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Quantum Gravity 

and  

the emergence of spacetime and geometry



Quantum Gravity and the nature of spacetime
quantum gravity = microscopic theory of pre-geometric quantum degrees of freedom 

(“quantum (field) theory of atoms of space”)

gravitational field result of collective dynamics
 

spacetime and geometry are emergent entities, obtained after 
coarse graining of fundamental, non-spatiotemporal dofs

candidate “atoms of quantum space”  ——->  how to recover continuum spacetime (and GR)?

the goals are:


• identify the fundamental (quantum) degrees of freedom of spacetime                  
——  the “atoms of space (or spacetime)”


•  define a consistent quantum dynamics for them


• show that an approximately continuum, classical spacetime emerges


• show that GR is good effective description of emergent spacetime dynamics



~ extracting macroscopic, collective, coarse-grained physics from atomic physics, in condensed matter systems

several results in various approaches (quantum Regge calculus, Loop Quantum Gravity, Group Field Theory, 
dynamical triangulations, ….)

main differences: 

fundamental theory does not live in spacetime and does not deal with spacetime fields

both fundamental dynamics and emergent spacetime dynamics should be describe by relational observables

1st aspect of “problem of continuum”: emergence of spacetime:

approximation of microscopic building blocks to give effective continuum spatiotemporal description

guiding hypothesis: continuum spacetime and geometry within hydrodynamic approx. of fundamental QG











this is realised (to different degrees and in different ways) in most QG approaches:

CDT and simplicial quantum gravity  

Loop Quantum Gravity

spin foam models (via generalised lattice gauge theory renormalization)

Group Field Theory (spin foam models) (via Functional RG)

2nd aspect of problem of continuum: QG phases and geometrogenesis:

different macroscopic phases may correspond to same microscopic fundamental QG system

in other words, continuum limit of QG models will in general give different macroscopic phases

which one is “geometric”/spatiotemporal? 

geometric phase

???

???

see Bianca’s talk



The idea of “Geometrogenesis”

from non-geometric phase (no spacetime and geometry even at macroscopic scales)

to geometric phase (spacetime and geometry emerge at macroscopic scales)

is geometrogenesis a physical “process”?

if it is physical, what physics does it capture?

hypothesis: cosmological interpretation


geometrogenesis is what replaces the Big Bang in Quantum Gravity


possible realisation: GFT condensation

non-trivial phase diagram (different possible phases)
phase transitions

Geometrogenesis



geometrogenesis



Group Field theory: 

a quantum field theory for the atoms of space



Group Field Theory (QFT of spin networks, QFT of simplicial geometries):
same type of states of LQG (i.e. generalised simplicial geometries), but organised in Fock space

GFT quanta = spin network vertices = quantised simplices (tetrahedra)

GFT Feynman diagrams (elementary processes) = simplicial lattices + (generalised) simplicial geometries

' : G⇥d ! CQuantum field theories over group manifold  G (or corresponding Lie algebra)

relevant classical phase space for “GFT quanta”
(space of classical geometries of single tetrahedron): (T ⇤G)⇥d ' (g⇥G)⇥d
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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boson statistics is -assumption- 
(can construct, e.g., fermionic models)

Hv = L2
�
Gd; dµHaar

�

additional conditions (e.g. symmetries)  on fields restrictions on Hilbert space

fundamental Hilbert space = space of states for arbitrary collections of tetrahedra



Fock vacuum: “no-space” (“emptiest”) state   | 0 >    (no topology, no geometry)

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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Group Field Theory (QFT of spin networks, QFT of simplicial geometries):

a QFT of spin networks/simplicial structures



example: quantum tetrahedron
classical tetrahedron in 4d: 
4 vectors normal to triangles that close (lying in hypersurface with normal N)

unique intrinsic geometry (up to rotations)

equivalently: constrained 4d area 2-forms:

group-theoretic phase space variables:

Bi 2 so(3, 1) bi 2 so(3) ⇢ so(3, 1)
part of phase space:

(T ⇤SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤SO(3))4

quantised, e.g., via geometric quantisation
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Feynman diagrams = stranded diagrams dual to cellular complexes (lattices) of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices) ~ “discrete spacetimes”

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks ~ covariant LQG)


• lattice path integrals         

(with group+Lie algebra variables)


~ “quantum discrete spacetime geometries”

“combinatorial non-locality”

in pairing of field arguments

classical action: kinetic (quadratic) term + (higher order) interaction

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.



Feynman diagrams = stranded diagrams dual to cellular complexes (lattices) of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices) ~ “discrete spacetimes”
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Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks ~ covariant LQG)


• lattice path integrals         

(with group+Lie algebra variables)


~ “quantum discrete spacetime geometries”
GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus

“combinatorial non-locality”

in pairing of field arguments

classical action: kinetic (quadratic) term + (higher order) interaction

S(',') =
1
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Z
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Group Field Theory and Tensor Models
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Group Field Theory and Tensor Models

Matrix models

Tensor modelsGFT

Non-commutative geometry

LQG

Spin foam models

Simplicial gravity path integrals 

(e.g. quantum Regge calculus)

(causal) Dynamical 
Triangulations



Cosmology from QG perspective



very important to connect fundamental QG formalisms to effective cosmological models for the early universe

for cosmology:

for Quantum Gravity:

need for Quantum Gravity foundation

cosmology is simplest type of emergent continuum relativistic physics

cosmology offers most concrete prospects for observational tests

Quantum Gravity could:

• provide solid ground for existing cosmological scenarios (and justifying their 
assumptions)

• suggest altogether new cosmological scenarios

• suggest modifications to effective field theory (e.g. modified dispersion relations) 
modifying/complementing usual scenarios

due to issues concerning:

• more solid grounds for semiclassical description commonly used

• initial singularity (or bouncing regime in bouncing scenarios, or phase transition in emergent universe scenarios)

• transplanckian problem

• nature of inflaton (in inflationary scenarios) or quantum gravity inflation



Two points of view on cosmology 
two views: 

1.dynamics of (spatially) homogeneous geometries and matter fields
(special configurations of gravitational field - homogeneous sector of General Relativity)

to go beyond, quantise these geometries and fields:

quantum cosmology

small number of observables, all of global nature 

beautiful work with lots of interesting insights

especially in Loop Quantum Cosmology (Bojowald, 
Ashtekar, Singh, Agullo, Pawlowski, Wilson-Ewing, …..)

just a toy model or may indeed capture features of real universe?
how to embed it in full theory?

see talk by Wilson-Ewing



Two points of view on cosmology 

two views: 

1.dynamics of (spatially) homogeneous geometries 
(special configurations of gravitational field - homogeneous sector of General Relativity)

2. result of coarse graining gravitational dofs (inhomogeneities, local info) up to global quantities only

in other words: effective dynamics of 
special (global) observables of full theory

this is necessarily the case if fundamental QG theory is based on 
non-spatiotemporal structures, and spacetime and geometry 
themselves are emergent



Homogeneous cosmology from full QG

• few “macroscopic” observables, of “global” nature (understood as suitably defined averages 
over fundamental degrees of freedom, e.g. inhomogeneities, microscopic dofs, …)

• close to equilibrium

• insensitive to (or not too much affected by) microstructure
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• few “macroscopic” observables, of “global” nature (understood as suitably defined averages 
over fundamental degrees of freedom, e.g. inhomogeneities, microscopic dofs, …)

• close to equilibrium

• insensitive to (or not too much affected by) microstructure

hydrodynamics regime!



The hydrodynamics of Quantum Gravity: 
what to do, what to expect



Hydrodynamics of Quantum Gravity?

what could be the relevant hydrodynamic observables in QG?

heuristic

what would key hydrodynamic quantities look like in QG?

e.g. simple averages of “one-body” observables, extensive in the “number of atoms of space”

e.g. the total volume V of space, if each “atom of space” gives a contribution to it

n.b. total volume is basic observable in homogeneous cosmology

one key hydrodynamic quantity would be reduced “one-body” density, 
with the “single-body” corresponding to the “atom of space”

i.e. some function on the space of data associated with a single “atom of space”



Cosmology as hydrodynamics of (quantum) spacetime
what would a “coarse graining of geometric dof of Universe” be?

how to define the basic cosmological hydrodynamic variable? !!! heuristic !!!

analogue of 1-particle reduced density (treating each point as a “constituent of the spacetime fluid”):

which point is chosen is irrelevant because of diffeomorphism symmetry
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cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it

basic variable: “single-body density” function of geometric data of minisuperspace (~ geometry at a point)
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single-body density (reduced to half phase space) is formally analogous to quantum cosmology wave function

QG hydrodynamics ~ non-linear quantum cosmology
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cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it

basic variable: “single-body density” function of geometric data of minisuperspace (~ geometry at a point)

to make it better defined, need well-defined notion of “atom of space”

single-body density (reduced to half phase space) is formally analogous to quantum cosmology wave function

QG hydrodynamics ~ non-linear quantum cosmology



Cosmology as hydrodynamics of (quantum) spacetime
• Quantum Gravity formalisms suggest “atoms of space”: fundamental quantum simplex or spin network vertex

• they provide “many-body” observables, e.g. volume operators, extensive in the number of “atoms of space”

• they propose a fundamental dynamics for them, i.e. means to compute (dynamical) averages of observables

GFT is convenient framework:

• a Fock space description of the fundamental constituents of quantum space

• a 2nd quantised language for observables

• a field theoretic description of the dynamics, suitable for many-body physics

expect key variable to be density over space of data for single simplex or single spin network vertex

space of geometry for tetrahedron ~ minisuperspace of homogeneous geometries  ——>>>        
non-linear equation for QG hydrodynamic density ~ non-linear quantum cosmology 
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Group field theory (condensate) cosmology: 

cosmology as QG hydrodynamics (an example)



(Quantum) Cosmology from GFT condensates
S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc] …………….

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

!!!  generic quantum states have no spatiotemporal/geometric 
interpretation (in the sense of continuum spacetime fields) !!!

no spacetime manifold, no differential structure, no continuum fields, fully 
diffeomorphism invariant (of course, no coordinates, time vector fields, etc)

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
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where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state
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(Quantum) Cosmology from GFT condensates

problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
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start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
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leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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I)⇧̂(g
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state

special states with (plausible) continuum geometric interpretation:
infinite dofs, such that, if one tries to reconstruct continuum geometry from them, one obtains same geometric 
data at each “point”, i.e. homogeneous spatial (quantum) geometry (still, fully diffeo-invariant)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state

described by single collective wave function 
(depending on homogeneous anisotropic geometric data)
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' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data
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(Quantum) Cosmology from GFT condensates

problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

problem 2:

extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum homogeneous (quantum) spaces

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
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leading to the quantum equation of motion
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
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if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.
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ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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•  simplest
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infinite superposition of Feynman diagrams (infinite 
sum over discrete “spacetime” lattices)

gives equation for “condensate wave function”: 
Z

[dg0i] K̃(gi, g
0
i)�(g0i) + �

�Ṽ
�'(gi)

|'⌘� = 0

impose that these states satisfy (approximately) fundamental quantum dynamics of given GFT model

formally similar to quantum cosmology, but:
no Hilbert space structure (no superposition of “states of universe”, no “collapse of cosmological wave function
“statistical nature” of wave function; still, fluctuations of all geometric quantities



(Quantum) Cosmology from GFT condensates

problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

problem 2:

extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum homogeneous (quantum) spaces

following procedures of standard BEC

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs 

is


non-linear extension of quantum cosmology equation for collective wave function
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extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum homogeneous (quantum) spaces

following procedures of standard BEC

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs 

is


non-linear extension of quantum cosmology equation for collective wave function

cosmology as QG hydrodynamics!!!

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
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Emergent bouncing cosmology from full QG

• reduction to isotropic condensate configurations (depending on single variable j):

Relational Dynamics

We expect the condensate state to only be an approximate solution
to the quantum equations of motion. So, we will only impose the
first Schwinger-Dyson equation [Gielen, Oriti, Sindoni],

h�|
c�S
�'̄

|�i = 0.

Since we are neglecting connectivity, and only considering equilateral
spin network nodes, �(g

v

,�) ! �
j

(�) since for each j only one
equilateral spin network node exists.

Imposing the first Schwinger-Dyson equation on |�i gives the
non-linear equation (assuming a GFT action based on EPRL)

@2
��j

(�)�m

2
j

�
j

(�) + w

j

�̄
j

(�)4 = 0,

where the numerical values of the m

2
j

⇠ K

(0)
2 /K (2)

2 and w

j

⇠ V5/K
(2)
2

depend on the details of the GFT action.
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• starting from (generalised) EPRL model for 4d Lorentzian QG, coupled to (discretised) (pre-)scalar field
• start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

• coupling of free massless scalar field

GFT with a Scalar Field

A matter field is needed for cosmology. A scalar field can be added to
GFTs via

'̂(g
v

) ! '̂(g
v

,�).

From a spin foam perspective, it is reasonable to discretize the scalar
field on chunks of 4D space-time, or at the vertices of the
two-complex dual to the discretization of the space-time.

This means that the interaction term in the GFT action must include
delta functions so all � have the same value at the vertex. Clearly,
the gradients of � will be encoded in the propagator of the GFT.

Furthermore, if we assume � is massless and minimally coupled to
gravity, the symmetries � ! �+ const and � ! �� require

K2(gv1 , gv2 ,�1,�2) = K2(gv1 , gv2 , (�1 � �2)
2),

V5(gv
a

,�
a

) = V5(gv
a

)
Y

�(�
a

� �1).
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Condensate States

A simple family of condensate states are the Gross-Pitaevskii
condensate states, i.e., coherent states of the GFT field operator
which are, up to a numerical prefactor, [Gielen, Oriti, Sindoni]

|�i ⇠ exp

✓Z
dg

v

d� �(g
v

,�)�̂†(g
v

,�)

◆
|0i,

where �(g
v

,�) is the condensate wave function. Note that �(g
v

,�)
is not normalized; rather, its norm gives the number of fundamental
GFT quanta.

Importantly, the massless scalar field can be used as a relational
clock: �(g

v

,�
o

) can be understood as the condensate wave function
evaluated at the ‘time’ �

o

.

Thus, imposing the quantum equations of motion on |�i will give
relational dynamics with respect to �.

E. Wilson-Ewing (AEI) GFT Cosmology February 15, 2016 11 / 21

details of effective dynamics depend on microscopic model + want to recast emergent QG hydrodynamics as 
dynamical equations for geometric observables, evolving in “time”

no spacetime/geometric interpretation, no manifolds nor fields correspond to generic states, at microscopic level
they (may) acquire this interpretation at macroscopic, effective, hydrodynamic level
use effective scalar field variable as “physical clock” to define “time”



• two (approximately) conserved quantities (per mode):  E, Q

At this point, it is convenient to separate �
j

(�) into its modulus and phase,

�
j

(�) = ⇢
j

(�)ei✓j(�), (67)

with ⇢
j

(�) and ✓
j

(�) both assumed to be real, and ⇢
j

(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @

�

f(�). Then, in terms of ⇢
j

and ✓
j

, the equation of motion (66) splits into a real
and an imaginary part, which are respectively

⇢00
j

� [m2
j

+ (✓0
j

)2]⇢
j

⇡ 0, (68)

and
2⇢0

j

✓0
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+ ⇢
j

✓00
j

⇡ 0. (69)

The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2

j

✓0
j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),

Q
j

⇡ ⇢2
j

✓0
j

. (70)

Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

E
j

⇡ (⇢0
j

)2 + ⇢2
j

(✓0
j

)2 �m2
j

⇢2. (71)

Finally, using (70), the remaining equation of motion (68) can be rewritten as

⇢00
j

�
Q2

j

⇢3
j

�m2
j

⇢
j

⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,

P
j

|�
j

(�)|2 corresponds to the average
number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
for �

j

(�) reduces to
@2
�

�
j

(�)�m2
j

�
j

(�) ⇡ 0, (66)

with m2
j

= B
j

/A
j

.
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GFT interaction terms sub-dominant

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K =
X

j,m,◆

Z
d�1d�2


'̄
j

v1 ,◆1
m

v1
(�1) '
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v2 ,◆2
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v2
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⇥K
j

v1 ,jv2 ,◆1,◆2
m

v1 ,mv2
((�1 � �2)

2)

�
, (3)

while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '

j

v2 ,◆2
m

v2
(�2) around

�2 = �1 = �, giving

K =
1X

n=0

X
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Z
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v2
(�)(K(2n))j,◆
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, (4)

where the notation on Kj,◆

m

has been compressed, and

(K(2n))j,◆
m

=

Z
du

u2n

(2n)!
Kj,◆

m

(u2). (5)

In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply

c�S
�'̄

| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states

|�i = e�k�k2
/2 exp

0

@
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(�)('̂†)jv,◆
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A |0i, (7)

where �j

v

,◆

m

v

(�) is the condensate wave function and
k�k2 =

R
d� k�(�)k2. An important point here is that

the condensate wave function is not normalized: rather
the norm of �j

v

,◆

m

v

(�),

k�(�)k2 =
X

j,m,◆

|�j

v

,◆

m

v

(�)|2, (8)

is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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(�), (9)

where the Cj

v

,◆

m

v

are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:

h�|
c�S
�'̄

|�i = 0, (10)

which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �

j

(�)

A
j
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�
j

(�)�B
j

�
j

(�) + w
j

�̄
j

(�)4 = 0. (11)

It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j

2

functions A, B, w define the details of the EPRL model

• effective condensate hydrodynamics (non-linear quantum cosmology):



• two (approximately) conserved quantities (per mode):  E, Q

At this point, it is convenient to separate �
j

(�) into its modulus and phase,

�
j

(�) = ⇢
j

(�)ei✓j(�), (67)

with ⇢
j

(�) and ✓
j

(�) both assumed to be real, and ⇢
j

(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @

�

f(�). Then, in terms of ⇢
j

and ✓
j

, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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and
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✓00
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⇡ 0. (69)

The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2

j

✓0
j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),

Q
j

⇡ ⇢2
j

✓0
j

. (70)

Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

E
j

⇡ (⇢0
j

)2 + ⇢2
j

(✓0
j

)2 �m2
j

⇢2. (71)

Finally, using (70), the remaining equation of motion (68) can be rewritten as

⇢00
j

�
Q2

j

⇢3
j

�m2
j

⇢
j

⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,

P
j

|�
j

(�)|2 corresponds to the average
number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
for �

j

(�) reduces to
@2
�

�
j

(�)�m2
j

�
j

(�) ⇡ 0, (66)

with m2
j

= B
j

/A
j

.
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• key relational observables (expectation values in condensate state) with scalar field as clock:

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A

j

, B
j

and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
j

(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w

j

�
j

(�)4 rather
than ⇠ w

jklmn

�
k

(�)�
l

(�)�
m

(�)�
n

(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S

j

, it is obvious that there is a conserved quantity for every j, the
‘energy’ E

j

of the condensate wave function �
j

(�) with respect to the relational time �,
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5
Re

�
w

j

�
j

(�)5
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. (63)

In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q

j

related to the symmetry
�
j

(�) ! ei↵�
j

(�) emerges as another conserved quantity
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂

�

(�)|�i = ~
P

j

Q
j

and therefore ⇡
�

= h�|⇡̂
�

(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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Note that, following from the definition of the momentum of the massless scalar field, it is
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momentum of scalar field (at fixed “time”)

the condensate be isotropic, and we are working in the limit where the scalar field � is
assumed to evolve slowly. Finally, we are considering the regime where the interaction
term in (58) is subdominant, and hence where the ⇢

j

are su�ciently small.
On the other hand, for there to exist a continuum interpretation of the condensate

state as a space-time, there must be a large number of quanta of geometry in the conden-
sate state, which requires the ⇢

j

to be large. (Also, in order for a consistent continuum
geometric interpretation to be valid at least for large total spatial volumes of the universe,
a few more conditions are needed, namely that there be a small curvature and a small vol-
ume associated to each individual GFT quantum. These last conditions are not necessary
for the mathematical consistency of the condensate approximation, but are necessary to
have a clear space-time interpretation for the condensate state.)

A delicate interplay between the values of ⇢
j

and the coupling constants (and kernels)
of the theory is required for the condensate approximation to be valid while at the same
time neglecting the interactions. It is only when all of these assumptions hold that a
reliable cosmological interpretation of the condensate state exists and that the e↵ective
dynamics extracted here from the full theory can be trusted.

B. Condensate Friedmann Equations

The e↵ective dynamics of the GFT condensates is (part of) the hydrodynamics of the
GFT model we are studying, and is encoded in an equation for the mean field � (and its
complex conjugate) or, in more conventional hydrodynamic form, for a density ⇢ and a
phase ✓, which in turn can be decomposed in terms of modes associated to representations
j. This type of equation has the form of a non-linear extension of a quantum cosmology
dynamics, even though the physical interpretation is di↵erent. From this type of equation,
just as in (loop) quantum cosmology, it is possible to extract the gravitational dynamics
in the form of equations for geometric quantities. In particular, for homogeneous and
isotropic configurations, a natural choice is to derive an e↵ective equation that governs
the dynamics of the volume of the universe, coupled to the scalar field.

This can be done in a straightforward fashion in this case starting from the equations
of motion for ⇢

j

obtained in the previous section and relating the spatial volume to the
⇢
j

. By using the massless scalar field � as a relational clock, the resulting equations of
motion for V (�) can be compared to the Friedmann equations of cosmology, which are
presented in the Appendix A.

The quantity of interest here is the total volume of the universe in the condensate
state, at a given moment of the relational time �,

V (�) =
X

j

V
j

�̄
j

(�)�
j

(�) =
X

j

V
j

⇢
j

(�)2, (73)
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universe volume (at fixed “time”) where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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and

V 00 = 2
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= 2
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+ 2m2
j

⇢2
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i
. (75)

Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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and
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V
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2
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energy density of scalar field (at fixed “time”)

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
=

~2(
P

j

Q
j

)2

2(
P

j

V
j

⇢2
j

)2
, (78)

to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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GFT interaction terms sub-dominant

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K =
X
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�
, (3)

while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '

j

v2 ,◆2
m

v2
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�2 = �1 = �, giving
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where the notation on Kj,◆

m

has been compressed, and

(K(2n))j,◆
m

=

Z
du

u2n

(2n)!
Kj,◆

m

(u2). (5)

In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply

c�S
�'̄

| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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the condensate wave function is not normalized: rather
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:
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which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �
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It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j
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functions A, B, w define the details of the EPRL model

• effective condensate hydrodynamics (non-linear quantum cosmology):



• two (approximately) conserved quantities (per mode):  E, Q

At this point, it is convenient to separate �
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(�) into its modulus and phase,
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with ⇢
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(�) both assumed to be real, and ⇢
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(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @
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f(�). Then, in terms of ⇢
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and ✓
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, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2

j

✓0
j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),

Q
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

E
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,

P
j

|�
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(�)|2 corresponds to the average
number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
for �
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(�) reduces to
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/A
j

.
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• key relational observables (expectation values in condensate state) with scalar field as clock:

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A

j

, B
j

and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
j

(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w

j
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j

(�)4 rather
than ⇠ w

jklmn

�
k

(�)�
l

(�)�
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n

(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S
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, it is obvious that there is a conserved quantity for every j, the
‘energy’ E
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of the condensate wave function �
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(�) with respect to the relational time �,
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In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q

j

related to the symmetry
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(�) emerges as another conserved quantity
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂

�

(�)|�i = ~
P

j

Q
j

and therefore ⇡
�

= h�|⇡̂
�

(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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Note that, following from the definition of the momentum of the massless scalar field, it is
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momentum of scalar field (at fixed “time”)

the condensate be isotropic, and we are working in the limit where the scalar field � is
assumed to evolve slowly. Finally, we are considering the regime where the interaction
term in (58) is subdominant, and hence where the ⇢

j

are su�ciently small.
On the other hand, for there to exist a continuum interpretation of the condensate

state as a space-time, there must be a large number of quanta of geometry in the conden-
sate state, which requires the ⇢

j

to be large. (Also, in order for a consistent continuum
geometric interpretation to be valid at least for large total spatial volumes of the universe,
a few more conditions are needed, namely that there be a small curvature and a small vol-
ume associated to each individual GFT quantum. These last conditions are not necessary
for the mathematical consistency of the condensate approximation, but are necessary to
have a clear space-time interpretation for the condensate state.)

A delicate interplay between the values of ⇢
j

and the coupling constants (and kernels)
of the theory is required for the condensate approximation to be valid while at the same
time neglecting the interactions. It is only when all of these assumptions hold that a
reliable cosmological interpretation of the condensate state exists and that the e↵ective
dynamics extracted here from the full theory can be trusted.

B. Condensate Friedmann Equations

The e↵ective dynamics of the GFT condensates is (part of) the hydrodynamics of the
GFT model we are studying, and is encoded in an equation for the mean field � (and its
complex conjugate) or, in more conventional hydrodynamic form, for a density ⇢ and a
phase ✓, which in turn can be decomposed in terms of modes associated to representations
j. This type of equation has the form of a non-linear extension of a quantum cosmology
dynamics, even though the physical interpretation is di↵erent. From this type of equation,
just as in (loop) quantum cosmology, it is possible to extract the gravitational dynamics
in the form of equations for geometric quantities. In particular, for homogeneous and
isotropic configurations, a natural choice is to derive an e↵ective equation that governs
the dynamics of the volume of the universe, coupled to the scalar field.

This can be done in a straightforward fashion in this case starting from the equations
of motion for ⇢

j

obtained in the previous section and relating the spatial volume to the
⇢
j

. By using the massless scalar field � as a relational clock, the resulting equations of
motion for V (�) can be compared to the Friedmann equations of cosmology, which are
presented in the Appendix A.

The quantity of interest here is the total volume of the universe in the condensate
state, at a given moment of the relational time �,

V (�) =
X

j

V
j

�̄
j

(�)�
j

(�) =
X

j

V
j

⇢
j

(�)2, (73)
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universe volume (at fixed “time”) where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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and
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. (75)

Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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and
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energy density of scalar field (at fixed “time”)

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
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~2(
P
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Q
j
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2(
P

j

V
j
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j

)2
, (78)

to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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GFT interaction terms sub-dominant

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)
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while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
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where the notation on Kj,◆
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has been compressed, and
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In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply
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together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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(�) is the condensate wave function and
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d� k�(�)k2. An important point here is that

the condensate wave function is not normalized: rather
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,

�j

v

,◆

m

v

(�) = Cj

v

,◆

m

v

· �
j

(�), (9)
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are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:
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which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �
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It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j

2

functions A, B, w define the details of the EPRL model

• effective condensate hydrodynamics (non-linear quantum cosmology):

observables defined in fundamental Hilbert space; intuition comes from discrete geometric interpretation of 
fundamental dofs; full continuum geometric interpretation emerges at collective, hydrodynamic level



effective dynamics for volume - generalised Friedmann equations:
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
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Emergent bouncing cosmology from full QG
DO, Sindoni, Wilson-Ewing, ‘16

(GFT interaction terms sub-dominant)
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These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .

38

remains positive at all times
(with single turning point)

generic quantum bounce!

Emergent bouncing cosmology from full QG
DO, Sindoni, Wilson-Ewing, ‘16

(GFT interaction terms sub-dominant)
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limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q
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be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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remains positive at all times
(with single turning point)

generic quantum bounce!

classical approx.

In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢

j

(72) clearly shows that the individual ⇢
j

will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢

j

has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡

�

= ~
P

j

Q
j

and therefore
⇡
�

is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2

j

� |E
j

|/m2
j

and ⇢4
j

� Q2
j

/m2
j

(note that the semi-classical limit is
not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing E

j

and
Q

j

/⇢2
j

can be understood as quantum corrections.
In this limit, the generalised Friedmann equations become
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and
V 00

V
=

4
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j

V
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m2
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jP
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j
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j
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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approx. classical Friedmann 
eqns if m2

j ⇡ 3GN

Emergent bouncing cosmology from full QG
DO, Sindoni, Wilson-Ewing, ‘16

(GFT interaction terms sub-dominant)



Special case: single spin condensate
cosmological dynamics entirely due to growth (in relational time) of number of “atoms of space”

DO, Sindoni, Wilson-Ewing, ‘16

dominance of single-spin condensate realised in several contexts:

• mean field analysis of static GFT models in isotropic restriction: vacua strongly peaked on single spin

• mean field analysis of evolution (in relational time) of isotropic models: single spin dominates at late times

• free GFT models (subdominant interactions)

• interacting GFT models: single-spin enhanced as universe expands A. Pithis, M. Sakellariadou, ‘16

S. Gielen, ‘16

A. Pithis, M. Sakellariadou, P. Tomov, ‘16

interactions are also much simpler to study, for such simple condensates



Special case: single spin condensate
cosmological dynamics entirely due to growth (in relational time) of number of “atoms of space”

of isotropic GFT quanta) it is necessary to identify m2
j

= 3⇡G for all j. For these val-
ues of m

j

, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �

o

, to choose a di↵erent set of values for m
j

that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �

o

.)
The condition that m2

j

= 3⇡G is a requirement on the form of the terms A
j

and B
j

that
are determined by the GFT action: if B

j

/A
j

6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j

= 3⇡G, then the generalised Friedmann equations of the GFT condensate
become, in the classical limit,

✓
V 0

V

◆2

=
V 00

V
= 12⇡G, (81)

which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = V
o

e±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and V

o

depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢

j

is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�
j

(�) = 0, for all j 6= j
o

. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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simple condensate:

This assumption mirrors the situation that is thought to be relevant in LQC, where
there is also the extra assumption that the underlying LQG state consists of a graph
with a very large number of nodes and links, and that the spins on all of the links are
identical (often chosen to be j

o

= 1/2). It follows that in the LQC picture, a cosmological
space-time expands or contracts by modifications to the combinatorial structure of the
spin network that consist of adding or removing nodes, rather than by changing the spin
labels on the spin network; this is analogous to the volume dynamics extracted from the
underlying GFT model where changes in V correspond to changes in the number of GFT
quanta, rather than transitions between GFT quanta coloured by di↵erent spin represen-
tations. In the limiting case (83) considered here, the volume dynamics is entirely dictated
by the number of GFT quanta via V (�) = V

j

o

N
j

o

(�); this is essentially identical to the
heuristic interpretation suggested by the LQC ‘improved dynamics’ relating LQC to the
underlying LQG spin networks. Finally, note that the missing connectivity information
in the simple GFT condensates considered here does not play any role in LQC either.

Of course, if only one mode j = j
o

contributes to the e↵ective dynamics, then the cor-
rect classical limit requires a milder condition on the microscopic dynamics to reproduce
the classical Friedmann equation with respect to the more general case considered in the
previous subsection, namely that m2

j

o

= 3⇡G (and there are no requirements on the other
m

j

).
Therefore, we set m2

j

o

= 3⇡G in the following so that the correct classical limit is
ensured. Now, since ⇢

j

= 0 for all j 6= j
o

, only Q
j

o

is non-zero and

⇡
�

= ~Q
j

o

. (84)

Given (83), the total volume is simply given by

V = V
j

o

⇢2
j

o

, (85)

and the first modified Friedmann equation simplifies to
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which can be rewritten, using the relation for the energy density of a massless scalar field
⇢ = ⇡2
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/2V 2, as ✓
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with ⇢
c

= 6⇡G~2/V 2
j

o

⇠ (6⇡/j3
o

)⇢Pl. It is clear that the first term is the classical limit,
and that the second term is a quantum gravity correction. In addition, from scaling
arguments (the Friedmann equation must be invariant under V ! ↵V and ⇡

�

! ↵⇡
�

)
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LQC-like 
modified 
dynamics!

DO, Sindoni, Wilson-Ewing, ‘16

dominance of single-spin condensate realised in several contexts:

• mean field analysis of static GFT models in isotropic restriction: vacua strongly peaked on single spin

• mean field analysis of evolution (in relational time) of isotropic models: single spin dominates at late times

• free GFT models (subdominant interactions)

• interacting GFT models: single-spin enhanced as universe expands A. Pithis, M. Sakellariadou, ‘16

S. Gielen, ‘16

A. Pithis, M. Sakellariadou, P. Tomov, ‘16

interactions are also much simpler to study, for such simple condensates



the condensate field peaks on a particular representation  j: 

emergent friedmann equations 

GFT condensates dynamically reach a low spin phase of many quanta of 
geometry which are almost entirely characterised by only one spin j 

the evolution equation of the universe in the classical limit 
of GFT can be written as an effective friedmann equation: 

energy density 

effective gravitational constant 
effective gravitational constant 
from the collective behaviour of 
spacetime quanta 

gielen (2016)                                                                                           
Emergent bouncing cosmology from full QG

for single-spin condensate,
M. De Cesare, M. Sakellariadou, ‘16

emergent cosmological dynamics can also be recast as:

Friedmann eqn with:

bounce happens 
when g = 0

a bounce replacing the classical singularity 

asymptotic value for large I is the same in both cases and coincides with newton’s constant 

energy density has a max at the bounce 
where volume reaches its minimum 

the singularity is always 
avoided for E<0 and 
provided Q is nonzero,   
it is also avoided for E>0 

a bounce replacing the classical singularity 

asymptotic value for large I is the same in both cases and coincides with newton’s constant 

energy density has a max at the bounce 
where volume reaches its minimum 

the singularity is always 
avoided for E<0 and 
provided Q is nonzero,   
it is also avoided for E>0 

effective time-varying gravitational constant 
(coming from collective behaviour of “atoms 
of spacetime”)

the condensate field peaks on a particular representation  j: 

emergent friedmann equations 

GFT condensates dynamically reach a low spin phase of many quanta of 
geometry which are almost entirely characterised by only one spin j 

the evolution equation of the universe in the classical limit 
of GFT can be written as an effective friedmann equation: 

energy density 

effective gravitational constant 
effective gravitational constant 
from the collective behaviour of 
spacetime quanta 

bounce (happening at )) when g(I) vanishes 

gielen (2016)                                                                                           



Accelerated phase after bounce: QG inflation?
M. De Cesare, M. Sakellariadou, ‘16
M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

existence of accelerated expansion translates in relational time as:

for: standard cosmology:   introduce proper time t and scale factor α  with  
express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 

we have:

standard cosmology:   introduce proper time t and scale factor α  with  
express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 

standard cosmology:   introduce proper time t and scale factor α  with  
express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 

standard cosmology:   introduce proper time t and scale factor α  with  
express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 

near the bounce

standard cosmology:   introduce proper time t and scale factor α  with  
express condition that the universe has positive acceleration in purely relational times 

classical condition for accelerated expansion: 

valid also in the absence of classical 
spacetime and absence of proper time 

near bounce:    positive        zero 

accelerated expansion in the absence of 
an inflaton field with a tuned potential 

r.h.s. 
l.h.s. accelerated 

expansion l.h.s. 

r.h.s. 

accelerated expansion, 
followed by  a maximal 
deceleration 

thus, following the bounce, we have 
accelerated expansion

issue is: number of e-folds

can one obtain                       ?  

�  non-interacting case :                                            for all values of m     and   Q 2                   2 

GFT cosmology in the absence of interactions between building 
blocks cannot replace the standard inflationary scenario 

can we get at least N ~ 60?



Accelerated phase after bounce: QG inflation?
•  in effective cosmological dynamics 
neglecting GFT interactions:

acceleration is too short-lived to be physically useful

• including effects of GFT interactions (in phenomenological way):

consider 

effective action for an 
isotropic GFT condensate 

remark: 
 
�  spin foam models for 4d QG are mostly based on interaction terms of power 5 (simplicial) 
�  tensor modes are based on even powers of the modulus field (tensorial) 

consider 

effective action for an 
isotropic GFT condensate 

remark: 
 
�  spin foam models for 4d QG are mostly based on interaction terms of power 5 (simplicial) 
�  tensor modes are based on even powers of the modulus field (tensorial) 

consider 

effective action for an 
isotropic GFT condensate 

with two conserved quantities: 

consider 

effective action for an 
isotropic GFT condensate 

with two conserved quantities: 

one finds:

•  bounce

• accelerated expansion following bounce

• decelerated phase and recollapse

cyclic universe

for a given GFT energy 

the solutions are cyclic motions describing 
oscillations around a stable minimum  

  cyclic universe                                                                                                         
volume that has a positive minimum corresponding to a bounce 

occurrence of a bounce and an early epoch 
of accelerated expansion found in the free 
theory, holds in the interacting case 
 
in addition, interactions induce recollapse 
leading to cyclic cosmologies 

moreover:

• N at least ~ 60

• no intermediate deceleration 
between beginning and end 
of accelerated phase

can one obtain                       ?  

� interacting case : 

quadratic term and 2 interaction terms 

or 

additional requirement to have an inflation-like era: 
no intermediate stage of deceleration between the 
bounce and end of inflation                λ negative 

GFT cosmology can lead to an inflation-like era for certain 
types of interactions between quanta of geometry 

QG-inflation from GFT condensates
(under certain conditions for interactions)

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

can one obtain                       ?  

�  non-interacting case :                                            for all values of m     and   Q 2                   2 

GFT cosmology in the absence of interactions between building 
blocks cannot replace the standard inflationary scenario 



Dynamics of anisotropies - first steps

differences between the dynamical behaviour of the isotropic       
and the anisotropic part of the mean field 

probability density of the mean field for 
the isotropic and anisotropic parts for 
small values of the relational clock  

probability density of the mean field for 
the isotropic and anisotropic parts for 
large values of the relational clock  

anisotropies only play an important role at small values of the relational 
clock (small volumes), whereas at late times the isotropic mode dominates 

analysis at mean field level - subdominant interactions 

GFT kinetic term = SU(2) Laplacian (special case)

A. Pithis, M. Sakellariadou, ’16
M. De Cesare, DO, A. Pithis, M. Sakellariadou, ‘17

isotropic mean field = all j’s equal + conditions on intertwiners = equilateral tetrahedra
or

isotropic mean field = tri-orthogonal tetrahedra with 3 equal j’s (triangle areas)
different notions of (an-)isotropy

different types of simple 
anisotropic configurations

similar results in both cases

(assuming isotropic mean field 
dominated by single spin value)



Cosmological perturbations from full QG
GFT for 4d gravity coupled to 4 free massless scalar fields used as clock and rods

+
isotropic reduction of geometric sector
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For locally isotropic configurations (again this can be
relaxed [18]), we can restrict the mean field � to isotropic
excitations (equilateral tetrahedra) [7], with

�(gI ,�
J) =

1X

j=0

�j(�
J)Dj(gI) ; (17)

the sum is over irreducible SU(2) representations j and
the fixed Dj(gI) is a convolution of Wigner D-matrices
with SU(2) intertwiners that encodes the shape of the
tetrahedra. � now only depends on a single j, which
determines volume information and thus the cosmological
scale factor. The volume can be computed within full
GFT as a second quantised operator, whose expectation
value we compute in the state (13) below.

The isotropic mean field �j(�J) then satisfies
�
�Bj +Aj@

2
�0 + Cj ��i

�
�j(�

J) = 0 , (18)

where we have rewritten K0, K1 and K̃1 as j-dependent
couplings with no further derivatives; we have also used
orthogonality of the WignerD-matrices to split the equa-
tion into di↵erent j contributions.

The case of Refs. [7] is obtained as the limit of our
model in which the GFT mean field takes the form

�j(�
J) ⌘ �0

j (�
0) , (19)

with a relational 3-volume operator at “time” �0

V̂ (�0) =

Z
dg dg0 '̂†(gI ,�

0)V (gI , g
0
I)'̂(g

0
I ,�

0) . (20)

V (gI , g0I) are matrix elements of the LQG volume oper-
ator between single-vertex spin network states.

Given a GFT state, hV̂ (�0)i gives its total 3-volume at
relational time �0. This appears in the Friedmann equa-
tion (2), which connects GFT condensates to cosmology.

Solutions to this homogeneous case, for generic initial
conditions, lead to a semiclassical regime in which the
Universe expands to macroscopic size [7, 8]; in this regime
the 3-volume follows the classical Friedmann solution (3).
At small volumes, the Universe undergoes a bounce and
the classical singularity is avoided [7].

In the simplest example in which only a single spin j0
is excited, the 3-volume behaves as

hV̂ (�0)i �0!±1⇠ |�±|2 exp
 
±2

s
Bj0

Aj0

�0

!
(21)

for generic initial conditions (�± 6= 0), if Bj0/Aj0 > 0;
this is precisely the classical GR result (3) if one identifies
Bj0/Aj0 =: 3⇡G. V (�) interpolates between the classi-
cal contracting and expanding solutions, and only ever
vanishes for special initial conditions [7, 8, 10]. Includ-
ing interactions can a↵ect this cosmological evolution in
several ways, for example prolonging the phase of accel-
erated expansion after the bounce and causing a later
recollapse, producing a cyclic cosmology [9].

COSMOLOGICAL PERTURBATIONS IN GFT
CONDENSATES

In a GFT model with enough degrees of freedom to
describe local physics, we could study general inhomoge-
neous quantum geometries and their dynamics. Here we
consider situations relevant for fundamental cosmology.
We study quantum fluctuations of the local 3-volume
around a close-to-homogeneous background, seeking a
quantum gravitational mechanism for explaining the ori-
gin of inhomogeneities (cosmic structure), in a similar
spirit to the inflationary paradigm, where this mecha-
nism is the imprint of quantum fluctuations in the homo-
geneous vacuum state of the inflaton [19]. We show how
such mechanism, natural in any quantum field theory
for gravity and matter, is realised by GFT condensates,
without the need to introduce an additional inflaton.
We start with the generalisation of Eq. (20) for a GFT

for gravity coupled to four reference scalar fields �I ,

V̂ (�J) =

Z
dg dg0 '̂†(gI ,�

J)V (gI , g
0
I)'̂(g

0
I ,�

J) . (22)

Here all four �J take fixed values: V̂ (�J) defines a local
volume element at the spacetime point specified by values
of the reference fields. The total 3-volume at the clock
value �0 is obtained by integrating over the “rods” �i,

V̂ (�0) ⌘
Z

d�i V̂ (�0,�i) . (23)

In a simple coherent state of the form (13), the expec-
tation value of V̂ (�J) can be evaluated immediately,

hV̂ (�J)i =
Z

dg dg0 �̄(gI ,�
J)V (gI , g

0
I)�(g

0
I ,�

J) . (24)

For a homogeneous mean field that only depends on �0,
the integral over �i in Eq. (23) must be regularised; for
the isotropic wavefunction (19), we obtain

hV̂ (�J)i =
1X

j=0

Vj |�0
j (�

0)|2 , (25)

with eigenvalues Vj ⇠ VPl j
3/2 of the volume operator.

The local and total 3-volume coincide up to regularisa-
tion, as expected in a homogeneous geometry.
In cosmology the key observables encoding the pattern

of cosmic structure are correlation functions for geomet-
ric observables. Here we focus on local volume fluctu-
ations hV̂ (�J)V̂ (�J)i, computed in a mean field state
(13), which depend crucially on the one-body matrix el-
ements V 2(gI , g0I) of the squared volume operator. Us-
ing “squared matrix elements” to compute a spectrum of
perturbations has been suggested before [12], but with-
out “rods” only global information was obtained. Here,
we can use the �I to extract statistical information about
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GFT hydrodynamics equation for 
isotropic condensates (weak coupling)

small perturbations around homogeneous condensate universes

volume fluctuations and cosmological power spectrum

naturally approximate scale invariance

• dominant part (computed on exactly homogeneous 
condensate) exactly scale invariant

• scale invariance tied to translation invariance of condensate 
• deviations suppressed as universe expands and when 

inhomogeneities are negligible

small relative amplitude

• dominant term ~ 1/N ~ 1/V
• perturbations further suppressed as universe expands
• if accelerated phase, further suppression of deviations 

from scale invariance
• QG inflation without inflation
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cosmological perturbations; Fourier transforming from �i

to their momenta ki introduces a notion of wavenumber,
defined with respect to the reference matter.

We can then obtain, within the full quantum gravity
formalism, a power spectrum of cosmological perturba-
tions. Instead of working with a generic inhomogeneous
mean field, we consider a situation of interest for the
study of cosmological perturbations and consider a mean
field perturbed around exact homogeneity,

�j(�
J) = �0

j (�
0)(1 + ✏  j(�

J)) . (26)

We then find for the quantum fluctuations of the volume

h ˆ̃V (�0, ki)
ˆ̃V (�0,Ki)i � h ˆ̃V (�0, ki)ih ˆ̃V (�0,Ki)i

= �(�0 � �0)
X

j

V 2
j |�0

j (�
0)|2

⇥
(2⇡)3�3(ki +Ki)

+ ✏ ( ̃j(�
0, ki +Ki) +  ̃j(�0,�ki �Ki)

⇤
, (27)

where we have Fourier transformed V̂ and  j ; the delta

function in �0 arises because V̂ (�J) is a density on scalar
field space. This power spectrum is a genuine quantum
correlation in the GFT condensate.
Let us illustrate the main features of this expression.
Remarkably, the dominant part of the power spectrum

(2⇡)3�3(ki +Ki)�(�
0 � �0)

X

j

V 2
j |�0

j (�
0)|2 (28)

is naturally scale-invariant: it only depends on �0. This
property follows from computing cosmological perturba-
tions on an exactly homogeneous background. Repre-
senting quantum fluctuations, even in this case the right-
hand side of Eq. (27) is not zero: it must then be scale-
invariant, with scale defined by the reference matter.
Within our mean-field approximation, scale invariance
and translational invariance, as expressed by the momen-
tum delta function in Eq. (27), are necessarily connected.

Deviations from exact scale invariance are encoded in
the last line of Eq. (27). They arise from inhomogeneous
fluctuations around the exactly homogeneous GFT con-
densate, which should generically be present, although
maybe small. Approximate scale invariance is intrinsi-
cally linked, in this framework, to such GFT fluctuations
being small. Further deviations will come from relaxing
the mean-field approximation, i.e. from using more re-
fined quantum states. Importantly, such deviations from
scale invariance depend both on the coupling of inhomo-
geneities with the homogeneous background and on their
own dynamics, as expected on physical grounds and in
agreement with the standard theory of cosmological per-
turbations. They are fully determined by the GFT per-
turbation density field, itself a solution to the perturbed
mean field equations. A more detailed study of solutions
of such perturbed equations, in particular their initial
conditions, would be crucial to identify the precise form

of these deviations. This result does not depend on the
existence of a bouncing dynamics for the background,
whose influence on the power spectrum, however, should
also be studied.
The amplitude of volume fluctuations relative to

the homogeneous background, i.e. of c�Ṽ (�0, ki) ⌘
ˆ̃V (�0, ki)/hV̂ (�0)i, is obtained by dividing Eq. (27)
by the squared background volume hV̂ (�0)i2 ⌘
(
R
d�i

P
j Vj |�0

j (�
0)|2)2. This amplitude is of order 1/N ,

for N � 1 quanta in the condensate. For instance, con-
sidering only the dominant, scale invariant contribution
and with only a single spin j0 excited, the power spec-
trum of such perturbations is

P�V (k) =
V 2
j0 |�

0
j0(�

0)|2

(
R
d�i Vj0 |�0

j0
(�0)|2)2

=
Vj0

(
R
d�i)V (�0)

, (29)

with V (�0) = N(�0)Vj0 . A small amplitude of scalar
perturbations, decreasing as the universe expands, arises
naturally from the simplest GFT condensates.
For Cj/Bj < 0 in Eq. (18), inhomogeneous perturba-

tions decay relative to the homogeneous background at
large volumes; one approaches scale invariance even more
closely, further suppressing the deviations coming from
the inhomogeneous term. If GFT interactions produce
a long-lasting accelerated expansion after the bounce
regime, as shown in [9], this leads to an even stronger
suppression of the deviations from scale invariance. This
would be basically the inflationary mechanism without
an inflaton, purely driven by quantum gravity dynamics.
The choice of vacuum, e.g. as made in inflation, is re-

placed by the GFT condensate state (13) that refers to
both quantum geometric and matter degrees of freedom.
This is because such fluctuations are computed directly
within the complete quantum gravity formalism, which
also defines the ultraviolet completion of the theory.

CONCLUSIONS

By introducing in the GFT formalism scalar field de-
grees of freedom that can be used as physical reference
frames, we could extend the mean field approximation
for GFT condensates beyond homogeneity. This approx-
imation has already been shown to provide an e↵ective
cosmological dynamics in which not only a semiclassi-
cal large Friedmann universe is reproduced under generic
conditions, but also the cosmological singularity is re-
placed by a quantum bounce, followed by an accelerated
phase of expansion of pure quantum gravity origin that,
depending on the GFT interactions, can be long lasting.
We then considered the typical setup of early universe
cosmology within this full quantum gravity framework:
we computed the power spectrum of quantum fluctua-
tions of the local volume, i.e. scalar cosmological per-

�V (�0, ki;�0,Ki) ⌘ h ˆ̃V (�0, ki)
ˆ̃V (�0,Ki)i � h ˆ̃V (�0, ki)ih ˆ̃V (�0,Ki)i

= �(�0 � �0)
X

j

V 2
j |�0

j (�
0)|2

⇥
(2⇡)3�3(ki +Ki) + ✏ ( ̃j(�

0, ki +Ki) +  ̃j(�
0,�ki �Ki))

⇤

�V (�0, ki;�0,Ki)

hV̂ (�0)i2

S. Gielen, DO, ‘17

non-zero even in purely homogeneous background (condensate), due to intrinsic quantum nature



GFT condensate cosmology: going further
• detailed study of effects of GFT interactions (on both background and perturbations)

• precise estimate of limits of approximations and different regimes

• spatial curvature, effective cosmological constant, role of topology (maybe need for connectivity information)

• effective cosmological dynamics of generalised condensates (beyond Bogolubov approx.) (also used for BHs)

• detailed dynamics of anisotropies

• detailed analysis of modified homogeneous dynamics

• more general GFT hydrodynamics and cosmological signatures of QG condensation

• detailed analysis of cosmological perturbations and their power spectrum (observations!)

• overall cosmological scenario: QG inflation? bouncing universe? emergent universe (geometrogenesis)?

DO, D. Pranzetti, J. Ryan, L. Sindoni, ’15; DO, D. Pranzetti, L. Sindoni, ‘15



example of “cosmology from full QG”: GFT condensate cosmology 

• underlying non-spatiotemporal “atoms of space”

• spacetime/geometric interpretation only approximate and for special configurations

• cosmology as QG hydrodynamics

• QG phase transitions (universe as QG condensate)

• modified effective cosmological dynamics (bouncing cosmology)

• resolution of classical singularity (bounce or cosmological phase transition)

• cosmological perturbations theory from full QG



Thank you for your attention!


