

LHC recasting & reinterpretation tools

Eric Conte (IPHC-GRPHE)

Tools 2017: Tools for the SM and the New Physics 10-13 September 2017 @ Corfu (Greece)

Outlines

- 1. Motivations
- 2. Recasting based on SMS
- 3. Recasting based on detector simulation
 - 4. Summary & opened questions

1. Motivations

- 2. Recasting based on SMS
- 3. Recasting based on detector simulation
 - 4. Summary & opened questions

BSM researches @ LHC

Intensive search of BSM is ongoing at the LHC:

- Looking for promising signatures (SMS, bottom-up approach, ...)
- Setting limits
 - → Several benchmarks are chosen for showing the performance the analysis

Ex: SUSY analysis, VLQ research, ...

Difficulty to be exhaustive in interpretation:

- covering all the parameter space of a given model
- testing all the existing models
- testing all the new models which could be conceived after the analysis
 - → We must be able to launch an existing analysis, tomorrow or in few years, with a different signal benchmark and to compute a limit.

Reinterpretation strategy

How to reinterpret LHC results?

Method 1

- Experimentalists keep and maintain their code internally.
- Phenomenologists ask to the authors to test a new model
 - → Need manpower, time consuming for experimentalists

Method 2

- Use a framework which:
 - Captures the analysis code, the data, ...
 - Allows people to upload they own MC samples
 - Launch automatically the codes and store results

Method 3

- Experimentalists provide all useful information to phenomenologists.
- Developing an external code which mimics the analysis results.
- → Approximations but much faster (useful for scan over parameter-space)
- → Identification of topologies or region not tested by experimentalists
- → Feedback to experimentalists

Type of recasting tools

Based on Simplified Models

- Work with event topology
- Properties are reduced to mass spectrum, xsection and BR

Extremely fast
Moderately accurate / general

Based on Detector simulation

- Mimicking simulation + reconstruction + selection acheived by CMS or ATLAS
- « Very-fast » simulation

Very-Fast
Accurate / general

1. Motivations

- 2. Recasting based on SMS
- 3. Recasting based on detector simulation
 - 4. Summary & opened questions

SModelS & Fastlim: overview

Fastlim

For generic BSM models with a Z2 symmetry

For MSSM (up to now)

Required efficiency maps if there are several signal regions.

SModelS & Fastlim: data base

Fastlim

What are the required experimental inputs?

- Upper limits from CMS/ATLAS paper
- Efficiency maps from simulation package (Fastlim + ATOM)
- Efficiency maps from CMS/ATLAS paper (since SModels 1.1)

SModels data base (including Fastlim inputs)

Ехр	\sqrt{s}	Upper limit	Efficiency map
ATLAS	8 TeV	15	18 (of which 9 Fastlim)
	13 TeV	3	2
CMS	8 TeV	15	7
	13 TeV	7	0

SModelS & Fastlim: examples of results

Constraints on NMSSM with 1A benchmarck point

Fastlim

$$m_{\tilde{g}}=M_{U_3}=M_{D_3}=$$
3 TeV, $\tan \beta=$ 10, $X_t=0$

XQCAT

XQCAT = eXtra Quark Combined Analysis Tool

designed for heavy extra quarks

Reinterpreting in terms of pair-production of VLQ in the NWA

Example of results: [arXiv:1304.2185]

Combining:

- VLQ direct research (BG2-12-015)
- SUSY combination @ 7 & 8 TeV
 (α_T, monolepton, SS dilepton, OS dileptons)

$$BR(Zq) = BR(Hq) = 25\%$$
 $BR(Wq) = 50\%$

Efficiency maps are extracted from Delphes simulation

T singlet mixing with 1st generation

- 1. Motivations
- 2. Recasting based on SMS
- 3. Recasting based on detector simulation
 - 4. Summary & opened questions

Detector simulation

- BuckFast from Gambit
- Detector effects in Rivet and ATOM

Required experimental inputs for recasting

S. KRAMEL et al, Les Houches Recommendations for the Presentation of LHC Results, [arXiv:1203.2489v2]

Clear description of the selection in the paper:

- Definition of the reconstructed objects
- Each step of the selection
- Source code of specific and sophisticated of observables (SUSY transverse observable)

Clear description of the results:

- Crucial numbers
- Final likelihood expression

Detector modeling:

- Resolution & efficiency plots for reconstruction of exotic objects, trigger?
- Efficiency maps

Materials for validation:

- Cut-flow chart
- Description of the signal benchmarks and its generation (the best is to have the LHE files)
- Plots of key observables

CheckMate & MadAnalysis5: a brief overview

Designed for recasting:

- Choose the objects of interest
- Filter objects
- Check event vetoes
- Check various signal region criteria
- Count number of input events that fall into each signal region

Multipurpose tool:

- Monte-Carlo validation
- Phenomenological analysis with 2 levels:
 - Intuitive metalanguage
 - C++ development
- Recasting with the Physics Data Base

Tune of Delphes:

- Improvement of ATLAS simulation
- Add isolation flags
- Add object definition flags

Tune of Delphes:

- Isolation defined at the analysis level
- Produces compact and generic ROOT files

 → avoids as much as possible from launching Delphes

Strategy of CheckMate & MadAnalysis 5

List of (public) recast analyses

Ехр	\sqrt{s}	Already validated	Not yet validated
ATLAS	7 TeV	0	1
	8 TeV	21	10
	13 TeV	12	2
	HL 14 TeV	6	0
CMS	7 TeV	0	1
	8 TeV	6	4
	13 TeV	0	1
	HL 14 TeV	0	0

	Ехр	\sqrt{s}	Already validated	Not yet validated
	ATLAS	8 TeV	8	0
		13 TeV	2	0
	CMS	8 TeV	9	1
		13 TeV	0	0

- All the recast analyses are validated and a validation note is released.
- Analyses covered by CheckMate and MadAnalysis 5 are not the same.

List of (public) recast analyses

[arXiv:1702.00410]

Constraining MUED from existing SUSY searches

[coming soon]

Constraining pair of VLQ from SUSY searches

Tools based on machine learning algorithm

- Getting LHC constraints could be time consuming in particular for a scan over SUSY-like parameter space: (one point with CheckMATE / MadAnalysis 5 ≈ 10 min).
- Machine learning algorithm could be used to scan in a clever way:
 - training an ML algorithm with plethora of plethora of points
 - then making a prediction for a new point in few milliseconds

SUSY-AI

- Scan over SUSY parameter-space
- ML algorithm = random forest
- Algorithm tested with pMSSM-19 and trained with ~400,000 points

ScyNet

=

Susy Calculating Yields NET

- Scan over SUSY parameter-space
- ML algorithm = **neural network**
- Algorithm validated with pMSSM-11 and trained with ~200,000 points

Still a private tool

Rivet for BSM

RIVET = Robust Independent Validation of Experiment and Theory

Since the release 2.5, Rivet deals with the BSM analyses.

- Use efficiencies and smearing for modeling the detector response
- List of implemented analyses (BSM only):

Ехр	\sqrt{s}	Already validated	Preliminary	Not yet validated
ATLAS	7 TeV	8	1	6
	8 TeV	0	1	1
	13 TeV	2	0	4
CMS	7 TeV	0	0	0
	8 TeV	0	0	1
	13 TeV	1	0	0

Other tools based on Rivet

CONTUR

CONTUR = Constraints on new theories using Rivet

- Rivet was initially designed for SM (generator validation)
- Unfolded fiducial cross section measurements to constrain new physics
- → Tool chain: FeynRules → Herwig 7 → RIVET

ATOM = Automated Testing Of Models

- Forked from Rivet "for SM"
- Detector simulation : smearing/efficiency
- Associated to FastLim for limits
- Under development

Still a private tool

Gambit

GAMBIT = Global and Modular BSM Inference Tool

Global statistical fit from different sources of data (frequentists & bayesian): low physics, astrophysics, colliders, ...

Modular architecture

→ Module devoted to LHC analyses: COLLIDERBIT

- ColliderBit works with parallelized Pythia
- Detector effects: BuckFast (efficiencies/smearing) or Delphes
- Multithread (OpenMP) available with BuckFast

- LHC analyses (SUSY)
- Constraint from LEP searches on SUSY particles.
- Likelihoods from experimental searches for Higgs bosons via HiggsBound & HiggsSignal

Ехр	\sqrt{S}	# analyses
ATLAS	8 TeV	7
	13 TeV	1
CMS	8 TeV	4
	13 TeV	1

- 1. Motivations
- 2. Recasting based on SMS
- 3. Recasting based on detector simulation
 - 4. Summary & opened questions

Summary

- Importance of recasting & reinterpretation for:
 - Identifying holes in the ATLAS/CMS research program
 - Preserving LHC analyses
- Different kinds of tools:
 - Constraints from SM measurements: Contur
 - Recasting based on simplified models: SMODELS, FASTLIM, XQCAT
 - Recasting based on detector simulation:
 - With Delphes: CHECKMATE, MADANALYSIS5
 - With smearing/efficiency: RIVET, ATOM, COLLIDERBIT from GAMBIT
 - And scanners (SUSY-AI, ScyNet, ScannerBit), fitters (GAMBIT,)
- Tools are still in development: new recast analyses, new functionalities are coming soon
- Join the effort?

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults

Announcement: new workshop 16-17 October 2017 at Fermilab

https://indico.cern.ch/event/639314/

List of discussed tools & projects

Name	Public / Private	Home site	Reference
Aeacus & RHADAManTHUS	Public	http://joelwalker.net/code/	
АТОМ	Private	http://fastlim.web.cern.ch/fastlim/	See Fastlim papers currently
CheckMate	Public	https://checkmate.hepforge.org/	arXiv:1312.2591, arXiv:1611.09856
Contur	Public	https://contur.hepforge.org/	arXiv:1606.05296
Fastlim	Public	http://fastlim.web.cern.ch/fastlim/	arXiv:1402.40492 , EPJC74 (2014) 11
Gambit	Public	https://gambit.hepforge.org/	arXiv:1705.07908, arXiv:1705.07919, arXiv:1705.07920, arXiv:1705.07933, arXiv:1705.07959, arXiv:1705.07936
LHADA	Public	https://indico.cern.ch/event/572170/	arXiv:1605.02684, section 16 & 17

List of discussed tools & projects

Name	Public / Private	Home site	Reference
MadAnalysis5	Public	https://launchpad.net/madanalysis5	arXiv:1206.1599, arXiv:1405.3982, arXiv:1407.3278
Recast	Public	http://recast.perimeterinstitute.ca/ https://github.com/recast-hep	arXiv:1010.2506
Rivet	Public	http://rivet.hepforge.org/	arXiv:1003.0694
ScyNET	Private		arXiv:1703.01309
SModelS	Public	http://smodels.hephy.at/wiki	arXiv:1701.06586, arXiv:1312.4175
Susy-Al	Public	http://susyai.hepforge.org/	arXiv: 1605.02797
XQCAT	Public	https://launchpad.net/xqcat	JHEP 1412 (2014) 080,arXiv:1405.0737, arXiv:1409:3116

Some opened questions

- Can we design a universal language for describing an analysis?
 - Some metalanguages have been developed:
 - MADANALYSIS5: intuitive but too much simple
 - AEACUS & RHADAMANTHUS: advanced metalanguage but not enough
 - Framework-independent language:

Towards an analysis description accord for the LHC [arXiv:1605.02684]

One proprosal: LHADA (Les Houches Analysis Description Accord for the LHC) in development

- Can we recast multi-variate analyses?
 - No: experimentalists must provide also cut-and-count selections
 - Yes: experimentalists must publish all material for training a ML algorithm
- May we combine recast analyses?
 - To be correct: required correlation matrices

Back-up slides

CheckMate & MadAnalysis 5 performance

Extract from: C. Arina et al, A comprehensive approach to dark matter studies: exploration of simplified top-philic models, JHEP04(2015)029, arXiv:1605.09242v1

Simplified top-philic dark matter model

- → Fermionic dark matter candidate X
- → Scalar mediator Y₀

$$\mathcal{L}_{t,X}^{Y_0} = -\left(g_t \, \frac{y_t}{\sqrt{2}} \, \bar{t}t + g_X \, \bar{X}X\right) Y_0$$

2 relevant topologies with large MET signature at collider experiments

4 recast analyses

- CMS-B2G-14-004: tt + MET
- CMS-EXO-12-048: monojet
- CMS-EXO-12-054: mono-Z
- ATLAS-EXOT-2014-20 mono-Higgs

Home made recasting