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Gravity in four dimensions as a gauge theory

Use of alternative approach of GR - vielbein
formulation

↓
4-d gravity described as a gauge theory of the

Poincare group ISO(3, 1)
↓

consists of 10 generators:

see for details
Kibble - Stelle ’85,

Utiyama ’56,
McDowell-Mansuri ’79

4 of local translations Pa
6 Lorentz transformations Mab

The generators satisfy the commutation relations:

[Mab,Mcd] = ηacMdb − ηbcMda − ηadMcb + ηbdMca

[Pa,Mbc] = ηabPc − ηacPb
[Pa, Pb] = 0

where ηab = diag(−1,+1,+1,+1) .
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Gauging: For each generator  introduction of a gauge field:
Vielbein e aµ corresponding to translations
Spin connection ω ab

µ corresponding to Lorentz transformations

Therefore, the gauge connection is expanded as:

Aµ = e aµ (x)Pa + 1
2ω

ab
µ (x)Mab

Aµ transforms in the adjoint rep:

δAµ = ∂µε+ [Aµ, ε] ,

where ε is a parameter valued in iso(3, 1):

ε = ξa(x)Pa + 1
2λ

ab(x)Mab
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The transformations of the gauge fields, e, ω are:

δe aµ = ∂µξ
a − e bµ λab + ω ab

µ ξb

δω ab
µ = ∂µλ

ab − λacω cb
µ + λbcω

ca
µ

Curvature tensors are obtained using the standard formula:

Rµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Writing Rµν = R a
µν Pa + 1

2R
ab

µν Mab, we obtain:

R a
µν = ∂µe

a
ν − ∂νe aµ + e bµ ω

a
νb − e bν ω a

µb

R ab
µν = ∂µω

ab
ν − ∂νω ab

µ − ω cb
µ ω a

ν c + ω ac
µ ω b

νc
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Action is needed to complete the picture:
Built out of Poincare invariants
Analogy with Y-M theory suggests an action of the form:

S =
∫
d4ξR cd

ab Rab cd

The right choice is:

SE = 1
16πG

∫
d4x
√
−gR ab

ab ,

which can be written as:

SE = 1
16πG

∫
d4x
√
−geµaeνb(∂µω ab

ν − ∂νωabµ + ω ac
µ ω b

νc − ω ac
ν ω b

µc )

 Functional of both the vielbeins and the spin connections
 First order formulation of GR equations
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Varying with respect to the fields  e.o.m.:
with respect to ω  torsion-free condition

3 Torsion-free condition holds when scalars coupled to gravity
7 Torsion non-zero when spinors coupled to gravity

with respect to e  Einstein field equations (no matter)

Therefore, we conclude:
Form of Einstein action: A2(dA+A2)
Such action does not exist in gauge theories
Gravity cannot be considered as a gauge theory.
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Gravity in three dimensions as a gauge theory
The Einstein action for 3-d gravity is: Witten ’88

S =
∫
M

εµνρ(eµa(∂νω a
ρ − ∂ρω a

ν + εabcω
b
ν ω

c
ρ ))

Consideration of e and ω as gauge fields
The above action, S, is AdA+A3 in general form
Interpretation of S as a Chern-Simons 3-form

Commutation relations of ISO(2, 1):

[Ja, Jb] = εabcJ
c [Ja, Pb] = εabcP

c [Pa, Pb] = 0

Construction of a gauge theory for ISO(2, 1):
Gauge field - Lie valued one form: Aµ = e aµ Pa + ω a

µ Ja

Infinitesimal gauge parameter: u = ρaPa + τaJa

Transformation of Aµ under a gauge trans/tion: δAµ = −Dµu

Covariant derivative: Dµ = ∂µu+ [Aµ, u]
G. Manolakos Gravity as a gauge theory in non-commutative spaces



Standard procedure  transformations of the fields:

δe aµ = −∂µρa − e bµ τ cεabc − ω b
µ ρ

cεabc

δω a
µ = −∂µτa − ω b

µ τ
cεabc

Curvature tensor  commutator of covariant derivatives:

Fµν = [Dµ, Dν ] = Pa(∂µe aν − ∂νe aµ + εabc(ωµbeνc + eµbωνc))
+ Ja(∂µω a

ν − ∂νω a
µ + εabcωµbωνc)

IF we had considered ISO(2, 1) gauge theory on a 4-d manifold,
Y , we would form a topological invariant:

Tr(T aT b)
∫
F aF b

Calculations lead to the expression:

1
2

∫
Y

εµνρσ(∂µe aν − ∂νe aµ + εabc(ωµbeνc + eµbωνc)×

(∂ρωσa − ∂σωρa + εadeω
d
ρ ω

e
σ )
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Integrand can be written as a total derivative
Integral reduces to integral on the 3-d boundary of Y , M .
This integral is by definition the Chern-Simons action:

SCS =
∫
M

εµνρ(eµa(∂νω a
ρ − ∂ρω a

ν + εabcω
b
ν ω

c
ρ ))

Therefore, ISO(2, 1) Chern - Simons action is identical to 3-d
Einstein action

3-d gravity is a Chern - Simons gauge theory of ISO(2, 1)
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3−d Gravity with cosmological constant as a gauge
theory

Generalization of the previous case, with action:

S =
∫
M

εµνρ(eµa(∂νω a
ρ − ∂ρω b

ν ) + εabce
a
µ ω

b
ν ω

c
ρ + 1

3λεabce
a
µ e

b
ν e

c
ρ )

We note:
Not Minkowski but dS or AdS depending on the sign of λ
Their symmetry is not ISO(2, 1) but SO(3, 1) and SO(2, 2)
Since 3−d gravity ↔ gauging ISO(2, 1) ⇒
3−d gravity with λ → gauging SO(3, 1) and SO(2, 2),
respectively (?)

First thing to do, generalization of the algebra:

[Ja, Jb] = εabcJ
c [Ja, Pb] = εabcP

c [Pa, Pb] = λεabcJ
c
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Repeating the procedure of the gauging  generalization of the
transformations of the fields:

δe aµ = −∂µρa − e bµ τ cεabc − ω b
µ ρ

cεabc .

δω a
µ = −∂µτa − ω b

µ τ
cεabc − λεabceµbρc

The expression for the curvature is:

Fµν = Pa(∂µe aν − ∂νe aµ + εabc(ω b
µ e

c
ν + ω c

ν e
b
µ ))

+ Ja(∂µω a
ν − ∂νω a

µ + εabc(ωµbωνc + λeµbeνc))

Chern - Simons 3−form is precisely the Einstein action.
E.o.m.  vanishing of the field strength tensor:

vanishing of the coefficient of Pa ⇒ ω is Levi Civita connection
(torsionless condition)
vanishing of the coefficient of Ja ⇒ Einstein equation with
cosmological constant
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Gauge theories on nc spaces

Algebra A of operators Xµ → nc space with
nc coords.

Madore - Schraml -
Schupp - Wess ’00

Operators Xµ satisfy the comm relation [Xµ, Xν ] = iθµν , θµν not
specified.
Introduction of nc gauge theories through covariant nc
coordinates, defined as: Xµ = Xµ +Aµ , obeying a covariant
gauge transformation rule: δXµ = [ε,Xµ] (∼ cov der)
Aµtransforms as: δAµ = −[Xµ, ε] + [ε, Aµ] (∼ gauge connection)
Aµ is used to define an nc covariant field strength which defines
the nc gauge theory:

Fµν = [Xµ,Xν ]− iθ̄µν , Fµν = [Xµ,Xν ]− CµνρXρ ,

cases of constant and linear noncommutativity.
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Gauge theory could be abelian or nonabelian:
Abelian if ε is a function in A.
Nonabelian if ε is matrix valued.

B In nonabelian case, where are the gauge fields valued?
Let us consider the relation:

[ε, A] = [εATA, ABTB ] = 1
2{ε

A, AB}[TA, TB ]+1
2 [εA, AB ]{TA, TB} ,

Cannot restrict to a matrix algebra - last term neither 0 nor
algebra element in nc.

see Prof. Castellani’s lectures

There are two options to overpass the difficulty:
Consider the universal enveloping algebra
Extending the generators and/or fixing the rep so that the
anticommutators close.

B We employ the second option.

G. Manolakos Gravity as a gauge theory in non-commutative spaces



3d gravity with cosmological constant in nc
The cov coord should accommodate info of nc
vielbein and spin connection (analogy with the
gauging of Poincare/(A)dS group)

Nair ’03, Abe - Nair ’03,
Nair ’06

We consider the 3−d case with positive λ.
The relevant isometry group is SO(3, 1) (SL(2,C) the
corresponding spin group)
Nonabelian group → focus on the spinor rep with generators:
ΣAB = 1

2γAB = 1
4[γA, γB ], A,B = 1 . . . 4.

Due to the product relation:

γABγ
CD = 2δ[C

[Bδ
D]
A] + 4δ[C

[BγA]
D] + iεAB

CDγ5 ,

one finds the commutation and anticommutation relations:

[γAB , γCD] = 8η[A[CγD]B]

{γAB , γCD} = 4ηC[BηA]D1 + 2iεABCDγ5

G. Manolakos Gravity as a gauge theory in non-commutative spaces



γ5 and 1 have to be included in the algebra
Extension by these two elements → 8−dimensional algebra →
SL(2,C) to GL(2,C) with generators {γAB , γ5, i1}

P. Aschieri -
L. Castellani ’09

In SO(3) notation we have the generators γab and γa = γa4 with
a = 1, . . . , 3. We can also define: γ̃a = εabcγbc.
Commutation and anticommutation relations for γ and γ̃:

[γ̃a, γ̃b] = −4εabcγ̃c , [γa, γ̃b] = −4εabcγc , [γa, γb] = εabcγ̃
c , [γ5, γAB ] = 0

{γ̃a, γ̃b} = −8ηab1 , {γa, γ̃b} = 4iδbaγ5 , {γa, γb} = 2ηab1 , {γ5, γAB} = 0

We consider GL(2,C) as the gauge group. The covariant
coordinate is:
Xµ = eµ

a(X)⊗ γa + ωµ
a(X)⊗ γ̃a +Aµ ⊗ i1 + Ãµ(X)⊗ γ5 ,

with Aµ = e aµ Xa +Aµ(X).
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Gauge parameter expands in a similar way:

ε = ξa(X)⊗ γa + λa(X)⊗ γ̃a + ε0(X)⊗ i1 + ε̃0(X)⊗ γ5

Trans of component fields derive from δXµ = [ε,Xµ] and are:

δe aµ = −i[Aµ, ξa]− 2{ξb, ωµc}εabc − 2{λb, eµc}εabc + i[ε0, e aµ ]

δω a
µ = −i[Aµ, λa] + 1

2{ξb, eµc}ε
abc − 2{λb, ωµc}εabc + i[ε0, ω a

µ ]

δAµ = −i[Aµ, ε0]− i[ξa, e aµ ] + 4i[λa, ω a
µ ]− i[ε̃0, Ãµ]

δÃµ = −i[Aµ, ε̃0] + 2i[ξa, ω a
µ ] + 2i[λa, e aµ ] + i[ε0, Ãµ]

If we consider: e aµ = δ aµ , ω a
µ = 0, Ãµ = 0 (Y-M limit), we obtain:

δAµ = −i[Xµ, ε0] + i[ε0, Aµ]

recovering the trans rule for a nc Y-M gauge field.
If we consider: Aµ = 0, [Aµ, f ]→ ∂µf (comm limit), we obtain
field trans of 3−d comm case.
After a redefinition:
γa →

2i
√
λ
Pa, γ̃a → −4Ja, 4λa → λa, ξa

2i
√
λ
→ −ξa, eaµ →

√
λ

2i
eaµ, ω

a
µ → −

1
4
ωaµ
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Curvature tensors are:

Rµν = [Xµ,Xν ]− εµνρXρ

The curvature tensor can be expanded as:

Rµν = T aµν ⊗ γa +Raµν ⊗ γ̃a + Fµν ⊗ i1 + F̃µν ⊗ γ5

We end up with the various tensors:

T aµν = i[Aµ, e aν ]− i[Aν , e aµ ]− 2{eµb, ωνc}εabc − 2{ωµb, eνc}εabc − ε ρ
µν e aρ

Raµν = i[Aµ, ω a
ν ]− i[Aν , ω a

µ ]− 2{ωµb, ωνc}εabc + 1
2{eµb, eνc}ε

abc − ε ρ
µν ω a

ρ

Fµν = i[Aµ,Aν ]− i[e aµ , eνa] + 4i[ω a
µ , ωνa]− i[Ãµ, Ãν ]− ε ρ

µν Aρ
F̃µν = i[Aµ, Ãν ]− i[Aν , Ãµ] + 2i[e aµ , ωνa] + 2i[ω a

µ , eνa]− ε ρ
µν Ãρ

If we consider the comm limit: same tensors as comm case
If we consider the Y-M limit,we obtain:

Fµν = i[Aµ,Aν ]− ε ρ
µν Aρ , Aµ → Xµ +Aµ ,

field strength tensor with A interpreted as a cov coord.
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Final step → write down the action:

S = 1
2Trtr(εµνρXµXνXρ −XµX µ) = 1

4Trtr(εµνρXµRνρ) ,

where
Tr is trace over matrices
tr is trace over the algebra

Using the following form of the algebra trace:

tr(γaγb) = 4ηab , tr(γ̃aγ̃b) = −16ηab ,

it takes the form:

S = Trεµνρ(eµaT aνρ − 4ωµaRaνρ −AµFνρ + ÃµF̃νρ) .
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Varying the action wrt X , we obtain:

Rνρ + 1
3ε

µ
νρ Xµ = 0 ,

which decompose to the set of e.o.m.:

T aνρ −
1
3ενρ

µeµ
a = 0 , Raνρ −

1
3ενρ

µωµ
a = 0 ,

Fνρ −
1
3ενρ

µAµ = 0 , F̃νρ −
1
3ενρ

µÃµ = 0 .

G. Manolakos Gravity as a gauge theory in non-commutative spaces



Comments

Derive e.o.m. after variation wrt the gauge fields - expecting the
same expressions
Working on a model for gravity on a fuzzy sphere
Next step - include matter fields
Purpose is to learn the tools and move on to more realistic
scenarios

Thank you!
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