The QCD phase diagram from the lattice

Philippe de Forcrand
ETH Zürich & CERN

Corfu, Sept. 3, 2017
Motivation

What happens to matter when it is heated and/or compressed?
Water changes its state when heated or compressed.

What happens to quarks and gluons when heated or compressed?
QCD under extreme conditions

Confinement: quarks are bound in color-neutral hadrons: qqq baryons & $q\bar{q}$ mesons

Compress or heat baryons: hadrons overlap \rightarrow confinement “lost”
\Rightarrow expect interesting/unusual behaviour

Temperature T

Pressure, chemical potential μ

Thermal excitation of mesons (pions)

Increased baryon density
The wonderland phase diagram of QCD from Wikipedia

- **Quark-gluon plasma (QGP)**
- **Hadronic (confined) phase**
- **Vacuum**

Caveat: everything in red is a conjecture

For T or $\mu \to \infty$:
- Interaction weak (asymptotic freedom)

- Crystal phase(s)
- Quarkyonic phase
- Strangelets

Also:

$$\mu_{\text{quark}} = \frac{1}{3} \mu_{\text{Baryon}}$$
May or may not exist

No gauge-invariant order parameter: no phase transition required
“Small” deformation of two-flavor massless case:
OK IF u,d quarks are “light”.
No info on location of critical point

\[N_f = 2, \, m_u = m_d = 0 \]

\[\langle \bar{\psi}\psi \rangle = 0 \]

\[\langle \bar{\psi}\psi \rangle \neq 0 \]
Finite μ: what is known?

Mineral, possible phase diagram

QGP

confined

T_c

crossover (lattice)

Nuclear liquid-gas transition (exp.)

Color superconductor

μ
Heavy-ion collisions

Knobs to turn:
- atomic number of ions
- collision energy \sqrt{s}

So far, no sign of QCD critical point
(esp. RHIC beam energy scan)

"critical opalescence"?

non-Gaussian fluctuations (Stephanov)
Finite μ: what is known?

Lattice: Sign problem *as soon as $\mu \neq 0$*

- **Minimal, possible phase diagram**
 - Nuclear liquid-gas transition (exp.)
 - Color superconductor
 - Confined
 - QGP
 - Crossover (lattice)
Lattice QCD: Euclidean path integral

space + imag. time $\rightarrow 4d$ hypercubic grid:

$$Z = \int \mathcal{D}U\mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-S_E[\{U,\bar{\psi},\psi\}]}$$

- Discretized action S_E:

 - $\bar{\psi}(x)U_{\mu}(x)\psi(x + \hat{\mu}) + h.c.$,

 - $\beta \text{ReTr} U_P$, U_P plaquette matrix

 $$a \rightarrow 0 \Leftrightarrow \beta = \frac{6}{g_0^2} \rightarrow \infty$$

- Monte Carlo: with Grassmann variables $\psi(x)\psi(y) = -\psi(y)\psi(x)$??
 Integrate out analytically (Gaussian) \rightarrow determinant non-local

$$\text{Prob(config}\{U\}) \propto \det^2 \mathcal{D}(\{U\}) e^{\beta \sum_P \text{ReTr} U_P}$$

real non-negative when $\mu = 0$
Why are we stuck at $\mu = 0$? The “sign problem”

- quarks anti-commute \rightarrow integrate analytically: $\det(D(U) + m + \mu \gamma_0)$

 $\gamma_5 (i\phi + m + \mu \gamma_0)\gamma_5 = (-i\phi + m - \mu \gamma_0) = (i\phi + m - \mu^* \gamma_0)^\dagger$

 \[
 \begin{align*}
 \det D(\mu) &= \det^* D(-\mu^*)

 \text{det real only if } \mu = 0 \text{ (or } i\mu), \text{ otherwise can/will be complex}
 \end{align*}
 \]
Why are we stuck at $\mu = 0$? The “sign problem”

- quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu \gamma_0)$

$$\gamma_5(i\phi + m + \mu \gamma_0)\gamma_5 = (-i\phi + m - \mu \gamma_0) = (i\phi + m - \mu^* \gamma_0)^\dagger$$

$$\det \mathcal{D}(\mu) = \det^* \mathcal{D}(-\mu^*)$$

- Measure $d\varpi \sim \det \mathcal{D}$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T} F_q) = \int \text{Re Pol} \times \text{Re} \; d\varpi - \text{Im Pol} \times \text{Im} \; d\varpi$$

$$\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T} F_{\bar{q}}) = \int \text{Re Pol} \times \text{Re} \; d\varpi + \text{Im Pol} \times \text{Im} \; d\varpi$$

$\mu \neq 0 \Rightarrow F_q \neq F_{\bar{q}} \Rightarrow \text{Im}d\varpi \neq 0$
Why are we stuck at $\mu = 0$? The “sign problem”

- quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu \gamma_0)$

 $\gamma_5 (i\phi + m + \mu \gamma_0) \gamma_5 = (-i\phi + m - \mu \gamma_0) = (i\phi + m - \mu^* \gamma_0)^\dagger$

 \[
 \det \mathcal{D}(\mu) = \det^* \mathcal{D}(-\mu^*)
 \]

 \det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Measure $d\omega \sim \det \mathcal{D}$ must be complex to get correct physics:

 $\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T} F_q) = \int \text{Re Pol} \times \text{Re } d\omega - \text{Im Pol} \times \text{Im } d\omega$

 $\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T} F_{\bar{q}}) = \int \text{Re Pol} \times \text{Re } d\omega + \text{Im Pol} \times \text{Im } d\omega$

 $\mu \neq 0 \Rightarrow F_q \neq F_{\bar{q}} \Rightarrow \text{Im} d\omega \neq 0$

- Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Complex determinant \rightarrow no probabilistic interpretation \rightarrow Monte Carlo ??
Sampling oscillatory integrands

- Example: \(Z(\lambda) = \int dx \exp(-x^2 + i\lambda x) = \int dx \exp(-x^2) \cos(\lambda x) \)

- \(Z(\lambda)/Z(0) = \exp(-\lambda^2/4) \): exponential cancellations
 \(\rightarrow \) truncating deep in the tail at \(x \sim \lambda \) gives \(O(100\%) \) error
 “Every \(x \) is important” \(\iff \) How to sample?
Computational complexity of the sign pb

How to study: \(Z_\rho \equiv \int dx \rho(x) , \quad \rho(x) \in \mathbb{R} , \text{ with } \rho(x) \text{ sometimes negative} \)?

Reweighting: sample with \(|\rho(x)|\), and “put the sign in the observable”:

\[
\langle W \rangle \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \left[W(x)\text{sign}(\rho(x)) \right] |\rho(x)|}{\int dx \ \text{sign}(\rho(x)) \ |\rho(x)|} = \frac{\langle W\text{sign}(\rho) \rangle_{|\rho|}}{\langle \text{sign}(\rho) \rangle_{|\rho|}}
\]
Computational complexity of the sign pb

• How to study: \(Z_\rho \equiv \int dx \, \rho(x), \quad \rho(x) \in \mathbb{R}, \) with \(\rho(x) \) sometimes negative?

Reweighting: sample with \(|\rho(x)| \), and “*put the sign in the observable*”:

\[
\langle W \rangle \equiv \frac{\int dx \, W(x)\rho(x)}{\int dx \, \rho(x)} = \frac{\int dx \, [W(x)\text{sign}(\rho(x))] |\rho(x)|}{\int dx \, \text{sign}(\rho(x)) \, |\rho(x)|} = \frac{\langle W\text{sign}(\rho) \rangle_{|\rho|}}{\langle \text{sign}(\rho) \rangle_{|\rho|}}
\]

\[
\langle \text{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \, \text{sign}(\rho(x)) |\rho(x)|}{\int dx \, |\rho(x)|} = \frac{Z_\rho}{Z_{|\rho|}} = \exp (- \frac{V}{T} \Delta f(\mu^2, T)), \text{ exponentially small diff. free energy dens.}
\]

Each meas. of \(\text{sign}(\rho) \) gives value \(\pm 1 \) \(\implies \) statistical error \(\approx \frac{1}{\sqrt{\# \text{ meas.}}} \)

Constant relative accuracy \(\implies \) need statistics \(\propto \exp(+2\frac{V}{T}\Delta f) \)

Large \(V \), low \(T \) inaccessible: signal/noise ratio degrades exponentially

“Figure of merit” \(\Delta f \): measures severity of sign pb.
Frogs and birds

- **Frogs**: *acknowledge* the sign problem
 - explore region of small μ/T where sign pb is mild enough
 - find tricks to enlarge this region

 Taylor expansion, imaginary μ, strong coupling expansion,…

- **Birds**: *solve* the sign pb
 - solve QCD ?
 - find “QCD-ersatz” which can be made sign-pb free

Complex Langevin, Lefschetz thimble – fermion bags, QC_2D, isospin μ,…

- **Think different**: build an analog QCD simulator with cold atoms

 \longrightarrow ”Sign problem” conferences…
First frog steps: $\frac{\mu}{T} \lesssim 1$

Approximate $\langle W \rangle(\frac{\mu}{T})$ by truncated Taylor expansion:

$$\sum_{k=0}^{n} c_k(T) \left(\frac{\mu}{T} \right)^k$$

- Measure $c_k, k = 0, \ldots, n$ in a **sign-pb-free $\mu = 0$ simulation**
- Cheaper variant: fit $c_k, k = 0, \ldots, n$ to results of *imaginary* μ simulations

State of the art: Fodor et al, 1507.07510

Crossover temp. versus chem. pot.
Steve Weinberg’s
Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you’ll be sorry

in “Asymptotic realms of physics”, 1983
You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you’ll be sorry.

in “Asymptotic realms of physics”, 1983

Optimal choice: Monte Carlo on physical states (no sign pb)

★ Integrate out quarks, then Monte Carlo on gluons: Not good (sign pb)

★ Integrate out gluons, then Monte Carlo on color singlets: Much better

Easy at strong coupling $\beta = \frac{6}{g_0^2} = 0$: 4-link interaction $\beta \Re \text{Tr} U_P$ drops out
Strong coupling limit at finite density (staggered quarks)

Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

- Integrate over U's, \textbf{then} over quarks: \textit{exact} rewriting of $Z(\beta = 0)$

New, discrete "\textit{dual}" degrees of freedom: meson & baryon \textit{worldlines}

Constraint at every site:
3 \textit{blue} symbols ($\bullet \bar{\psi} \psi$, meson hop)
or a \textit{baryon} loop

Update with \textit{worm algorithm}: "\textit{diagrammatic}" Monte Carlo
Integrate over U’s, then over quarks: *exact* rewriting of $Z(\beta = 0)$

New, discrete "*dual*" degrees of freedom: meson & baryon worldlines

Constraint at every site:
3 blue symbols (● $\bar{\psi}\psi$, meson hop)
or a baryon loop

Update with worm algorithm: "*diagrammatic*" Monte Carlo

The dense (crystalline) phase:
1 baryon per site; no space left
$\rightarrow \langle \bar{\psi}\psi \rangle = 0$
Results $\beta \approx 0$ w/ Unger, Langelage, Philipsen

- Sign pb almost gone: accessible volumes multiplied by 10^4
- Phase diagram ($m_q = 0$): chiral phase transition

\[\langle -\bar{\psi}\psi \rangle = 0 \]
\[\langle -\bar{\psi}\psi \rangle \neq 0 \]

\[\beta = 0 \]

\[\mathcal{O}(\beta) \] corrections

cf. Wikipedia: $(m_q \neq 0)$
Conclusions

- QCD phase diagram: possibly rich -- or not

- QCD critical point: *not at small chem. pot.*

- Sign problem: hot, interdisciplinary topic

Remember: Corfu is home of Princess Nausicaa, one of the few women with whom Odysseus did *not* reach a critical point...
Steve Weinberg’s
Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you’ll be sorry

in “Asymptotic realms of physics”, 1983

• Second Law: do not trust arguments based on lowest-order perturbation theory

• First Law: you will get nowhere by just churning equations
Basic properties of QCD

- QCD describes properties of *quarks* (cf. electrons – fermions) interacting by exchanging *gluons* (cf. photons – bosons)

- QCD is *asymptotically free*: weaker interaction at higher energy
The flip side of asymptotic freedom: “infrared slavery”

- Strong coupling at low energy → non-perturbative

- Quarks are **confined** into color-neutral (color singlet) **bound-states** (**hadrons**):

 \[qqq \text{ baryons: proton & neutron (ordinary matter), ...} \]

 \[q\bar{q} \text{ mesons: pion (lightest), kaon, rho, ...} \]

 \[\textit{Exotics: glueballs, tetraquarks }qq\bar{q}\bar{q}, \text{ pentaquarks }qqqq\bar{q}, \text{ etc...} \]

In principle, all calculable by **Lattice QCD simulations**
Scope of lattice QCD simulations: Physics of color singlets

* “One-body” physics: confinement
 hadron masses
 form factors, etc.
Example: hadron masses

<table>
<thead>
<tr>
<th>BMW collaboration</th>
<th>PACS-CS collaboration</th>
</tr>
</thead>
</table>

Follow-up: neutron-proton mass diff.

arXiv:1406.4088 → Science
Scope of lattice QCD simulations: Physics of color singlets

* “One-body” physics: confinement, hadron masses, form factors, etc..

** “Two-body” physics: nuclear interactions, pioneers Hatsuda et al, Savage et al

hard-core + pion exchange?
Scope of lattice QCD simulations: Physics of color singlets

* “One-body” physics: confinement
 hadron masses
 form factors, etc..

** “Two-body” physics: nuclear interactions
 pioneers Hatsuda et al, Savage et al
 hard-core
 + pion exchange?

*** Many-[composite]-body physics: nuclear matter
 phase diagram vs (temperature T, density μ_B)
Motivation: how to make the sign problem milder?

- Severity of sign pb. is \textit{representation dependent}:

 Generically: \[Z = \text{Tr} \exp^{-\beta H} = \text{Tr} \left[\exp^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) \exp^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) \cdots \right] \]

 Any complete set \(\{|\psi\rangle\} \) will do

 If \(\{|\psi\rangle\} \) form an \textit{eigenbasis} of \(H \), then \[\langle \psi_k | \exp^{-\frac{\beta}{N} H} | \psi_l \rangle = \exp^{-\frac{\beta}{N} E_k} \delta_{kl} \geq 0 \rightarrow \text{no sign pb} \]
Motivation: how to make the sign problem milder?

- **Severity of sign pb. is representation dependent:**
 Generically: \(Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N} H} (\sum |\psi\rangle \langle \psi|) e^{-\frac{\beta}{N} H} (\sum |\psi\rangle \langle \psi|) \cdots \right] \)

 Any complete set \(\{|\psi\rangle\} \) will do

- **Strategy:** choose \(\{|\psi\rangle\} \) “close” to physical eigenstates of \(H \)

 If \(\{|\psi\rangle\} \) form an eigenbasis of \(H \), then \(\langle \psi_k | e^{-\frac{\beta}{N} H} | \psi_l \rangle = e^{-\frac{\beta}{N} E_k} \delta_{kl} \geq 0 \rightarrow \) no sign pb
Motivation: how to make the sign problem milder?

- Severity of sign pb. is **representation dependent:**

 Generically: \[Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) e^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) \right] \]

 Any complete set \(\{|\psi\rangle\} \) will do

 If \(\{|\psi\rangle\} \) form an eigenbasis of \(H \), then \(\langle \psi_k | e^{-\frac{\beta}{N} H} | \psi_l \rangle = e^{-\frac{\beta}{N} E_k} \delta_{kl} \geq 0 \rightarrow \) no sign pb

- Strategy: choose \(\{|\psi\rangle\} \) “close” to physical eigenstates of \(H \)

 QCD physical states are **color singlets** \(\rightarrow \) Monte Carlo on colored gluon links is **bad idea**
Motivation: how to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Generically: \(Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) e^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) \cdots \right] \)

Any complete set \(\{|\psi\rangle\} \) will do

If \(\{|\psi\rangle\} \) form an eigenbasis of \(H \), then \(\langle \psi_k | e^{-\frac{\beta}{N} H} | \psi_l \rangle = e^{-\frac{\beta}{N} E_k} \delta_{kl} \geq 0 \rightarrow \) no sign pb

• Strategy: choose \(\{|\psi\rangle\} \) “close” to physical eigenstates of \(H \)

QCD physical states are color singlets \(\rightarrow \) Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically \(\rightarrow \) \(\det(\{U\}) \)

• Monte Carlo over gluon fields \(\{U\} \)

Reverse order: • integrate over gluons \(\{U\} \) analytically

• Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn off 4-link coupling \(\beta \sum_P \text{ReTr} U_P \) by setting \(\beta = 0 \)

\(\beta = \frac{6}{g_0^2} = 0: \) strong-coupling limit \(\leftrightarrow \) continuum limit (\(\beta \rightarrow \infty \))
Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:
 Generically: \[Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) e^{-\frac{\beta}{N} H} \left(\sum |\psi\rangle \langle \psi| \right) \cdots \right] \]
 Any complete set \(\{|\psi\rangle\} \) will do
 If \(\{|\psi\rangle\} \) form an eigenbasis of \(H \), then \[\langle \psi_k | e^{-\frac{\beta}{N} H} | \psi_l \rangle = e^{-\frac{\beta}{N} E_k} \delta_{kl} \geq 0 \rightarrow \text{no sign pb} \]

- Strategy: choose \(\{|\psi\rangle\} \) “close” to physical eigenstates of \(H \)

QCD physical states are color singlets \(\rightarrow \) Monte Carlo on colored gluon links is bad idea

Usual:
- integrate over quarks analytically \(\rightarrow \) det(\{\(U \}\})
- Monte Carlo over gluon fields \(\{U\} \)

Reverse order:
- integrate over gluons \(\{U\} \) analytically
- Monte Carlo over quark color singlets (hadrons)

\[Z(\beta = 0) = \int \prod_x d\bar{\psi} d\psi \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_x U_{x,\nu} \psi_{x+\nu} - h.c.\}} \right) \]
 Product of 1-link integrals performed analytically
More difficulties: the overlap problem

- Further danger: **insufficient overlap** between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states

→ **WRONG** estimates in reweighted ensemble for finite statistics

- Example: sample \(\exp\left(-\frac{x^2}{2} \right) \), reweight to \(\exp\left(-\frac{(x-x_0)^2}{2} \right) \) → \(\langle x \rangle = x_0 \)?

- Estimated \(\langle x \rangle \) saturates at largest sampled \(x \)-value
- Error estimate too small

Insufficient overlap \((x_0 = 5)\)

Very non-Gaussian distribution of reweighting factor

Log-normal \(\text{Kaplan et al.} \)

Solution: Need stats \(\propto \exp(\Delta S) \)
The CPU effort grows exponentially with L^3/T

CPU effort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...

Crudely based on: • 1 sec on 1GF laptop for 2^4 lattice, $a = 0.1$ fm
• effort $\propto \exp\left(2\frac{V}{T} \rho_{\text{nucl.}} (m_B - 3/2m_\pi)\right)$
Severity of sign problem? Monitor $\Delta f = -\frac{1}{V} \log \langle \text{sign} \rangle$

\[\langle \text{sign} \rangle = \frac{Z}{Z_{||}} \sim \exp\left(-\frac{V}{T} \Delta f(\mu^2)\right) \] as expected

- Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, \textbf{Gain $\mathcal{O}(10^4)$ in the exponent!}
 - heuristic argument correct: color singlets closer to eigenbasis
 - negative sign? product of \textit{local} neg. signs caused by spatial baryon hopping:
 - no baryon \rightarrow no sign pb (no silver blaze pb.)
 - saturated with baryons \rightarrow no sign pb
Can compare masses of differently shaped “isotopes”

\[am(A) \sim a\mu_B^{\text{crit}} A + (36\pi)^{1/3}\sigma a^2 A^{2/3}, \text{ ie. (bulk + surface tension)} \]

empirical mass formula, parameter-free \((\mu_B^{\text{crit}} \text{ and } \sigma \text{ measured separately})\)

“Magic numbers” with increased stability: \(A = 4, 8, 12\) (reduced area)