Probing the Higgs trilinear self-coupling via single Higgs production and precision observables

Giuseppe Degrassi Dipartimento di Matematica e Fisica, Università di Roma Tre, I.N.F.N. Sezione di Roma Tre

Workshop on the Standard Model and Beyond Corfu, Greece, 2-10 September 2017

Based on: P.P. Giardino, F. Maltoni, D. Pagani, G. D. JHEP 1612 (2016) 080 M. Fedele, P.P. Giardino, G.D. JHEP 1704 (2017) 155

Sezione di Roma III

Outline

- Status of the Higgs sector of the SM
- Getting information on the trilinear Higgs self-coupling looking at loop effects in:

 single Higgs production and decay processes
 Precision Observables
- Perspective for the future
- Conclusions

The Higgs sector, what we know

EWSB is achieved in the SM via the Higgs mechanism realized in the most economical and simple way, i. e. with the introduction of a single elementary SU(2), scalar doublet with a Φ^4 potential

HVV, Hiff couplings perspectives

HL-LHC: 14 TeV 3/ab int. luminosity

Proces	s	Combination	Theory	Experimental
	ggF	0.07	0.05	0.05
	VBF	0.22	0.16	0.15
$H \to \gamma \gamma$	$t\overline{t}H$	0.17	0.12	0.12
	WH	0.19	0.08	0.17
	ZH	0.28	0.07	0.27
$H \rightarrow ZZ$	ggF	0.06	0.05	0.04
	VBF	0.17	0.10	0.14
	$t\overline{t}H$	0.20	0.12	0.16
	WH	0.16	0.06	0.15
	ZH	0.21	0.08	0.20
$H \rightarrow WW$	ggF	0.07	0.05	0.05
	VBF	0.15	0.12	0.09
$H \rightarrow Z \gamma$	incl.	0.30	0.13	0.27
$H \to b \bar{b}$	WH	0.37	0.09	0.36
	ZH	0.14	0.05	0.13
$H \rightarrow \tau^+ \tau^-$	VBF	0.19	0.12	0.15

Estimated relative uncertianties

Di Vita et al. (17) arXiv 1704.01953

Testing \mathcal{L}_{Higgs} : $V(H) = \frac{m_H^2}{2}H^2 + \lambda_3 v H^3 + \frac{\lambda_4}{4}H^4 + \dots$ The shape of V(H): Higgs self couplings

n-Higgs production probes (n+1)-Higgs self-coupling

In the SM at tree-level only λ_3 and λ_4 fixed by: $\lambda_3 = \lambda_4 = \lambda = m_H^2/(2v^2)$ $v = \left(\sqrt{2}G_{\mu}\right)^{-1/2}$

 $λ_3$ status : "best" channels gg → HH → bbγγ, gg → HH → bbττ $κ_λ ≡ λ_3/λ_3^{SM}$

HH to	SM observed (expected) σ/σ _{SM} 95% CL limits	BSM (excluded phase space)	PAS	
bbbb	342 (308)	-	CMS-PAS-HIG-16-026	
bblvlv	79 (89)	-	CMS-PAS-HIG-17-006	
bbττ	28 (25)	K _λ (<-18;>26) with k _t =1.	CMS-PAS-HIG-17-002*	
bbγγ	19 (17)	K_{λ} (<-8;>15) with k _t =1. K _t >=2 if K _{\lambda} =1.	CMS-PAS-HIG-17-008	

Run II

 λ_3 perspective : HL-LHC, 3000 fb⁻¹, <µ>=200 No systematic

$$\kappa_{\lambda} = [-0.8, 7.7]$$

Remark: we can envisage a scenario such that at the end of the HL-LHC program the couplings of the Higgs to gauge fields and fermions will be known $O(\le 10\%)$ while λ_3 will be known O(1)

QUESTION

Can we use alternative information with respect to double Higgs production in order to constraint λ_3 today? (Obviously some assumptions are needed)

Notice:
$$\frac{\sigma(pp \to H)_{SM}}{\sigma(pp \to HH)_{SM}} = \frac{\sim 50 \, pb}{\sim 35 \, fb} \sim \frac{1}{1400} \sim \mathcal{O}\left(\frac{\alpha}{4\pi}\right)$$

Idea Constrain λ_3 via loop effects:

Exploit the dependence of single Higgs (total and differential) cross sections and decay rates upon the trilinear Higgs self coupling at NLO EW

See also: M. McCullough (13) $(e^+e^- \rightarrow ZH)$; M. Gorbahn, U. Haisch (16) $(gg \rightarrow H, H \rightarrow \gamma\gamma)$; W. Bizon, M. Gorbahn, U. Haisch, G. Zanderighi (1610.05771), (WH, ZH, VBF)

Use the sensitivity of precision observables to $\lambda_{_{\! \rm Q}}$ at NNLO EW

See also: Kribs et al. (1702.07678)

Working assumption:

only the Higgs self-couplings are modified, i.e. $\lambda_3^{SM} \rightarrow \lambda_3 = \kappa_\lambda \lambda_3^{SM}$, equivalently any modification of the Higgs coupling to fermion and bosons is much smaller.

N unspecified,
$$C_{2n}$$
 arbitrary

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v+H+i\phi_2}{\sqrt{2}} \end{pmatrix}$$

$$\mathcal{L} = \mathcal{L}_{\lambda_3} \equiv \mathcal{L}_{SM} - \sum_{n=3}^{N} c_{2n} (\Phi^{\dagger} \Phi)^n \neq \mathcal{L}_{EFT} \equiv \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \dots$$

$$\kappa_{\lambda} = 1 + \frac{2 v^2}{3m_H^2} \sum_{n=3}^{N} c_{2n} n(n-1)(n-2) \left(\frac{v^2}{2}\right)^{n-2} \qquad \kappa_{\lambda} = 1 + c_6 \frac{2 v^2}{m_H^2} \frac{v^2}{\Lambda^2} \sim \mathcal{O}(\pm 5)$$
Far from probing this case

Not the most general assumption: but it can be relaxed in the future when information on the other Higgs couplings will become more accurate.

It is the best we can do today.

$$\mathcal{L} \supset \frac{h}{v} \Biggl[\delta c_w \frac{g^2 v^2}{2} W^+_{\mu} W^{-\mu} + \delta c_z \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z^{\mu} + c_{ww} \frac{g^2}{2} W^+_{\mu\nu} W^{-\mu\nu} + c_{w\Box} g^2 \left(W^-_{\mu} \partial_{\nu} W^{+\mu\nu} + \text{h.c.} \right) + \hat{c}_{\gamma\gamma} \frac{e^2}{4\pi^2} A_{\mu\nu} A^{\mu\nu} + c_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z^{\mu\nu} + \hat{c}_{z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2\pi^2} Z_{\mu\nu} A^{\mu\nu} + c_{z\Box} g^2 Z_{\mu} \partial_{\nu} Z^{\mu\nu} + c_{\gamma\Box} gg' Z_{\mu} \partial_{\nu} A^{\mu\nu} \Biggr] + \frac{g_s^2}{48\pi^2} \left(\hat{c}_{gg} \frac{h}{v} + \hat{c}_{gg}^{(2)} \frac{h^2}{2v^2} \right) G_{\mu\nu} G^{\mu\nu} - \sum_f \left[m_f \left(\delta y_f \frac{h}{v} + \delta y_f^{(2)} \frac{h^2}{2v^2} \right) \bar{f}_R f_L + \text{h.c.} \right] - (\kappa_{\lambda} - 1) \lambda_3^{SM} v h^3 ,$$

$$(2.5)$$

Identifying λ_3 contributions

In the SM in an R_{ξ} gauge not only the *HHH* vertex is proportional to λ_3 but also the vertices with unphysical scalars $H \phi^+ \phi^-$, $H \phi_2 \phi_2$ Identification of the λ_3 is not straightforward.

Solution: Go to the Unitary gauge Gauge-dependent result? See later

 $\lambda_4, \lambda_5 \ldots$

At the level of (N)NLO EW corrections, i.e.:

1-loop corrections for $\sigma_{VBF}, \sigma_{VH}, \sigma_{t\bar{t}H}, \Gamma_{VV}, \Gamma_{f\bar{f}}$

2-loop corrections for: σ_{gg} , Γ_{gg} , $\Gamma_{\gamma\gamma}$, M_W , $\sin^2 \theta_{eff}^{lep}$

the Higgs quartic self interaction enters only through the Higgs mass correction diagram

Canceled by the Higgs mass counterterm No dependence on λ_4

At the (N)NLO level λ_5 , λ_6 interactions do not contribute

Technical remark:

The unitary gauge is a tricky gauge: one is interchanging

 $\lim_{\xi \to \infty} \int d^n k \longrightarrow \int d^n k \lim_{\xi \to \infty}$

Vector boson propagator: $\frac{-i}{k^2 - M_V^2 + i\epsilon} \left[g^{\mu\nu} + (\xi - 1) \frac{k^{\mu}k^{\nu}}{k^2 - \xi M_V^2} \right] \longrightarrow -i \frac{g^{\mu\nu} - k^{\mu}k^{\nu}/M_V^2}{k^2 - M_V^2 + i\epsilon}$

Ghost, unphysical scalar propagator

$$\frac{-i}{k^2 - \xi M_V^2 + i\epsilon} \longrightarrow 0$$

No ghosts, no unphysical in an UG calculation

However, in R_{ξ} , in principle, there can be residues from the ξ in the denominators from the propagators and the one in the numerators from vertices of higgses with ghosts

$$\lim_{\xi \to \infty} \int d^n k \frac{\xi^2}{(k^2 - \xi \, m_W^2)^2} = \int d^n k \frac{1}{m_W^4} \stackrel{=}{\uparrow} 0$$
 DR

Finiteness of κ_{λ}

Although our theory is not renormalizable the result for κ_{λ} at the level of (N)NLO EW corrections is finite, i.e. it does not depend on Λ

Reason: the "Born" results do not depend upon λ_3 . Renormalization of λ_3 is not needed

In UG is not there; you are trading a coupling for a kinematical mass

NLO λ_3 -dependent diagram:

Finite after Higgs mass renormalization

What is my scenario?

My scenario is described by the SM Lagrangian with a modified scalar potential:

Diagrams that in R_{ξ} can give additional contributions with respect to the UG result

All these contributions are canceled by the mass renormalization counterterms

$$\delta m_{\phi}^2 = \delta m_V^2 + \delta T$$

Tadpole contribution

What scenario can be probed?

- We expect to probe "large" values of κ_{λ} , however they cannot be too large otherwise there is a problem with perturbativity $|\kappa_{\lambda}| \leq 20$.
- The results at the NLO (single H) and NNLO (EW observables) level are finite, gauge-invariant and only dependent on λ₃. But the theory is not renormalizable.
 Λ-dependent contributions will appear in higher order of perturbation theory as well as λ₄, λ₅... terms.
- · To estimate the cutoff scale of this scenario one can look at

$$V_{\rm L} V_{\rm L} \longrightarrow V_{\rm L} V_{\rm L} H^{\rm n}$$
$$\Lambda \lesssim \frac{4\pi v}{\sqrt{|\kappa_{\lambda} - 1}} \sqrt{\frac{32\pi}{15}} \frac{v}{m_{H}} \to \Lambda \lesssim 3 \text{ TeV}, \ |\kappa_{\lambda}| \lesssim 20$$

A. Falkowski, R. Rattazzi in preparation

Single Higgs processes

Results: total cross sections

$$\delta\sigma = (\kappa_{\lambda}^{2} - 1)C_{2} + (\kappa_{\lambda} - 1)C_{1}$$

$$C_{2} = -9.14 \cdot 10^{-4}, \quad \kappa_{\lambda} = \pm 20$$

$$C_{2} = -1.53 \cdot 10^{-3}, \quad \kappa_{\lambda} = \pm 1$$

$C_1^{\sigma}[\%]$	$gg\mathrm{F}$	VBF	WH	ZH	$t\bar{t}H$
8 TeV	0.66	0.65	1.05	1.22	3.78
$13 { m TeV}$	0.66	0.64	1.03	1.19	3.51

Largest effects in ttH and VH

Only ttH receive sizable positive corrections

Results: differential cross sections

Kinematical dependence of the C_1 coefficient.

$C_1^{\sigma}[\%]$	$25~{ m GeV}$	$50 { m GeV}$	$100 {\rm GeV}$	$200 {\rm GeV}$	$500~{ m GeV}$	
WH	1.71(0.11)	1.56(0.34)	1.29(0.72)	1.09(0.94)	$1.03 \ (0.99)$	
ZH	2.00(0.10)	1.83(0.33)	$1.50 \ (0.71)$	1.26(0.94)	$1.19 \ (0.99)$	$p_T(H) < p_{T,\mathrm{cut}}$
$t \overline{t} H$	5.44(0.04)	5.14(0.17)	4.66(0.48)	3.95(0.84)	3.54(0.99)	

Table 1: C_1^{σ} at 13 TeV obtained by imposing the cut $p_T(H) < p_{T, \text{cut}}$, for several values of $p_{T,\text{cut}}$. In parentheses the fraction of events left after the quoted cut is applied.

$C_1^{\sigma}[\%]$	1.1	1.2	1.5	2	3	
WH	1.78(0.17)	1.60(0.36)	$1.32 \ (0.70)$	1.15(0.89)	$1.06\ (0.97)$	-
ZH	2.08(0.19)	$1.86\ (0.38)$	$1.51 \ (0.72)$	$1.31 \ (0.90)$	1.22(0.98)	$m_{tot} < K \cdot m_{tbr}$
$t ar{t} H$	8.57(0.02)	7.02(0.10)	$5.11 \ (0.43)$	4.12(0.76)	$3.64\ (0.94)$	

Table 1: C_1^{σ} at 13 TeV obtained by imposing the cut $m_{\text{tot}} < K t m_{\text{thr}}$, for several values of K. In parentheses the fraction of even ts left after the quoted cut is applied.

Results: decay rates

Much milder dependence on κ_{λ} in the BR because no C₂ contribution

Constraints on λ_3 from 8 TeV data

Using signal strength results from the combination of ATLAS and CMS we can make a one-parameter fit to estimate the limit that can be set on κ_{λ}

Precision Observables

λ_3 -dependent contributions in m_w and $\sin^2 \theta_{eff}^{lep}$

 $m_{_{\!\!\!M}}$ and the effective sine are obtained from $\alpha,\,G_{_{\!\!\!\!M}}$ and $m_{_{\!\!\!2}}$ via

$$m_W^2 = \frac{\hat{\rho} m_Z^2}{2} \left\{ 1 + \left[1 - \frac{4\hat{A}^2}{m_Z^2 \hat{\rho}} (1 + \Delta \hat{r}_W) \right]^{1/2} \right\} \qquad \hat{A} = (\pi \hat{\alpha} (m_Z) / (\sqrt{2}G_\mu))^{1/2} \\ \hat{\alpha} (m_Z) = \frac{\alpha}{1 - \Delta \hat{\alpha} (m_Z)} \\ \hat{\alpha} (m_Z) = \frac{\alpha}{1 - \Delta \hat{\alpha} (m_Z)} \\ \frac{G_\mu}{\sqrt{2}} = \frac{\pi \hat{\alpha} (m_Z)}{2m_W^2 \hat{s}^2} (1 + \Delta \hat{r}_W) \\ \hat{\rho} = \frac{1}{1 - Y_{\overline{MS}}}$$

 λ_3 -dependent contributions appear at two-loop in the W and Z self-energies

Constraints on λ_3 from P.O. and 8 TeV data

$$O = O^{\text{SM}} \left[1 + (\kappa_{\lambda} - 1)C_1 + (\kappa_{\lambda}^2 - 1)C_2 \right]$$

$$\begin{array}{c|cccc}
C_1 & C_2 \\
\hline
m_W & 6.27 \times 10^{-6} & -1.72 \times 10^{-6} \\
\sin^2 \theta_{\text{eff}}^{\text{lep}} & -1.56 \times 10^{-5} & 4.55 \times 10^{-6}
\end{array}$$

P.O. + ggF +VBF $\kappa_{\lambda}^{\text{best}} = 0.5$, $\kappa_{\lambda}^{1\sigma} = [-4.7, 8.9]$, $\kappa_{\lambda}^{2\sigma} = [-8.2, 13.7]$ p > 0.05 $\kappa_{\lambda} > -13.3$, $\kappa_{\lambda} < 20$

 $\begin{array}{ll} \mathsf{ggF} + \mathsf{VBF} & \kappa_{\lambda}^{\mathrm{best}} = -0.24\,, & \kappa_{\lambda}^{1\sigma} = \left[-5.6, 11.2\right], & \kappa_{\lambda}^{2\sigma} = \left[-9.4, 17.0\right] \\ & p > 0.05 & \kappa_{\lambda} > -14.3 \end{array}$

Perspectives for the future

Exercise: $\mu_i^f = 1 \longrightarrow \kappa_{\lambda}^{\text{best}} = 1$ central values are SM Relative uncertainties as estimated in Peskin arXiv: 1312.4974

CMS-II (300 fb⁻¹) $\kappa_{\lambda}^{1\sigma} = [-1.8, 7.3], \quad \kappa_{\lambda}^{2\sigma} = [-3.5, 9.6] \quad \kappa_{\lambda}^{p>0.05} = [-6.7, 13.8]$ CMS-HL-II (3000 fb⁻¹) $\kappa_{\lambda}^{1\sigma} = [-0.7, 4.2], \quad \kappa_{\lambda}^{2\sigma} = [-2.0, 6.8] \quad \kappa_{\lambda}^{p>0.05} = [-4.1, 9.8]$

Conclusions

- The shape of the Higgs potential is presently very poorly known and the bounds on the trilinear self couplings from double Higgs production do not allow to test weakly coupled models.
- I presented the idea of using the sensitivity to the Higgs trilinear coupling of single Higgs processes and precision observables in order to gather information on the Higgs potential.
- These kind of studies can be competitive and complementary to the direct double Higgs measuremets
- Our studies rely on some assumptions (some of which are in common with the double Higgs analyses) that can be in the future progressively relaxed.