{\chi}$ in SO(10) which commutes with SU(5) and the $U(1)_{\psi}$ in E_6 which commutes with SO(10).
- $U(1)_{\psi'}$ is to be spontaneously broken at a scale M.

ullet The important part of the W is

$$W = y_{u}H_{u}^{1}qu^{c} + y_{d}H_{d}^{1}qd^{c} + y_{\nu}H_{u}^{1}l\nu^{c} + y_{e}H_{d}^{1}le^{c} + \frac{1}{2}M_{\nu^{c}}\nu^{c}\nu^{c} + \lambda_{\mu}^{i}NH_{u}^{i}H_{d}^{i} + \kappa S(N\bar{N} - M^{2}) + \lambda_{D}^{i}ND_{i}D_{i}^{c} + \lambda_{q}^{i}D_{i}qq + \lambda_{q}^{i}D_{i}^{c}u^{c}d^{c} + \lambda_{L}SL\bar{L} + \lambda_{H_{d}}^{\alpha}\nu^{c}\bar{L}H_{d}^{\alpha} + \lambda_{N}^{i}N_{i}N_{i}\frac{\bar{N}^{2}}{2m_{P}}.$$

- y_u , y_d , y_ν , y_e are the Yukawa couplings.
- q, u^c , d^c , l, ν^c , e^c are the usual quark and lepton superfields of MSSM including the right handed neutrinos ν^c .
- H_u^i , H_d^j (i, j = 1, 2, 3) are $SU(2)_L$ doublets with Y = 1/2, -1/2.
- ullet N, $ar{N}$ is a conjugate pair of SM singlets and S is a gauge singlet.
- The coupling $\lambda_{\mu}^{ij}NH_{u}^{i}H_{d}^{j}$ is diagonalized and a Z_{2} symmetry under which H_{u}^{α} and H_{d}^{α} ($\alpha=2,3$) are odd is imposed.
- So, only H_u^1 , H_d^1 couple to quarks and leptons and are the standard electroweak Higgs superfields.
- D_i and D_i^c (i=1,2,3) are color triplets and antitriplets with Y=-1/3 and 1/3 and the coupling $\lambda_D^{ij}ND_iD_i^c$ is diagonalized.
- N_i (i=1,2,3) are SM singlets and $\lambda_N^{ij}N_iN_j\bar{N}^2/2m_{\rm P}$ is again diagonalized.
- ullet We impose an extra Z_2' under which the N_i 's are odd.
- ullet To achieve MSSM gauge couplings unification, we introduced a pair of $SU(2)_{\rm L}$ doublets L and \bar{L} with Y=-1/2 and 1/2.
- q, u^c , d^c , l, ν^c , e^c , H^i_u , H^i_d , D_i , D^c_i , and N_i form three complete E_6 27-plets, while N, \bar{N} and L, \bar{L} are conjugate pairs from incomplete E_6 multiplets.

Superfields	Representions	Extra Symmetries			
	under $G_{\rm SM}$	Z_2	Z_2'	R	$2\sqrt{10}Q_{\psi'}$
Matter Superfields					
\overline{q}	(3, 2, 1/6)	+	+	1/2	1
u^c	$(\bar{\bf 3},{\bf 1},-2/3)$	+	+	1/2	1
d^c	$(\bar{\bf 3},{\bf 1},1/3)$	+	+	1/2	2
l	(1 , 2 , -1/2)	+	+	0	2
$ u^c$	$({f 1},{f 1},0)$	+	+	1	0
e^c	$({f 1},{f 1},1)$	+	+	1	1
H_u^{α}	(1, 2, 1/2)	_	+	1	-2
H_d^{α}	(1, 2, -1/2)	_	+	1	-3
D_i°	(3,1,-1/3)	+	+	1	-2
D_i^c	$(\bar{\bf 3},{\bf 1},1/3)$	+	+	1	-3
N_{i}	$({f 1},{f 1},0)$	+	_	1	5
Higgs Superfields					
H_u^1	(1, 2, 1/2)	+	+	1	-2
$H_d^{\widetilde{1}}$ S	$({f 1},{f 2},-1/2)$	+	+	1	-3
S	$({f 1},{f 1},0)$	+	+	2	0
N	(1, 1, 0)	+	+	0	5
$ar{N}$	$({f 1},{f 1},0)$	+	+	0	-5
Extra $SU(2)_{\rm L}$ Doublet Superfields					
\overline{L}	(1, 2, -1/2)	_	+	0	-3
\bar{L}	$({f 1},{f 2},1/2)$	_	+	0	3

- Here, we summarize the fields and their transformation properties.
- The symmetries allow also the following higher order terms:

$$\begin{split} & \nu^c H_u^\alpha L N, e^c H_d^\alpha L \bar{N}, H_u^1 H_u^1 l l, H_u^\alpha H_u^\beta l l, H_u^1 H_d^\alpha l \bar{L}, H_u^\alpha H_d^1 l \bar{L}, \\ & H_d^1 H_d^1 \bar{L} \bar{L}, H_d^\alpha H_d^\beta \bar{L} \bar{L}, q u^c q d^c \bar{N}, q u^c e^c l \bar{N}, q d^c \nu^c l \bar{N}, \\ & e^c \nu^c L L N, H_u^\alpha q d^c l L, H_u^1 H_u^\alpha l L N, H_u^1 H_u^1 L L N N, \\ & H_u^\alpha H_u^\beta L L N N, H_u^\alpha q u^c l \bar{L} \bar{N}, H_d^\alpha q d^c l \bar{L} \bar{N}, \nu^c H_d^1 l \bar{L} \bar{L} \bar{N}, \\ & e^c H_u^1 l L L N, q d^c L q d^c L, D_i^c u^c u^c \bar{L} \bar{L} \bar{N}, D_i^c d^c d^c L L N, \\ & e^c q d^c l L L, H_u^1 q d^c L L N, H_d^1 q u^c \bar{L} \bar{L} \bar{N}, H_d^1 H_d^\alpha l \bar{L} \bar{L} \bar{L} \bar{N}, \\ & H_u^\alpha e^c L L L N N, \nu^c q u^c l \bar{L} \bar{L} \bar{N} \bar{N}, q u^c q u^c \bar{L} \bar{L} \bar{N} \bar{N}, \\ & e^c e^c L L L L N N, H_d^\alpha q u^c l \bar{L} \bar{L} \bar{L} \bar{N} \bar{N}. \end{split}$$

 \bullet All the couplings can be multiplied by $N\bar{N}/m_{\rm P}^2$, $L\bar{L}/m_{\rm P}^2$, and

 $ar{L}lar{N}ar{L}lar{N}/m_{
m P}^6$ arbitrarily many times.

- We assign baryon number B = -2/3 and 2/3 to D_i and D_i^c .
- ullet We then see that $U(1)_B$ is automatically present to all orders in W and, thus, fast proton decay is avoided.

3 $U(1)_{\psi'}$ breaking

- Assume that the breaking scale of $U(1)_{\psi'}$ is much bigger than the electroweak scale so that this breaking is not affected by it.
- ullet So, the $U(1)_{\psi'}$ breaking can be discussed by considering only

$$\delta W = \kappa S(N\bar{N} - M^2).$$

This gives the scalar potential

$$V = \kappa^{2} |N\bar{N} - M^{2}|^{2} + \kappa^{2} |S|^{2} (|N|^{2} + |\bar{N}|^{2})$$

$$+ (A\kappa SN\bar{N} - (A - 2m_{3/2})\kappa M^{2}S + \text{H.c.})$$

$$+ m_{0}^{2} (|N|^{2} + |\bar{N}|^{2} + |S|^{2}) + \text{D - terms.}$$

- ullet M and κ are made real and positive by field rephasing.
- $m_{3/2}$ is the gravitino mass, $A \sim m_{3/2}$ is the coefficient of the trilinear soft terms taken real and positive, and $m_0 \sim m_{3/2}$.
- We assumed minimal SUGRA so that the coefficients of the trilinear and linear soft terms are related as shown.
- Vanishing of the D-terms $\Rightarrow |N| = |\bar{N}| \Rightarrow \bar{N}^* = e^{i\vartheta}N$, while minimization of the potential requires that $\vartheta = 0$.
- \bullet So, N and \bar{N} can be rotated to the positive real axis by $U(1)_{\psi'}.$

We find that the scalar potential is minimized at

$$\langle S \rangle = -\frac{m_{3/2}}{\kappa} \left(1 + \sum_{n \ge 1} c_n \left(\frac{m_{3/2}}{M} \right)^n \right),$$

$$\langle N \rangle = \langle \bar{N} \rangle \equiv \frac{N_0}{\sqrt{2}} = M \left(1 + \sum_{n \ge 1} d_n \left(\frac{m_{3/2}}{M} \right)^n \right),$$

where c_n , d_n are numerical coefficients of order unity.

 \bullet For $M\gg m_{3/2}$, these formulas can be approximated as follows:

$$\langle S \rangle \simeq -\frac{m_{3/2}}{\kappa}, \quad \frac{N_0^2}{2} \simeq M^2 + \frac{Am_{3/2} - m_{3/2}^2 - m_0^2}{\kappa^2}.$$

- The trilinear and linear soft terms play an important role.
- Substituting $\langle N \rangle$, $\langle \bar{N} \rangle$, these terms yield a linear term in S which, together with the mass term of S, generates a VEV \sim TeV for S.
- Then substituting $\langle S \rangle$ in $\lambda_L S L \bar{L}$, the superfields L, \bar{L} acquire a mass $m_L = \lambda_L |\langle S \rangle| = \lambda_L m_{3/2}/\kappa$.
- The MSSM μ term is obtained by substituting $\langle N \rangle$ in $\lambda_{\mu}^1 N H_u^1 H_d^1$ with $\mu = \lambda_{\mu}^1 N_0 / \sqrt{2}$.
- Also H_u^{α} , H_d^{α} ($\alpha=2,3$) and D_i , D_i^c acquire masses \sim TeV from $\lambda_u^{\alpha}NH_u^{\alpha}H_d^{\alpha}$ and $\lambda_D^iND_iD_i^c$ respectively.
- ullet The mass spectrum of the scalar $S-N-ar{N}$ system can be constructed by substituting $N=\langle N \rangle + \delta \tilde{N}$ and $\bar{N}=\langle \bar{N} \rangle + \delta \tilde{\bar{N}}$.
- For exact SUSY, we find two complex scalar fields S and $\theta=(\delta \tilde{N}+\delta \tilde{\bar{N}})/\sqrt{2}$ with equal masses $m_S=m_\theta=\sqrt{2}\kappa M$.
- Soft SUSY breaking mixes these fields yielding a mass splitting.
- The $U(1)_{\psi'}$ breaking generates superconducting strings with relatively small tension, which satisfies all the experimental bounds.

4 Electroweak Symmetry Breaking

- ullet The standard V for the radiative electroweak symmetry breaking in MSSM is modified in the present model.
- ullet One modification originates from the D-term for $U(1)_{\psi'}$:

$$V_D = \frac{g_{\psi'}^2}{80} \left[-2|H_u|^2 - 3|H_d|^2 + 5\left(|N|^2 - |\bar{N}|^2\right) \right]^2.$$

- $g_{\psi'}$ is the GUT-normalized gauge coupling for $U(1)_{\psi'}$ and H_u , H_d are the neutral components of the scalar parts of H_u^1 , H_d^1 .
- To integrate out to one loop N and \bar{N} , we express them in terms of the canonically normalized real scalars δN , $\delta \bar{N}$, φ , $\bar{\varphi}$:

$$N = \frac{1}{\sqrt{2}}(N_0 + \delta N)e^{\frac{i\varphi}{N_0}}, \quad \bar{N} = \frac{1}{\sqrt{2}}(N_0 + \delta \bar{N})e^{\frac{i\bar{\varphi}}{N_0}}.$$

ullet The combination $|N|^2-|ar{N}|^2$ in the D-term then becomes

$$|N|^2 - |\bar{N}|^2 = \sqrt{2}N_0\eta + \eta\xi,$$

with

$$\eta = \frac{\delta N - \delta \bar{N}}{\sqrt{2}}, \quad \xi = \frac{\delta N + \delta \bar{N}}{\sqrt{2}}.$$

• The D-term can now be expanded up to second order in η , ξ :

$$V_D = \frac{g_{\psi'}^2}{80} \left[E^2 + 10\sqrt{2}N_0E\eta + 50N_0^2\eta^2 + \cdots \right],$$
 where $E \equiv -2|H_u|^2 - 3|H_d|^2$.

• Note that we ignored the mixed quadratic term $\propto \eta \xi$ since its coefficient is much smaller than the coefficient of the η^2 term.

- We see that integrating out the heavy states reduces to the calculation of a path integral over η .
- Substitute N, \bar{N} in terms of δN , $\delta \bar{N}$, φ , $\bar{\varphi}$, keeping only η -dependent terms up to 2nd order and substituting $\langle S \rangle$ and N_0 , the potential V becomes

$$\delta V \simeq m_N^2 \eta^2$$
 with $m_N^2 \equiv m_{3/2}^2 + m_0^2$.

ullet Adding δV to the D-term potential, we obtain the potential

$$V_{\eta} = \frac{g_{\psi'}^{2} E^{2}}{80} \left(1 + \frac{5g_{\psi'}^{2} N_{0}^{2}}{8m_{N}^{2}} \right)^{-1} + \left(m_{N}^{2} + \frac{5g_{\psi'}^{2} N_{0}^{2}}{8} \right)$$

$$\times \left(\eta + \frac{g_{\psi'}^{2} N_{0} E}{8\sqrt{2} \left(m_{N}^{2} + \frac{5g_{\psi'}^{2} N_{0}^{2}}{8} \right)} \right)^{2} + \cdots$$

Calculating the path integral

$$\int (d\eta)e^{-iV_{\eta}\mathcal{V}}$$

(\mathcal{V} =the spacetime volume), we then find the term

$$\delta V_D \simeq \frac{g_{\psi'}^2}{80} \left[2|H_u|^2 + 3|H_d|^2 \right]^2 \left(1 + \frac{m_{Z'}^2}{2m_N^2} \right)^{-1}$$

to be added to the usual electroweak symmetry breaking potential.

- \bullet Here $m_{Z'}=\sqrt{5}g_{\psi'}N_0/2$ is the mass of the Z' gauge boson.
- Another modification of the electroweak potential comes from the integration of the heavy field S with mass $\sqrt{2}\kappa M$.

• This gives the extra term in the electroweak potential

$$-\frac{1}{2}\tilde{\lambda}_{\mu}^{2}|H_{u}|^{2}|H_{d}|^{2}, \quad \text{with} \quad \tilde{\lambda}_{\mu} = \frac{1}{\sqrt{2}}\lambda_{\mu}^{1},$$

which reduces the well-known NMSSM term $\tilde{\lambda}_{\mu}^2 |H_u|^2 |H_d|^2$.

• From the modified electroweak V, we find the mass^2 of the lightest neutral CP-even Higgs boson in the decoupling limit $(m_A \gg m_Z)$:

$$m_h^2 = m_Z^2 \cos^2 2\beta + 4cv^2 (2\sin^2 \beta + 3\cos^2 \beta)^2 + \lambda_\mu^2 v^2 \sin^2 2\beta.$$

• Here $\lambda_{\mu} \equiv \tilde{\lambda}_{\mu}/\sqrt{2}$, v = 246 GeV and

$$c = \frac{g_{\psi'}^2}{80} \left(1 + \frac{m_{Z'}^2}{2m_N^2} \right)^{-1}.$$

5 Diphoton Resonances

- The real (pseudo)scalar components θ_1 (θ_2) of $\theta = (\theta_1 + i\theta_2)/\sqrt{2}$ with mass $m_\theta = \sqrt{2}\kappa M$ can be produced at the LHC by gluon fusion via a fermionic D_i , D_i^c loop.
- They can then decay into two photons via the same loop diagram as well as a similar fermionic H_u^i , H_d^i loop.
- The cross section of the diphoton excess is

$$\sigma(pp \to \theta_m \to \gamma\gamma) \simeq \frac{C_{gg}}{m_\theta s \Gamma_{\theta_m}} \Gamma(\theta_m \to gg) \Gamma(\theta_m \to \gamma\gamma),$$

where m=1,2, $C_{gg}\simeq 3163$, $\sqrt{s}\simeq 13~{\rm TeV}$, and Γ_{θ_m} is the total decay width of θ_m .

ullet The decay widths of $heta_m$ to two gluons or two photons are

$$\Gamma(\theta_m \to gg) = \frac{m_\theta^3 \alpha_s^2}{512 \pi^3 \langle N \rangle^2} \left(\sum_{i=1}^3 A_m(x_i) \right)^2,$$

$$\Gamma(\theta_m \to \gamma \gamma) = \frac{m_\theta^3 \alpha_Y^2 \cos^4 \theta_W}{9216 \pi^3 \langle N \rangle^2} \left[\sum_{i=1}^3 A_m(x_i) + \frac{3}{2} \sum_{i=1}^3 A_m(y_i) \left(1 + \frac{\alpha_2 \tan^2 \theta_W}{\alpha_Y} \right) \right]^2.$$

- $A_1(x) = 2x + (1-x)A_2(x)$, $A_2(x) = 2x \arcsin^2(1/\sqrt{x})$, $x_i = 4m_{D_i}^2/m_{\theta}^2$, $y_i = 4m_{H_i}^2/m_{\theta}^2$, $m_{D_i} = \lambda_D^i \langle N \rangle$, $m_{H_i} = \lambda_\mu^i \langle N \rangle$.
- The cross section simplifies if θ_m decay predominantly into gluons, i.e. $\Gamma_{\theta_m} \simeq \Gamma(\theta_m \to gg)$:

$$\sigma(pp \to \theta_m \to \gamma\gamma) \simeq 7.3 \times 10^6 \frac{\Gamma(\theta_m \to \gamma\gamma)}{m_\theta}$$
 fb.

- Assume that x_i , y_i are just above unity, which maximizes $A_1(x_i)$, $A_2(y_i)$ while still blocks the decay of θ_m to D_i , D_i^c and H_u^i , H_d^i .
- We also consider the decay of θ_2 since $A_2(x) > A_1(x)$.
- In this case, the cross section becomes

$$\sigma(pp \to \theta_2 \to \gamma\gamma) \simeq 5.5 \left(\frac{m_\theta}{\langle N \rangle}\right)^2 \text{ fb} \simeq 11 \,\kappa^2 \text{ fb}.$$

- ullet heta could also decay into a bosonic L, \bar{L} pair.
- Our estimate of the cross section holds if that the direct decay of θ into a D_i , D_i^c , or H_u^i , H_d^i , or L, \bar{L} is kinematically blocked.

This is achieved for

$$\kappa \lesssim \sqrt{2}\lambda_D^i, \sqrt{2}\lambda_\mu^i, 2\lambda_L \frac{m_{3/2}}{m_\theta}.$$

- Note that our estimate of the maximal diphoton excess corresponds to saturating the first two of these inequalities.
- For simplicity and for not disturbing the MSSM gauge coupling unification, we choose to saturate the third inequality too.

6 A Numerical Example

- $g_{\psi'}$ unifies with the MSSM gauge couplings provided that its value at low energies is equal to about 0.45.
- Demanding that the Z' gauge boson mass $m_{Z'} \simeq \sqrt{5} g_{\psi'} M/\sqrt{2} > 3.8~{\rm TeV}$, say, we then find $M \gtrsim 5.34~{\rm TeV}$.
- ullet As an example, we will set $M=10~{
 m TeV}.$
- We can show that κ , $\tilde{\lambda}_{\mu}$ remain perturbative up to the GUT scale provided that they are not much bigger than about 0.7.
- Requiring that the diphoton resonance mass $m_{\theta} = \sqrt{2}\kappa M \gtrsim 4.5~{\rm TeV}$ as indicated by CMS, implies that $\kappa \gtrsim 0.32$.
- If the first two inequalities above are saturated, we have $0.5 \gtrsim \lambda_D^i, \lambda_\mu^i \gtrsim 0.22$.
- We set $\lambda_D^i \simeq \lambda_\mu^i \simeq 0.3 \Rightarrow \tilde{\lambda}_\mu \simeq 0.3$, $\kappa \simeq 0.42$, $m_{D_i} \simeq m_{H_i} \simeq 3 \text{ TeV}$ ($\mu \simeq 3 \text{ TeV}$), $m_\theta \simeq 6 \text{ TeV}$, $m_{Z'} \simeq 7.1 \text{ TeV}$.
- Saturating the third inequality too, we obtain $m_L \simeq 3 \,\, {\rm TeV}$.
- For $\kappa \lesssim 0.7$, the resonance mass remains below $9.9~{\rm TeV}.$

Figure 1: Higgs boson mass m_h in the decoupling limit and for maximal stop quark mixing versus $M_{\rm SUSY}$ for $M=10~{\rm TeV}$, $\tilde{\lambda}_{\mu}=0.3$, $\tan\beta=20$, and $m_{3/2}=4~{\rm TeV}$. The bold horizontal line corresponds to $m_h=125~{\rm GeV}$.

- We plot the Higgs mass m_h in the decoupling limit versus $M_{\rm SUSY}$, which is the geometric mean of the stop quark mass eigenvalues.
- We assume maximal stop quark mixing, which maximizes m_h , and include the two-loop radiative corrections to m_h in MSSM.
- ullet The NMSSM and D-term contributions to m_h are also included.
- In this figure, $\tan \beta = 20$ and $m_{3/2} = 4$ TeV.
- ullet The NMSSM correction is very small since $\tilde{\lambda}_{\mu}$ is relatively small.
- The D-term correction, however, is sizable and allows us to obtain the observed m_h with much smaller stop quark masses than the ones required in MSSM or NMSSM.
- Indeed, the inclusion of the D-term from $U(1)_{\psi'}$ reduces $M_{\rm SUSY}$ from about $1900~{\rm GeV}$ to about $1200~{\rm GeV}$.

7 Sterile Neutrinos

- The sterile neutrinos, which are the fermionic parts of N_i , acquire masses $\sim 10^{-1}~{\rm eV}$ for $M \sim 10~{\rm TeV}$ via $\lambda_N^i N_i N_i \bar{N}^2 / 2 m_{\rm P}$.
- These fermionic fields, which are stable on account of the Z_2' symmetry, can act as sterile neutrinos.
- In the early universe, sterile neutrinos are in equilibrium through reactions like $N_i\bar{N}_i \leftrightarrow$ a pair of SM particles via a Z' exchange.
- The interaction rate per sterile neutrino is $\Gamma_{N_i} \sim T^5/M^4$.
- ullet The decoupling temperature $T_{\rm D}$ is then found from the condition $\Gamma_{N_i} \sim H$ =the Hubble parameter, which implies that

$$T_{\rm D} \sim M \left(\frac{M}{m_{\rm P}}\right)^{\frac{1}{3}}.$$

- The strategy is the same as the one used for the SM neutrino decoupling via processes involving weak gauge boson exchange.
- ullet For SM neutrinos, M should be the electroweak scale $\sim 100~{
 m GeV}$, and the decoupling temperature turns out to be $\sim 1~{
 m MeV}$.
- So, for $M \simeq 10~{\rm TeV}$, $T_{\rm D}$ is expected to be $\simeq 460~{\rm MeV}$, which is well above the critical temperature for the QCD transition.
- The effective number of massless degrees of freedom in equilibrium right after the decoupling of sterile neutrinos is 61.75.
- At decoupling of the SM neutrinos, this number becomes 10.75.
- Due to entropy conservation, the T of SM neutrinos is raised relative to that of the sterile neutrinos by a factor $(61.75/10.75)^{1/3}$.

• Consequently, the contribution of the three sterile neutrinos to the effective number of neutrinos at big bang nucleosynthesis is

$$\Delta N_{\nu} = 3 \times \left(\frac{10.75}{61.75}\right)^{\frac{4}{3}} \simeq 0.29.$$

• This is perfectly compatible with the Planck satellite bound

$$N_{\nu} = 3.15 \pm 0.23.$$

8 Dark Matter

- The bosonic N_i with mass $\sim m_{3/2}$ can decay into a fermionic N_i and a particle-sparticle pair via a Z' gaugino exchange.
- ullet A necessary condition for this is that there exist sparticles which are lighter than the scalar N_i .
- If the decay of the lightest scalar N_i (denoted as \hat{N}) is kinematically blocked, this particle can contribute to the CDM.
- We estimate the freeze-out temperature $T_{\rm f}$ of \hat{N} and its relic abundance $\Omega_{\hat{N}}h^2$ for the lowest $M \simeq 5.34~{\rm TeV}.$
- The requirement that $\Omega_{\hat{N}}h^2$ equals the $\Omega_{\rm CDM}h^2\simeq 0.12$ implies that $m_{\hat{N}}\simeq 1.25~{\rm TeV}$ and $T_{\rm f}\simeq 51~{\rm GeV}$.
- The model possesses an accidental lepton parity symmetry $Z_2^{
 m lp}$ under which $l,\ e^c,\ \nu^c,\ L,\ \bar L$ are odd.
- ullet Combining $Z_2^{
 m lp}$ with the $Z_2^{
 m bp}\subset U(1)_B$, we obtain a matter parity symmetry $Z_2^{
 m mp}$ under which q, u^c , d^c , l, e^c , u^c , L, ar L are odd.
- ullet A R-parity is then generated combining Z_2^{mp} with fermion parity.

- ullet Particles with negative R-parity except the bosonic L, \bar{L} and the fermionic H_u^{lpha} , H_d^{lpha} , N_i decay to the LSP which is CDM candidate.
- Z_2 and R-parity \Rightarrow the lightest state in the bosonic (fermionic) L, \bar{L} and fermionic (bosonic) H_u^{α} , H_d^{α} is stable.
- We thus have two more candidates for CDM with their relic abundances depending on details.
- \bullet Finally, if $\langle N \rangle$ is increased to $\sim 10^3~{\rm TeV}$, the sterile neutrinos become plausible candidates for keV scale warm dark matter.

9 Summary

- ullet We appended $U(1)_{\psi'}$ to the MSSM gauge group.
- This $U(1)_{\psi'}$ is a linear combination of $U(1)_{\chi},\ U(1)_{\psi} \subset E_6$.
- The three matter 27-plets in E_6 give rise to three SO(10) singlet fermions N_i , called sterile neutrinos.
- For a relatively low ($\sim 10~{\rm TeV}$) breaking scale of $U(1)_{\psi'}$, the sterile neutrinos acquire masses $\lesssim 0.1~{\rm eV}$.
- Their contribution as fractional cosmic neutrinos is acceptable.
- The model possesses many possible candidates for DM.
- The D-term for $U(1)_{\psi'}$ contributes appreciably to m_h and, thus $m_h = 125~{\rm GeV}$ can be obtained with relatively light stop quarks.
- The model predicts superconducting cosmic strings as well as diquark and diphoton resonances.
- ullet The μ problem is naturally solved and the RH neutrinos masses are large allowing the seesaw and leptogenesis scenarios to apply.
- Baryon number is conserved to all orders in perturbation theory.