
TOOLS Conference
170911

DarkSUSY 6
Tutorial
Joakim Edsjö

edsjo@fysik.su.se

With Torsten Bringmann, Paolo Gondolo, Piero Ullio and
Lars Bergström

mailto:edsjo@fysik.su.se

DarkSUSY 6 pre-release 1
• This is a pre-release. Compared to the final DS 6.0 version

(expected later this fall):

- It is not fully finalized regarding SLHA reading/writing.

- It is not fully tidied up and commented (output
statements, main programs e.g.)

- It does not have a completely updated manual

- It is not finalized regarding charged cosmic ray diffusion
and the interface to different halo models.

- We have not yet tested on all compilers. gfortran 5 and 6
should work.

• If you find problems/have questions, e-mail edsjo@fysik.su.se

Please don’t distribute this pre-release version further at this point!

DarkSUSY 6 pre-release 1

• Download: www.astroparticle.se/ds/

• Unpack it: tar zxvf darksusy-6.0-pre1.tar.gz

• Replace examples/dsmain_wimp.F with the
version on the web page above 
 
./configure 
make

Please don’t distribute this pre-release version further at this point!

http://www.astroparticle.se/ds/

Outline of hands-on

1. dstest program

2. dsmain_wimp program

- MSSM

- generic WIMP, etc

- how to use makefiles with DS 6

3. Replaceable functions

4. creating a new particle physics module

5. Other example programs

1. dstest program
• The dstest program is used to test your installation

• It calculated observables (masses, relic density,
direct and indirect rates, …) and compares with
pre-computed values

cd examples/test
./dstest

Output should end with

 Total number of errors in dstest: 0

(already compiled with main make, takes about 60 seconds to run)

[Show code]

2. dsmain_wimp.F

• In examples/ we have the file dsmain_wimp.F
which essentially does what dstest does, but
in a more user-friendly way.

• run it with  
 
./dsmain_wimp

• It will ask you which model you want to run:

 What kind of SUSY model do you want to look at?
 1 = MSSM-7
 2 = cMSSM
 3 = as read from an SLHA2 file

MSSM-7 example

• Pick 1: MSSM-7 and enter (e.g.)  
mu: 1000  
M2: 1000  
MA: 400  
tan(β): 10  
m0: 3000  
At/m0: 0  
Ab/m0: 0

• Then answer 0 to not write out an SLHA file (or
something else if you want to)

• Observables are then calculated…

Output (cut)
Calculating omega h^2 without coannihilations, please be patient...
 without coannihilations Oh2 = 0.96585250586039517 0
0
 Calculating omega h^2 with coannihilations, please be patient...
 with coannihilations Oh2 = 0.96585250586039517 0
0
 Chemical decoupling (freeze-out) occured at
 T_f = 22.878440648494614 GeV.

 Kinetic decoupling temperature, Tkd = 216.93665213661242 MeV
 The resulting cutoff in the power spectrum corresponds to a mass of
M_cut/M_sun = 2.2908727364927531E-009

 dsddset: unrecognized option 'si' 'best'
 dsddset: unrecognized option 'sd' 'best'
 Calculating DM-nucleon scattering cross sections...
 sigsip (pb) = 8.5855360125101907E-010
 sigsin (pb) = 8.9165540437856185E-010
 sigsdp (pb) = 1.9718211101071476E-007
 sigsdn (pb) = 1.4088315037835129E-007

etc

Which module?
• At the end of the dsmain_wimp run we got  
 

• Try compiling again with  
 
make -B dsmain_wimp DS_MODULE=generic_wimp 
./dsmain_wimp

• Enter e.g. 
mass: 100 
self-conjugate: 0 
ann cross section: 3e-26 
PDG: 5 
scattering cross section: 1e-42 

 The DarkSUSY example program has finished successfully.
 Particle module that was used: MSSM

 [simply call 'make -B dsmain_wimp DS_MODULE=<MY_MODULE>' if you want to try
with a different module <MY_MODULE>]

Output

 Calculating omega h^2 without coannihilations, please be patient...
 without coannihilations Oh2 = 8.5782015186659649E-002 0 0
 Chemical decoupling (freeze-out) occured at
 T_f = 4.4034841137539358 GeV.

etc

Makefiles
• The way we choose which particle physics module to use is when we build

our main program, e.g.  
 
gfortran -o dsmain_wimp dsmain_wimp.F -lds_core.a -lds_mssm.a

• This can be made more flexible with makefiles,

dscheckmod :
 test `ls ../lib/ | grep libds_${DS_MODULE}.a` || { echo ERROR: Module $
{DS_MODULE} does not exist, or is not compiled; exit 1;}

dsmain_wimp : DS_MODULE = $(shell sed -n '1p' dsmain_wimp.driver)

dsmain_wimp : dscheckmod makefile dsmain_wimp.F
 printf "#define MODULE_CONFIG MODULE_"$(DS_MODULE)"\n" > module_compile.F
 printf "$(LIB)/libds_core_user.a\n"$(LIB)"/libds_core.a\n"$(LIB)"/libds_"$
(DS_MODULE)"_user.a\n"$(LIB)"/libds_"$(DS_MODULE)".a" > module_link.txt
 $(ADD_SCR) libds_tmp.a module_link.txt
 $(FF) $(FOPT) $(INC) $(INC_MSSM) -L$(LIB) -o dsmain_wimp dsmain_wimp.F \
 libds_tmp.a $(shell if ["x$(DS_MODULE)" = "xmssm"]; then printf "%s" " $
(AUX_LIB_MSSM)"; fi)
 rm -f module_compile.F
 rm -f module_link.txt
 rm -f libds_tmp.a

dsmain_wimp.F

• dsmain_wimp.F is a good starting point for your
own program. If you want to use it as a starting
point,

- make a copy out of it

- modify examples/makefile.in to copy-paste the
lines about dsmain_wimp.F and modify to your
liking

- run ./configure in the DS root

- make and be happy!

http://makefile.in

Some details of dsmain_wimp.F

• In dsmain_wimp we have code blocks of this type  
 
#if MODULE_CONFIG == MODULE_generic_wimp 
 subroutine dspmenterparameters 
 [more code for this module] 
#endif

• This is how dsmain_wimp.F performs model-specific
setup.

• We could as well have prepared one separate main
program for each particle physics module if we
preferred (the makefile is then a bit simpler as well,
see e.g. examples/aux/makefile)

3. Replaceable functions

• If you want to modify an existing DarkSUSY
function or subroutine, DON’T!

• Instead create your own version of the routine
and link to that one instead.

• You can either just create your own version and
link to it (before the DS library is linked to), or

• Use the script scr/make_replaceable.f to make a
user_replaceable function for you, for which the
makefiles are already set up to work

Replaceable function example
• As an example, we will look at the source

term for DM annihilation in the galactic
halo 
 
 
 
This code is in src_models/generic_wimp/
dscrsource.f

• Let’s add a boost factor from substructures

*B

Replaceable function (cont)

• In the root directory, type  
scr/make_replaceable.pl src_models/
generic_wimp/cr/dscrsource.f

• This will give you a new file  
src_models/generic_wimp/
user_replaceables/dscrsource.f

• Modify it, configure and make again (in the
root), then  
make -B dsmain_wimp DS_MODULE=generic_wimp 
in examples and run dsmain_wimp

4. Creating a new particle physics module

• To create a completely new particle physics
module, either

- write it from scratch, making sure to
include the interface functions you need,
or

- start from an already existing particle
physics module (will use this as an
example)

Particle physics modules
• In src_models we currently have

- mssm - Minimal Supersymmetric Standard Model

- silveira_zee - Scalar singlet model

- generic_wimp - a generic annihilating WIMP model

- generic_decayingDM - a generic decaying dark
matter model

- empty - an empty model with just the basic set of
interface functions for a ‘fresh’ start

• If you add one and want others to use it, please let us
know and we can add it to the distribution (or point
to your preferred download page)

Simple example, extend generic wimp

• Create a new module by typing (in the root directory)  
 
scr/make_module.pl generic_wimp extended_wimp

• Then type  
./configure 
make

• You then have a new module extended_wimp in
src_models

• It is right now identical to generic_wimp, but you can
now modify it to your liking

You need to have autoconf installed for this to work

Helpful tools

• The extended_wimp is automatically included in the
build system, but when/if you start adding files you
need to tell the build system. To help you, we have a
few scripts

- scr/makemf.pl <directory> - adds all source files in
the given <directory> to the relevant makefiles, or
rather makefile.in's (without argument it adds
source files in all directories in src/ and src_models)

- scr/preconfig.pl - adds source files AND new
directories to the build system and updates both
the configure script and makefiles

You need to have autoconf installed for this to work

http://makefile.in

Main program

• You can e.g. use your new module with dsmain_wimp
(or any other main program you choose)

• For dsmain_wimp, you need it to be aware of your
new module by adding lines of this type:  
 
#if MODULE_CONFIG == MODULE_extended_wimp 
[add your code here] 
#endif 
 
This can be done by e.g. copy-pasting the
corresponding generic_wimp lines and replace
generic_wimp with extended_wimp

5. Other main programs

• In examples/aux we have a few example
programs for other typical calculations, e.g.

- the program to calculate the relic density
in the Silveira Zee model

- the program to calculate the relic density
in the generic wimp model

• we will add more examples and a
description later

will look at this code

generic_wimp_oh2

• This is the example program that  
creates the figure on relic density 
 
cd examples/aux 
make generic_wimp_oh2 
./generic_wimp_oh2 
 
Creates an output file generic_wimp_oh2-planck-sigmav-thr.dat
that can e.g. be plotted

• It scans through the mass range, and for each mass makes a binary
search in sigma v to find the Planck measurement ± 2 sigma

• The default setup takes about 11.5 min to run, change ‘f=1.1’ to
‘f=1.3’ in line 40 and ‘fth=1.02’ to ‘fth=1.1’ on line 41 to speed it
up for the tutorial (takes 3m20s on my laptop)

Comment

• The default in generic_wimp is to use a
sharp cut-off in Weff when mΧ < mfinal

• We can use an effective model with an off-
shell final state particle, i.e. ΧΧ→W+ W-*

• An implementation of this is in examples/aux/
user_replaceables/dsanwx.f

• Just compile replacing the regular dsanwx.f
with this new one to test it:  
make generic_wimp_oh2_threshold

Joakim Edsjö
edsjo@fysik.su.se

• DarkSUSY 5 publically available

• DarkSUSY 6 is much more modular and include other
improvements. Pre-release 1 available now. Expect full
version later this fall

• When comparing different signals, it is crucial to perform
these calculations in a consistent framework, with e.g. a
tool like DarkSUSY

Conclusions

ευχαριστώ!

mailto:edsjo@fysik.su.se

