USINE

A code for the propagation of Galactic cosmic rays

Mathieu Boudaud

Laboratoire de Physique Théorique et Hautes Energies Paris, France

with

David Maurin (lead developer)

Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France

TOOLS 2017 - Tools for SM and the New Physics 13-09-2017

Maurin et al., ApJ 555 (2001), Putze et al., A&A 516, 66 (2010), Boudaud et al., A&A 605, 17 (2017)

Table of contents

1-Introduction

- 2- Cosmic ray physics
- **3- USINE: introduction**
- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

1-Introduction

- 2- Cosmic ray physics
- **3- USINE: introduction**
- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

Introduction

Precision era for cosmic rays

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

Rigidity:
$$R \equiv \frac{p}{q}$$

• Electrons and positrons (2013, 2014)

PRL113,121102 (2014), PRL113,121101 (2014)

- Protons (2015) *PRL114,171103 (2015)*
- Helium (2015) *PRL115,211101 (2015)*
- Antiprotons (2016) PRL117,091103 (2016)
- Boron/Carbon (2016) PRL117,231102 (2016)
- Preliminary results for Li, Be, B, O, C, N, etc.

Launched in 2011. Installed on the ISS.

Precision era for cosmic rays

•

•

•

•

•

•

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

3

Precision era for cosmic rays

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

Rigidity:
$$R\equiv rac{p}{q}$$

• Electrons and positrons (2013, 2014)

PRL113,121102 (2014), PRL113,121101 (2014)

- Protons (2015) PRL114, 171103 (2015)
- Helium (2015) PRL115,211101 (2015)
- Antiprotons (2016) PRL117,091103 (2016)
- Boron/Carbon (2016) PRL117,231102 (2016)
- Preliminary results for Li, Be, B, O, C, N, etc.

Precision era for cosmic rays

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

Rigidity:
$$R\equiv rac{p}{q}$$

• Electrons and positrons (2013, 2014)

- Protons (2015) PRL114, 171103 (2015)
- Helium (2015) PRL115,211101 (2015)
- Antiprotons (2016) PRL117,091103 (2016)
- Boron/Carbon (2016) PRL117,231102 (2016)
- Preliminary results for Li, Be, B, O, C, N, etc.

Precision era for cosmic rays

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

Rigidity:
$$R\equiv rac{p}{q}$$

• Electrons and positrons (2013, 2014)

CRDB (http://lpsc.in2p3.fr/crdb)

Precision era for cosmic rays

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

Rigidity:
$$R\equiv rac{p}{q}$$

Electrons and positrons (2013, 2014) • 0.4 PRL113, 121102 (2014), PRL113, 121101 (2014) 0.3 B/C Protons (2015) PRL114, 171103 (2015) • 0.2 Helium (2015) PRL115,211101 (2015) • **C2/HEAO3** B/C 0.1 Webber et al. **CRN/Spacelab2** Antiprotons (2016) *PRL117,091103 (2016)* • AMS01 \bigcirc 0.05 **CREAM-I** 0.04 TRACER Boron/Carbon (2016) PRL117,231102 (2016) PAMELA • 0.03 **AMS02** 0.02 **10² 10³** 10 • Preliminary results for Li, Be, B, O, C, N, etc. E_κ [GeV/n]

Precision era for cosmic rays

The AMS-02 detector measures the flux of cosmic rays with rigidities from ~0.5 GV to ~500 GV with an unprecedented high accuracy.

Rigidity:
$$R\equiv rac{p}{q}$$

Electrons and positrons (2013, 2014) • 0.4 PRL113, 121102 (2014), PRL113, 121101 (2014) 0.3 B/C Protons (2015) PRL114, 171103 (2015) • 0.2 Helium (2015) PRL115,211101 (2015) • **C2/HEAO3** B/C 0.1 Webber et al. **CRN/Spacelab2** Antiprotons (2016) *PRL117,091103 (2016)* • AMS01 \cap 0.05 **CREAM-I** 0.04 TRACER Boron/Carbon (2016) PRL117,231102 (2016) PAMELA • 0.03 **AMS02** 0.02 10³ 10² 10 Preliminary results for Li, Be, B, O, C, N, etc. • E_κ [GeV/n]

AMS-02 is reaching the accuracy to detect unexpected features in cosmic ray data.

A universal break in the spectra of cosmic ray nuclei?

Pointed by PAMELA and confirmed by AMS-02: an universal kink at R~200 GV?

This feature was not predicted by the conventional propagation models!

A universal break in the spectra of cosmic ray nuclei?

Pointed by PAMELA and confirmed by AMS-02: an universal kink at R~200 GV?

 $\Delta_{kinck} \sim 0.12 - 0.13$

This feature was not predicted by the conventional propagation models!

Same spectral index for p, He, $\,\bar{p},$ and positrons

Cosmic ray nuclei and leptons (e- and e+) do not undergo the same propagation processes.

Electrons and positrons lose energy through:

- Synchrotron emission (Galactic magnetic field)
- IC scattering on the interstellar radiation field

Why the spectral index of positrons is so close to the proton and antiproton ones?

Dark Matter indirect searches

See Marco's talk on Mon. at 11.45

Energy

Dark Matter indirect searches

Dark Matter indirect searches

Dark Matter indirect searches

- Is there an excess in the antiproton flux?
- What about anti-D? anti-He?

Dark Matter indirect searches

C Addison-Wesley Longman

•

6

TOOLS - 13-09-2017

Mathieu Boudaud

1-Introduction

2- Cosmic ray physics

- **3- USINE: introduction**
- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

Cosmic ray physics

Victor Hess - 1912

- ~200 particules m⁻² s⁻¹
- ~99% of nuclei

~89% of protons

- ~10% of helium
- ~1% of other nuclei
- ~1% of electrons
 ~90% of electrons
 - ~10% of positrons

Victor Hess - 1912

- ~200 particules m⁻² s⁻¹
- ~99% of nuclei
 - ~89% of protons
 - ~10% of helium
 - ~1% of other nuclei
- ~1% of electrons
 ~90% of electrons
 - ~10% of positrons

Victor Hess - 1912

- ~200 particules m⁻² s⁻¹
- ~99% of nuclei
 - ~89% of protons
 - ~10% of helium
 - ~1% of other nuclei
- ~1% of electrons
 ~90% of electrons
 - ~10% of positrons

•

•

Victor Hess - 1912

Victor Hess - 1912

Supernovae remnants (SNR) as accelerators of cosmic rays (CR)

Tycho SNR - Chandra

Acceleration by shock wave, first order Fermi mechanism

 $\Phi_{\rm SNR}(E) \propto E^{-\alpha}, \quad \alpha \simeq 2$

Victor Hess - 1912

Supernovae remnants (SNR) as accelerators of cosmic rays (CR)

Tycho SNR - Chandra

Acceleration by shock wave, first order Fermi mechanism

 $\Phi_{\rm SNR}(E) \propto E^{-\alpha}, \quad \alpha \simeq 2$

 $\Phi_{\odot}(E) \propto E^{-\gamma}, \quad \gamma \simeq 2.7$

Victor Hess - 1912

Supernovae remnants (SNR) as accelerators of cosmic rays (CR)

Tycho SNR - Chandra

Acceleration by shock wave, first order Fermi mechanism

 $\Phi_{
m SNR}(E) \propto E^{-lpha}, \quad lpha \simeq 2$ Propagation in the Galaxy

 $\Phi_{\odot}(E) \propto E^{-\gamma}, \quad \gamma \simeq 2.7$

Li-Be-B (3-5) and Sc-Ti-V-Cr-Mn (21-25) are secondary CRs.

```
C(CR) + H(ISM) \longrightarrow B + X
```


Galaxy NGC-253

Synchrotron radio emission.

Cosmic ray electrons propagate in a spread out region around of the galactic disc.

The galactic disc is embedded in a magnetic halo with the height $L \sim \text{kpc}$.

The magnetic field explains why CRs are confined in the Galaxy during Myrs.

The galactic disc - $R \sim 20$ kpc, $h \sim 100$ pc

Contains the gaz, the stars and the dust of the Galaxy. Distributed in the spiral arms. Cosmic rays are accelerated in the galactic disc.

The magnetic halo - $R \sim 20 \text{ kpc}$, $1 \leq L \leq 20 \text{ kpc}$

The diffusion zone of the model. Cosmic rays that escape the magnetic halo cannot go back.

Interaction of cosmic rays

 Space diffusion Diffusion on the turbulent component of the magnetic field. 	$K(E, \vec{x})$
 Convection Galactic wind due to supernovae explosions in the galactic disc. 	$ec{V_C}(ec{x})$
 Destruction Interaction with the interstellar medium (ISM) Decay 	$Q^{sink}(E, \vec{x})$
Energy losses	
 Interaction with the ISM (Coulomb, ionisation, bremsstrahlung, a 	diabatic expansion) $b(E, \vec{x})$

• Synchrotron emission, inverse Compton scattering (electrons)

Diffusive reacceleration

Second order Fermi mechanism. Diffusion in momentum space. Depends on the velocity of the Alfven waves V_{A} .

$$D(E, \vec{x}) = \frac{2}{9} V_A^2 \frac{E^2 \beta^4}{K(E, \vec{x})}$$

The transport equation

$$\psi(E,t,\vec{x}) = \frac{\mathrm{d}^4 N}{\mathrm{d}^3 x \, \mathrm{d} E}$$

 $\partial_t \psi - K(E, \vec{x}) \,\Delta\psi + \vec{\nabla} \cdot [\vec{V}_C(\vec{x}) \,\psi] + \partial_E \left[b(E, \vec{x}) \,\psi - D(E, \vec{x}) \,\partial_E \psi \right] = Q(E, t, \vec{x})$

Cosmic rays propagation

$\partial_t \psi - K(E, \vec{x}) \Delta \psi + \vec{\nabla} \cdot$	$\left[\vec{V}_C(\vec{x})\psi\right]$	$+ \partial_E \left[b(E, \vec{x})\psi - D(E, \vec{x})\partial_E \psi \right] = Q^{source}(E, t, \vec{x}) - Q^{sin}$	$i^k(E, \vec{x})$
--	---------------------------------------	--	-------------------

	(Semi-)analytical	Numerical	Monte Carlo	
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 $1D: \Delta z = \pm \sqrt{2D\Delta t}$	
Tools	• Differential equations (Green functions, Fourier+Bessel expansions)	• Numerical recipes/solvers (NAG, GSL libraries)	• Stochastic differential equations (Markov process) + MPI	
Pros	Useful to understand the physicsFast (MCMC analyses "simple")	Very simple algebraAny new input easily included	 Statistical properties (along path) No grid but t step (for/back)-ward 	
cons	Only solve approximate modelNew solution for new problem	Slower, memory for high res."Less" insight in the physics	Even slower (+ statistical errors)Massively parallel problem	
Codes and/or references	Webber (1970+) Ptuskin (1980+) Schlickeiser (1990+) USINE (2000+) PPPC4DMID (2010+)	GALPROP (Strong et al. 1998) DRAGON (Evoli et al. 2008) PICARD (Kissmann et al., 2013)	Webber & Rockstroh (1997) Farahat et al. (2008) Kopp, Büshing et al. (2012)	

Cosmic rays propagation

$$\partial_t \psi - K(E, \vec{x}) \Delta \psi + \vec{\nabla} \cdot \left[\vec{V}_C(\vec{x}) \psi \right] + \partial_E \left[b(E, \vec{x}) \psi - D(E, \vec{x}) \partial_E \psi \right] = Q^{source}(E, t, \vec{x}) - Q^{sink}(E, \vec{x})$$

Cosmic rays propagation

$\partial_t \psi - K(E, \vec{x}) \Delta \psi + \vec{\nabla} \cdot$	$\left[\vec{V}_C(\vec{x})\psi\right]$	$+ \partial_E \left[b(E, \vec{x})\psi - D(E, \vec{x})\partial_E \psi \right] = Q^{source}(E, t, \vec{x}) - Q^{sin}$	$i^k(E, \vec{x})$
--	---------------------------------------	--	-------------------

	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 $1D: \Delta z = \pm \sqrt{2D\Delta t}$
Tools	• Differential equations (Green functions, Fourier+Bessel expansions)	• Numerical recipes/solvers (NAG, GSL libraries)	• Stochastic differential equations (Markov process) + MPI
Pros	Useful to understand the physicsFast (MCMC analyses "simple")	Very simple algebraAny new input easily included	 Statistical properties (along path) No grid but t step (for/back)-ward
cons	Only solve approximate modelNew solution for new problem	Slower, memory for high res."Less" insight in the physics	 Even slower (+ statistical errors) Massively parallel problem
Codes and/or references	Webber (1970+) Ptuskin (1980+) Schlickeiser (1990+) USINE (2000+) PPPC4DMID (2010+)	GALPROP (Strong et al. 1998) DRAGON (Evoli et al. 2008) PICARD (Kissmann et al., 2013)	Webber & Rockstroh (1997) Farahat et al. (2008) Kopp, Büshing et al. (2012)

Cosmic rays propagation

$\partial_t \psi - K(E)$	$(\vec{x}, \vec{x}) \Delta \psi + \vec{\nabla} \cdot \left[\vec{V}_C(\vec{x}) \psi \right] + \partial_E$	$[b(E,\vec{x})\psi - D(E,\vec{x})\partial_E\psi] = 0$	$Q^{source}(E,t,\vec{x}) - Q^{sink}(E,\vec{x})$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	<u>Simplify the problem</u>:keep dominant effects onlysimplify the geometry	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 $1D: \Delta z = \pm \sqrt{2D\Delta t}$
Tools	• Differential equations (Green functions, Fourier+Bessel expansions)	• Numerical recipes/solvers (NAG, GSL libraries)	• Stochastic differential equations (Markov process) + MPI
Pros	Useful to understand the physicsFast (MCMC analyses "simple")	Very simple algebraAny new input easily included	 Statistical properties (along path) No grid but t step (for/back)-ward
cons	Only solve approximate modelNew solution for new problem	Slower, memory for high res."Less" insight in the physics	 Even slower (+ statistical errors) Massively parallel problem
Codes and/or references	Webber (1970+) Ptuskin (1980+) Schlickeiser (1990+) USINE (2000+) PPPC4DMID (2010+)	GALPROP (Strong et al. 1998) DRAGON (Evoli et al. 2008) PICARD (Kissmann et al., 2013)	Webber & Rockstroh (1997) Farahat et al. (2008) Kopp, Büshing et al. (2012)

USINE: introduction and examples

- **1-Introduction**
- **2- Cosmic ray physics**

3- USINE: introduction

- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

USINE: introduction

https://lpsc.in2p3.fr/cosmic-rays-db/

Message: only one ASCII file has to be handled by the user! (inputs/init.par)

All input ingredients are controlled by only one ASCII parameter file.

######	""""""""""""""""""""	*******	###############	################		
#####	LIST of PARA	METERS (and VALUES)		#####		
#####	group @subgroup @parameter @	type @M= @unit @val (@H= @B= @[opt]]Info #####		
######	**************	#######################################	###############	#######################################		
Base	@ CRData	@ fCRData	@ string	@ M=1	a –	@ \$USTNE/inputs/crdata_crdb20170523.dat
Base	@ CRData	@ fCRData	@ string	@ M=1	e 0 -	@ \$USINE/inputs/crdata_dummy.dat
Base	@ CRData	a Normi ist	@ string	@ M=0	e 0 -	$@$ H_He: AMS02 100 - [kB: C_N_0 - F_Ne_Na_Ma_A] - Si - P_S_C] - k
Base	@ EnergyGrid	@ NBins	@ int	@ M=0	e 0 -	@ 100
Base	@ EnergyGrid	@ NUC EknBange	@ string	@ M=0	@ GeV/n	@ [1.e-3.1.e6]
Base	@ EnergyGrid	@ ANTINUC EknBange	@ string	@ M=0	@ GeV/n	a [5e-2, 1, e4]
Base	@ EnergyGrid	a LEPTONS EkBange	@ string	@ M=0	@ GeV	a [5e-2,1,e4]
Base	@ EnergyGrid	a GAMMA FRance	@ string	@ M=0	@ GeV	0 [5e-3, 1, e2]
Base	@ EnergyGrid	@ NEUTRINO EBange	@ string	@ M=0	@ GeV	a [1e-3, 1, e2]
Base	@ ListOfCRs	@ fAtomicProperties	@ string	@ M=0	@ -	@ \$USTNE/inputs/atomic properties.dat
Base	@ ListOfCRs	@ fChartsForCRs	@ string	@ M=0	e 0 –	@ \$USINE/inputs/crorop_charts/max30_ghost97.dat
Base	@ ListOfCRs	@ TsGhosts	@ bool	@ M=0	e 0 -	
Base	@ ListOfCRs	@ ListOfCRs	@ string	@ M=0	@ -	@ [1H.30Si]
2000	Q		C 0 0 1 2	e n e	C	
Base	@ ListOfCRs	<pre>@ ListOfParents</pre>	@ string	@ M=0	@ -	@ 1H-bar:1H,4He
Base	<pre>@ ListOfCRs</pre>	<pre>@ ErrorBETADecay</pre>	@ double	@ M=0	@ -	@ Ø.
Base	<pre>@ ListOfCRs</pre>	@ ErrorECDecay	<pre>@ double</pre>	@ M=0	@ -	@ Ø.
Base	<pre>@ ListOfCRs</pre>	<pre>@ PureSecondaries</pre>	@ string	@ M=0	@ -	@ Li,Be,B,1H-bar
Base	<pre>@ ListOfCRs</pre>	<pre>@ SSRelativeAbund</pre>	@ string	@ M=0	Q –	<pre>@ \$USINE/inputs/crprop_abundances2003.dat</pre>
Base	<pre>@ MediumCompo</pre>	@ Targets	@ string	@ M=0	Q -	@ H,He
Base	@ PropagOnOff	@ IsDecayBETA	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ PropagOnOff</pre>	<pre>@ IsDecayFedBETA</pre>	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ PropagOnOff</pre>	@ IsDecayEC	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ Propag0n0ff</pre>	<pre>@ IsDecayFedEC</pre>	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ PropagOnOff</pre>	<pre>@ IsDestruction</pre>	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ PropagOnOff</pre>	<pre>@ IsELossAdiabatic</pre>	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ Propag0n0ff</pre>	<pre>@ IsELossBremss</pre>	@ bool	@ M=0	@ -	@ Ø
Base	<pre>@ PropagOnOff</pre>	<pre>@ IsELossCoulombIon</pre>	@ bool	@ M=0	@ -	@ 1
Base	<pre>@ Propag0n0ff</pre>	@ IsELossIC	@ bool	@ M=0	@ -	0
Base	<pre>@ Propag0n0ff</pre>	@ IsELossSynchrotron	@ bool	@ M=0	Q –	0
Base	<pre>@ PropagOnOff</pre>	@ IsEReacc	@ bool	@ M=0	@ -	@ 1
Base	@ PropagOnOff	<pre>@ IsPrimExotic</pre>	@ bool	@ M=0	@ -	@ Ø
Base	@ PropagOnOff	<pre>@ IsPrimStandard</pre>	@ bool	@ M=0	@ -	@ 1
Base	@ PropagOnOff	<pre>@ IsSecondaries</pre>	@ bool	@ M=0	@ -	@ 1
Base	@ PropagOnOff	<pre>@ IsTertiaries</pre>	@ bool	@ M=0	@ -	@ 1
		_	_		_	- · · ·

All input ingredients are controlled by *only one* ASCII parameter file.

The User can customise this file to his own tastes:

- Propagation model (leaky box, 1D, 2D)
- Description of the interstellar medium
- Functional form of many functions (K(R), $V_C(z)$, D(E), etc.)
- Propagation effects to take into account
- Value of the propagation parameters
- Nuclear X-sections
- CR data
- ...

This makes USINE very flexible and customisable!

All input ingredients are controlled by *only one* ASCII parameter file.

###########	##########################	######################################	##############	#######################################		
#####	LIST of PA	ARAMETERS (and VALUES)		#####		
##### grou	p @subgroup @paramete	r @type @M= @unit @val	@H= @B= @[opt]Info #####		
############	#######################################	######################################	################	#######################################		
Base Base Base Base Base Base Base Base	 @ CRData @ CRData @ CRData @ EnergyGrid @ EnergyGrid @ EnergyGrid @ EnergyGrid @ EnergyGrid @ EnergyGrid @ ListOfCRs @ ListOfCRs @ ListOfCRs 	<pre>@ fCRData @ fCRData @ NormList @ NBins @ NUC_EknRange @ ANTINUC_EknRange @ LEPTONS_EkRange @ GAMMA_ERange @ NEUTRINO_ERange @ fAtomicProperties @ fChartsForCRs @ IsGhosts</pre>	<pre>@ string @ string</pre>	@ M=1 @ M=0 @ M=0	@ - @ - @ - @ GeV/n @ GeV @ GeV @ GeV @ - @ -	<pre>@ \$USINE/inputs/crdata_crdb20170523.dat @ \$USINE/inputs/crdata_dummy.dat @ H,He:AMS02 100. kR;C,N,0,F,Ne,Na,Mg,Al,Si,P,S,Cl,/ @ 300 @ [1.e-3,1.e6] @ [5e-2,1.e4] @ [5e-2,1.e4] @ [5e-3,1.e2] @ [1e-3,1.e2] @ \$USINE/inputs/atomic_properties.dat @ \$USINE/inputs/crprop_chartsZmax30_ghost97.dat @ 0</pre>
base	@ ListOfCRs	@ ListOfCRs	@ string	@ M=0	@ -	@ [1H,30Si]
Base	🛛 @ ListOfCRs	<pre>@ ListOfParents</pre>	@ string	@ M=0		@ 1H-bar:1H,4He
	@ ListOfCRs					
	@ ListOfCRs					
	<pre>@ ListOfCRs</pre>					
	<pre>@ ListOfCRs</pre>					
	Calaulati	ion of the flux of t	bo Corth		from 111 to	30 C : ^{@ H,He}
	Calculati	ion of the flux at t	ne Earth (JI all CHS		⁵⁰ 3I.@ 1

All input ingredients are controlled by only one ASCII parameter file.

10⁻²⁷

10⁻²⁸

10⁻²⁹

T^{2.7} q [GeV^{1.7} cm⁻³ s⁻¹]

All input ingredients are controlled by **only one** ASCII parameter file.

####### ##### ##### #######	######################################	## P te ##	######################################	##### VALUE it @v #####	########### S) al @H= @B= ############	###### @[op1 ######	######## t]Info ########	## # #	#### #### #### ####
Base	@ XSections	(fProd	@	string	Q	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	0	string	0	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	@	string	@	M=1	@	-
Base	@ XSections	(fProd	6	string	6	<u>M=1</u>	6	
ваѕе	<pre>@ XSections</pre>	(fProd	0	string	@	M=1	@	-
Base	@ XSections	(Prod	e	string	9	M=1	6	
Base	<pre>@ XSections</pre>	(fProd	@	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	0	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	0	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	0	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	0	string	0	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	@	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fProd	@	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fTotInelNonAnn	@	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fTotInelNonAnn	0	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fdSigdEknINA	@	string	@	M=1	@	-
Base	<pre>@ XSections</pre>	(fdSigdEknINA	0	string	@	M=1	@	-

T [GeV]

Di Mauro et al. (2014)

10¹

Mathieu Boudaud

@ \$USINE/inputs/XS_ANTINUC/dSdEpbar_p+HTanNg_p+HeDTUNUC.dat @ \$USINE/inputs/XS_ANTINUC/dSdEpbar_He+HHe_DTUNUC2001.dat @ \$USINE/inputs/XS_ANTINUC/dSdEpbar_p+HHe_BringmannSalati07.dat @ \$USINE/inputs/XS_ANTINUC/dSdEpbar_He+HHe_BringmannSalati07.dat @ \$USINE/inputs/XS_ANTINUC/dSdEpbar_H_on_HHe_MDGSF12.dat @ \$USINE/inputs/XS_ANTINUC/dSdEpbar_He_on_HHe_MDGSF12.dat @ \$USINE/inputs/XS_ANTINUC/dSdEdbar_p+HHe_Coal79MeV.dat @ \$USINE/inputs/XS_ANTINUC/dSdEdbar_He+HHe_Coal79MeV.dat @ \$USINE/inputs/XS_ANTINUC/dSdEdbar_pbar+HHe_Coal79MeV.dat @ \$USINE/inputs/XS_LEPTONS/dSdEElect_p+HHe_kamae06.dat @ \$USINE/inputs/XS_LEPTONS/dSdEElect_He+HHe_kamae06.dat @ \$USINE/inputs/XS_LEPTONS/dSdEPosit_p+HHe_kamae06.dat @ \$USINE/inputs/XS_LEPTONS/dSdEPosit_He+HHe_kamae06.dat @ \$USINE/inputs/XS_ANTINUC/sigInelNONANN_pbar_TanNg83.dat @ \$USINE/inputs/XS_ANTINUC/sigInelNONANN_dbar_Duperray05.dat @ \$USINE/inputs/XS_ANTINUC/dSdEpbar_tertiaryHHe_AndersonHE.dat @ \$USINE/inputs/XS_ANTINUC/dSdEdbar_tertiaryHHe_AndersonHE.dat

inputs/XS_ANTIdSdEpbar_He_on_HHe_MDGSF12.dat

And in the second s	
	_
	i i
	-
	_
Fill Eq. 13	_
Fit Eq. 12	
Duperray et al. 2003	i 1
Top and Na 1092	
Tall allu Ny 1962	
	-
	-
1	
10 ²	10
1	

All input ingredients are controlled by *only one* ASCII parameter file.

###############	#######################################	****	*###########	###########	##########	
#####	LIST of	PARAMETERS (and VA	LUES)		#####	
##### group @ ###############	subgroup @paramet ####################################	ter @type @M= @unit ####################################	:@val@H=@ ############	@B= @[opt]I ###########	nfo ##### ##########	
Model1DKisoVc	a TSM	@ ParNames	@ string	a M=0	a –	a –
Model1DKisoVc	@ TSM	@ ParUnits	@ string	@ M=0	e 0 -	Q –
Model1DKisoVc	@ ISM	@ ParVals	@ string	@ M=0	@ -	Q –
Model1DKisoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ HI:FORMULA10.867
Model1DKisoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ HII:FORMULA 0.033
Model1DKisoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ H2:FORMULAIØ.
Model1DKisoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ He:FORMULA 0.1
Model1DKisoVc	@ ISM	@ Te	@ string	@ M=0	@ K	@ FORMULA 1.e4
Model1DKisoVc	<pre>@ SrcPointLike</pre>	@ Species	@ string	@ M=1	<u>0</u> –	<u>a</u> –
Model1DKisoVc	<pre>@ SrcPointLike</pre>	<pre>@ SpectraAbundInit</pre>	@ string	@ M=1	<u>0</u> –	<u>a</u> –
Model1DKisoVc	<pre>@ SrcPointLike</pre>	@ SpectraNormInTempl	@ string	@ M=1	<u>0</u> –	<u>a</u> –
Model1DKisoVc	<pre>@ SrcPointLike</pre>	<pre>@ SpectraPerCR</pre>	@ string	@ M=1	<u>@</u> –	<u>@</u> –
Model1DKisoVc	<pre>@ SrcPointLike</pre>	@ SrcXPosition	@ string	@ M=1	<u>0</u> –	Q -
Model1DKisoVc	<pre>@ SrcPointLike</pre>	<pre>@ SrcYPosition</pre>	@ string	@ M=1	@ -	<u>a</u> –
Model1DKisoVc	<pre>@ SrcPointLike</pre>	<pre>@ SrcZPosition</pre>	@ string	@ M=1	@ -	@ -
Model1DKisoVc	<pre>@ SrcPointLike</pre>	@ TStart	@ int	@ M=1	<u>@</u> –	<u> </u>
Model1DKisoVc	<pre>@ SrcPointLike</pre>	@ TStop	@ int	@ M=1	@ -	@ -
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	@ Species	@ string	@ M=1	@ -	@ ASTRO_STD ALL
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	<pre>@ SpectraAbundInit</pre>	@ string	@ M=1	@ -	@ ASTRO_STD kSSISOTFRAC,kSSISOTABUND,kFIPBIAS
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	<pre>@ SpectraNormInTempl</pre>	@ string	@ M=1	@ -	@ ASTRO_STD q
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	@ SpectraPerCR	@ string	@-M=1	-@	@ ASTRO_STD STEADYSTATE_GEN q[PERCR:DEFAULT=1.e-5,1H=6.37e-5,4He=3.75e-3];alph
Model1DKisoVc	@ Transport	@ ParNames	@ string	@ M=0	@ -	<pre>@ Va,Vc,K0,delta,eta_t</pre>
Model1DKisoVc	@ Transport	<pre>@ ParUnits</pre>	@ string	@ M=Ø	@ -	@ km/s,km/s,kpc^2/Myr,-,-
Model1DKisoVc	@ Transport	@ ParVals	<pre>@ string</pre>	@ M=0	@ -	@ 2.0,0.0,0.059,0.66,1.
Model1DKisoVc	@ Transport	@ Wind	@ string	@ M=1	@ km/s	@ WO:FORMULA Vc
Model1DKisoVc	@ Transport	@ VA	@ string	@ M=0	@ km/s	@ FORMULA Va
Model1DKisoVc	@ Transport	@ K	@ string	@ M=1	@ kpc^2/Myr	<pre>@ K00:FORMULA beta^eta_t*K0*Rig^delta</pre>
Model1DKisoVc	@ Transport	@ Kpp	@ string	@ M=0	@ GeV^2/Myr	<pre>@ FORMULA (4./3.)*(Va*1.022712e-3*beta*Etot)^2/(delta*(4-delta^2)*(4-delta)*K6</pre>

All input ingredients are controlled by *only one* ASCII parameter file.

#############	#######################################	######################################	*######################################	##########	*###########	
####	LIST of	PARAMETERS (and VA	ALUES)		#####	
#### group @	subgroup @paramet	ter @type @M= @unit	t @val @H= @	B= @[opt]]	[nfo #####	
#############	#######################################	#######################################	#######################################	#########	***	
Model1DKisoVc	A TSM	A ParNames	@ string	a M-0	<u>a</u> –	e –
Model1DKisoVc	@ ISM	@ Parlinits	@ string	@ M=0	@	
Model1DKisoVc	@ ISM	@ ParVals	@ string	@ M=0	@ _	e –
Model1DKisoVc	@ ISM	@ Density	@ string	@ M-1	@ @ cm_3	
Model1DKisoVc	@ ISH @ ISM	@ Density	@ string	@ M-1	@ cm_3	
Model 1DK isoVc	G ISM	@ Density	@ string	@ M-1	@ cm_3	
Model 1DK isoVc	@ 13M @ TSM	@ Density	@ string	@ M-1	@ cm_3	
Model 1DK isoVc	0 ISM		@ string	@ M-0	@ CIII-5	
Model 1DK150VC	@ ISM @ SrcPointLiko	e le	@ string	@ M-1		
Model1DK150VC	@ SICPOINTLIKE	@ Species	@ string	@ M-1	(j) –	
Model1DK150VC			e string	@ M-1	<u> </u>	
Model1DK150VC	@ STCPOINTLIKE		@ string	@ M=1	<u> </u>	ų –
Model1DK1SOVC			e string	@ M=1	<u> </u>	(j -
Model1DK150VC	@ SrcPointLike		@ string	@ M=1	@ -	(g =
ModelIDK1SOVC	@ SrcPointLike		@ string	@ M=1	@ -	(d –
ModelIDKisoVC	@ SrcPointLike	@ Src2Position	@ string	@ M=1	@ -	(d –
Model1DKisoVc	@ SrcPointLike	@ IStart	@ int	@ M=1	@ -	(d –
Model1DKisoVc	@ SrcPointLike	@ IStop	@ int	@ M=1	@ -	
Model1DK1soVc	@ SrcSteadyState	@ Species	@ string	@ M=1	@ -	@ ASTRO_STD ALL
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	@ SpectraAbundInit	@ string	@ M=1	@ -	@ ASTRO_STD kSSISOTFRAC,kSSISOTABUND,kFIPBIAS
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	<pre>@ SpectraNormInTempl</pre>	@ string	@ M=1	@ -	@ ASTRO_STD q
Model1DKisoVc	<pre>@ SrcSteadyState</pre>	<pre>@ SpectraPerCR</pre>	@ string	@ M=1	@ -	<pre>@ ASTR0_STD STEADYSTATE_GEN q[PERCR:DEFAULT=1.e-5,1H=6.37e-5,4He=3.75e-3];alpl</pre>
Model1DKisoVc	@ Transport	@ ParNames	@ string	@ M=0	@ -	@ Va,Vc,K0,delta,eta_t
Model1DKisoVc	@ Transport	@ ParUnits	@ string	@ M=0	@ -	@ km/s,km/s,kpc^2/Myr,-,-
Model1DKisoVc	@ Transport	@ ParVals	@ string	@ M=0	@ -	@ 2.0,0.0,0.059,0.66,1.
Model1DKisoVc	@ Transport	@ Wind	<pre>@ string</pre>	@ M=1	@ km/s	@ W0:FORMULA Vc
Model1DKisoVc	@ Transport	e va	@ string	@ M=0	@ km/s	@ FORMULA Va
Model1DKisoVc	@ Transport	@ K	@ string	@ M=1	@ kpc^2/Myr	<pre>@ K00:FORMULA beta^eta_t*K0*Rig^delta</pre>
Model1DKisoVc	@ Transport	@ Крр	@ string	(0 M=W	@ Gev 2/Myr	<pre>@ FORMULA (4./3.)*(Va*1.022/12e-3*beta*Etot)^2/(delta*(4-delta^2)*(4-delta)*K</pre>

e.g.: change the functional form of the diffusion coefficient:

power law

$$K(E) = \frac{K_0}{K_0} \beta^{\eta} \left(\frac{R}{1 \,\text{GV}}\right)^{\delta}$$

All input ingredients are controlled by *only one* ASCII parameter file.

########	######	#######################################	######################################	###########	##########	****	
#####		LIST 0	T PARAMETERS (and	VALUES)		#####	
##### g	roup @	subgroup @param	eter @type @M= @un	it @val @H=	<pre>@B= @[opt]</pre>]Info #####	
########	######	##################	########################	###########	##########	<i>\############</i> ########################	
Model1DK	isoVc	@ ISM	@ ParNames	@ string	@ M=0	0 -	0 -
Model1DK	isoVc	@ ISM	<pre>@ ParUnits</pre>	@ string	@ M=0	<u> </u>	ē —
Model1DK	isoVc	@ ISM	@ ParVals	@ string	@ M=0	<u>0</u> –	Q -
Model1DK	isoVc	@ ISM	<pre>@ Density</pre>	@ string	@ M=1	@ cm-3	@ HI:FORMULA 0.867
Model1DK	isoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ HII:FORMULA 0.033
Model1DK	isoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ H2:FORMULA 0.
Model1DK	isoVc	@ ISM	@ Density	@ string	@ M=1	@ cm-3	@ He:FORMULA 0.1
Model1DK	isoVc	@ ISM	@ Te	@ string	@ M=0	αK	@ FORMULA 11.e4
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ Species	@ string	@ M=1	0 -	Q -
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ SpectraAbundInit	@ string	@ M=1	0 -	0 –
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ SpectraNormInTempl	@ string	@ M=1	0 – 0	0 –
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ SpectraPerCR	@ string	@ M=1	0 -	0 -
Model1DK	isoVc	@ SrcPointLike	@ SrcXPosition	@ string	@ M=1	<u>a</u> –	0 -
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ SrcYPosition	@ string	@ M=1	<u>0</u> –	0 -
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ SrcZPosition	@ string	@ M=1	0 -	0 –
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ TStart	@ int	@ M=1	0 -	0 –
Model1DK	isoVc	<pre>@ SrcPointLike</pre>	@ TStop	@ int	@ M=1	<u>0</u> –	0 –
Model1DK	isoVc	<pre>@ SrcSteadvState</pre>	@ Species	@ string	@ M=1	<u>0</u> –	@ ASTRO STDIALL
Model1DK	isoVc	<pre>@ SrcSteadvState</pre>	@ SpectraAbundInit	@ string	@ M=1	a –	@ ASTRO STD kSSISOTFRAC.kSSISOTABUND.kFIPBIAS
Model1DK	isoVc	<pre>@ SrcSteadvState</pre>	@ SpectraNormInTempl	@ string	@ M=1	<u>0</u> –	@ ASTRO STDIQ
Model1DK	isoVc	<pre>@ SrcSteadvState</pre>	@ SpectraPerCR	@ string	@ M=1	0 -	@ ASTRO STDISTEADYSTATE GENIG[PERCR:DEFAULT=1.e-5.1H=6.37e-5.4He=3.75e-3];alpha[F
Model1DK	isoVc	@ Transport	@ ParNames	@ string	@ M=0	0 -	<pre>@ Va,Vc,K0,delta,eta t,Rbreak,Deltabreak,sbreak</pre>
Model1DK	isoVc	@ Transport	<pre>@ ParUnits</pre>	@ string	@ M=0	0 -	@ km/s,km/s,kpc^2/Mvr,-,-,GV,-,-
Model1DK	isoVc	@ Transport	@ ParVals	@ string	@ M=0	0 -	@ 2.,0.,0.071,0.53,1.,312.,0.14,0.040
Model1DK	isoVc	@ Transport	@ Wind	@ string	@ M=1	a km∕s	@ W0:FORMULA Vc
Model1DK	isoVc	@ Transport	AV D	@ string	@_M=0	@ km/s	@ FORMULA Va
mode L1DK:	isoVc	@ Transport	@ K	@ string	@ M=1	@ kpc^2/Myr	<pre>@ K00:FORMULA beta^eta_t*K0*Rig^delta*(1+(Rig/Rbreak)^(Deltabreak/sbreak))^(-sbreak)</pre>
Model1DK:	isoVc	@ Transport	@ Kpp	e string	@ M=0	@ SeVA2/Myr	@ FORMULA (4./3.)*(Va*1.022712e-3*beta*Etot)^2/(delta*(4-delta*2)*(4-delta)*K00)

e.g.: change the functional form of the diffusion coefficient:

power law

broken power law

$$K(E) = \frac{K_0}{\kappa_0} \beta^{\eta} \left(\frac{R}{1 \,\mathrm{GV}}\right)^{\delta} \qquad \Longrightarrow \qquad K(E) = \frac{K_0}{\kappa_0} \beta^{\eta} \frac{\left(\frac{R}{1 \,\mathrm{GV}}\right)^{\delta}}{\left\{1 + \left(\frac{R}{R_b}\right)^{\Delta\delta/s}\right\}^s}$$

Mathieu Boudaud

TOOLS - 13-09-2017

USINE is interfaced with ROOT6

Output figures are generated with ROOT6.

r U

Documentation

A full documentation of classes and methods.

<u>ROOT style (THTML)</u>

class TUModelBase: public TUAxesCrE, TUPropagSwitches, public TUDataSet, p TUNormList, public TUSrcTemplates, pu TUXSections, public TUFreeParList

Base ingredients for all propagation models (CR data, X-sections...).

The class TUModelBase is the centrepiece of all propagation models. It contains model-independent ingredients (inherited) and class members ingredients. The first category corresponds to quantities that are somehow independent of the propagation model selected (such as CR data, X-sections,...). The second category encompasses quantities that define the propagation model (geometry, transport, sources...). We detail below (I. and II.) the content of these two categories. We present separately (III.) the classes TUFreeParList (inherited) and TUSolModVirtual (class member), because of their specific role in this class (and for propagation models in general). To conclude, we provide a brief 'How to' (IV.) on how to write a class for a propagation model deriving from this class.

Data Members

private:

TUAxesTXYZ* fAxesTXYZ TUCoordE* fCoordE TUCoordsTXYZ* fCoordsTXYZ Model geometry Generic E coordinate (bir Generic TXYZ coordinate

Doxygen style

lain Page	Namespac	es	Classes	F	lles	Q* GetNa	8
lass List	Class Index	Cla	ss Hierarchy	Cla	GetNar GetNar	meROOT TUCRList mesPureSecondaries TUCRList	
SINE Namespace	s	c	lass List	t	GetNar GetNar GetNar	meSubGroup TUInitParList meSwitch TUPropagSwitches meSwitches TUPropagSwitches meTarget TUXSections	
 Class Lis Class Ind 	t lex	He	ere are the cl th brief desc	asse riptio	GetNar GetNar GetNar GetNar	meTargets TUX Sections meTertiaries TUX Sections meTertiary TUX Sections meTEXT TUCRList	
Class Hie	erarchy		C TUAtor	nEle	GetNA	xes TUAxesTXYZ	
Class Me	embers		C TUAtor	nPro	pert	les	
Files			C TUAxes	CrE			
		Ľ	C TUAxes	TX	Z		
			C TUAxis				=
		Ľ	C TUBess	eljo			
			C TUBess	elQ	iSrc		
		Ľ		dE			
				dsT	XYZ		
				ntry			
			C TUCRLi	st			
		11	C TUData	Ent	ry		
			C TUData	Set			
		Ľ	C TUDati	me			
			C TUFree	Parl	Entry		
		Ľ	C TUFree	Parl	List		
			C TUInitF	arE	ntry		
		Ľ	C TUInitF	arLi	st		

Positron excess... with respect to what?

- **1-Introduction**
- **2- Cosmic ray physics**
- **3- USINE: introduction**
- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

Several ways to run USINE: examples

1- Text-user interface, e.g.: relative contributions

> ./bin/usine_run -t inputs/init.par 1 0

```
******
       Text-User Interface
     *****
A) PROPAGATION MODEL RESULTS (PRINTS & PLOTS)
  A1. Local IS and TOA CR fluxes [A1+ for extra plots]
  A2. [TODO] Spatial distribution (1D or 2D depending on models selected)
B) MODIFY MODEL PARAMETERS AND RERUN (B to modify all)
  B1. Propagation switches
  B2. Transport parameters
  B3. CR source parameters
C) INFO ON MODEL/PARAMETERS (C to print all)
  C1. Models (propagation and modulation)
  C2. Geometry
  C3. Transport parameters
  C4. Propagation switches
  C5. CR sources
  C6. ISM
  C7. CR list and parents (and E grids)
  C8. CR and normalisation data
  C9. X-section files and targets
```

1- Text-user interface, e.g.: relative contributions

> ./bin/usine_run -t inputs/init.par 1 0

```
D) EXTRA PLOTS
   ... Nuclear production related ...
       D0. Relative contributions (primary, secondary, radioactive) in isotopes and elements
       D1. Ranking (propag.-weighted) of multi-step reactions
       D2a. Ranking (propag.-weighted) of individual XS
       D2b. Ranking (propag.-weighted) of ghost-separated XS
           [D1+, D2a+, D2b+ to use hard-coded propag.params]
           (see TURunPropagation::ExtraPlots_XProdFraction)
   ... Decay related ...
       D3. BETA-decay species [D3+ to check decayed=appeared]
       D4. [TODO] EC-decay species [D4+ to check decayed=appeared]
   ... Differential production ...
       D5. Source terms per reaction (before propagation)
       D6. Contributions per reaction (with propagation)
       D7. Contributions per energy range (with propagation)
       D8. Tertiary contributions for antinuclei [D7- to set sigINAtot to 0.]
E) COMPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3+)
   E1. Switch on/off propagation effects (losses, decay, etc.)
   E2. Boundary conditions
   ... X-sections ...
       E3. [NUC] Inelastic (files $USINE/inputs/XS_NUCLEI/sigTot*)
       E4. [NUC] Production (files $USINE/inputs/XS_NUCLEI/sigSpal*)
       E5. [ANTINUC] Inelastic (files $USINE/inputs/XS_ANTINUC/sigInel*)
       E6. [ANTINUC] Production (files $USINE/inputs/XS_ANTINUC/dSdE*)
       E7. [ANTINUC] Tertiary: NONAN (files $USINE/inputs/XS_ANTINUC/sigInelNONANN*)
       E8. [ANTINUC] Tertiary: redistribution (files $USINE/inputs/XS_ANTINUC/*tertiary*)
[Q to quit]
```

>> selection [e.g., A1]: D0

1- Text-user interface, e.g.: relative contributions

> ./bin/usine_run -t inputs/init.par 1 0

	Nuclear production related
	D0. Relative contributions (primary, secondary, radioactive) in isotopes and elements
	D1. Ranking (propagweighted) of multi-step reactions
	D2a. Ranking (propagweighted) of individual XS
	D2b. Ranking (propagweighted) of ghost-separated XS
	[DI+, D2a+, D2D+ to use nard-coded propag.params]
	(see TURUNPropagation::Extraplots_XProdFraction)
•••	Decay related
	D3. BEIA-decay species [D3+ to check decayed=appeared]
	D4. [IUDU] EL-decay species [D4+ to check decayed=appeared]
•••	Differential production
	D5. Source terms per reaction (before propagation)
	D6. Contributions per reaction (with propagation)
	D/. Contributions per energy range (with propagation)
	DO' LELITALA CONCLIDUCTOUS LOL ANCTUNCIET [D/- LO SEL SIGINATOL LO A']
E) COM	IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3
E) COM E1.	IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.)
E) COM E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions</pre>
E) COM E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions X-sections</pre>
E) COM E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions X-sections E3. [NUC] Inelastic (files \$USINE/inputs/XS_NUCLEI/sigTot*)</pre>
E) CON E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions X-sections E3. [NUC] Inelastic (files \$USINE/inputs/XS_NUCLEI/sigTot*) E4. [NUC] Production (files \$USINE/inputs/XS_NUCLEI/sigSpal*)</pre>
E) COM E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions X-sections E3. [NUC] Inelastic (files \$USINE/inputs/XS_NUCLEI/sigTot*) E4. [NUC] Production (files \$USINE/inputs/XS_NUCLEI/sigSpal*) E5. [ANTINUC] Inelastic (files \$USINE/inputs/XS_ANTINUC/sigInel*)</pre>
E) COM E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions X-sections E3. [NUC] Inelastic (files \$USINE/inputs/XS_NUCLEI/sigTot*) E4. [NUC] Production (files \$USINE/inputs/XS_NUCLEI/sigSpal*) E5. [ANTINUC] Inelastic (files \$USINE/inputs/XS_ANTINUC/sigInel*) E6. [ANTINUC] Production (files \$USINE/inputs/XS_ANTINUC/dSdE*)</pre>
E) COM E1. E2.	<pre>IPARISON PLOTS VARYING SOME INGREDIENTS ('+' to normalise to data for each config., e.g. E3 Switch on/off propagation effects (losses, decay, etc.) Boundary conditions X-sections E3. [NUC] Inelastic (files \$USINE/inputs/XS_NUCLEI/sigTot*) E4. [NUC] Production (files \$USINE/inputs/XS_NUCLEI/sigSpal*) E5. [ANTINUC] Inelastic (files \$USINE/inputs/XS_ANTINUC/sigInel*) E6. [ANTINUC] Production (files \$USINE/inputs/XS_ANTINUC/dSdE*) E7. [ANTINUC] Tertiary: NONAN (files \$USINE/inputs/XS_ANTINUC/sigInelNONANN*)</pre>

USINE: introduction and examples

Mathieu Boudaud

22

Element

TOOLS - 13-09-2017

 $p(\mathrm{CR}) + \mathrm{H}(\mathrm{ISM}) \longrightarrow \bar{p} + X \ (\simeq 70\%)$ $\alpha(\mathrm{CR}) + \mathrm{H}(\mathrm{ISM}) \longrightarrow \bar{p} + X \ (\simeq 25\%)$ $p(\mathrm{CR}) + \mathrm{He}(\mathrm{ISM}) \longrightarrow \bar{p} + X \ (\simeq 4\%)$ $\alpha(\mathrm{CR}) + \mathrm{He}(\mathrm{ISM}) \longrightarrow \bar{p} + X \ (\simeq 1\%)$

> ./bin/usine_run -I inputs/init.par \$USINE/output 1 1 1 H,He,H-BAR 0.564 3.0 R

<pre>[init_file] [output_dir] [is_logfile] [is_verbose] [is_batch] [qties_to_show] [phiff_values]</pre>	USINE initialisation file init.XXX.par (used for calculation) Directory for outputs (plots, files, etc.) If true, all run informations printed in output_dir/last_run.log, otherwise print on screen To have more informations on the run (printed in logfile) Batch run (1) or show plots (0): macro and plots saved in both cases Comma-separated list of CRs (e.g., "10B+11B,B/C,O" or " <lna>" or "ALLSPECTRUM" Comma-separated list of Force-field modulation level in GV (e.g., 0.,0.5,1.)</lna>
[phiff_values] [e_index]	Comma-separated list of Force-field modulation level in GV (e.g., 0.,0.5,1.) Fluxes are multiplied by E^(e_index), with E selected from e_type
[e_type]	Fluxes displayed in "kEKN" [GeV/n], "kEK" or "kETOT" [GeV], or "kR" [GV]

$$p(CR) + H(ISM) \longrightarrow \bar{p} + X (\simeq 70\%)$$

$$\alpha(CR) + H(ISM) \longrightarrow \bar{p} + X (\simeq 25\%)$$

$$p(CR) + He(ISM) \longrightarrow \bar{p} + X (\simeq 4\%)$$

$$\alpha(CR) + He(ISM) \longrightarrow \bar{p} + X (\simeq 1\%)$$

> ./bin/usine_run -l inputs/init.par \$USINE/output 1 1 1 H,He,H-BAR 0.564 3.0 EkN

$$p(CR) + H(ISM) \longrightarrow \bar{p} + X (\simeq 70\%)$$

$$\alpha(CR) + H(ISM) \longrightarrow \bar{p} + X (\simeq 25\%)$$

$$p(CR) + He(ISM) \longrightarrow \bar{p} + X (\simeq 4\%)$$

$$\alpha(CR) + He(ISM) \longrightarrow \bar{p} + X (\simeq 1\%)$$

> ./bin/usine_run -I inputs/init.par \$USINE/output 1 1 1 H,He,H-BAR 0.564 3.0 EkN

Mathieu Boudaud

$$p(CR) + H(ISM) \longrightarrow \bar{p} + X (\simeq 70\%)$$

$$\alpha(CR) + H(ISM) \longrightarrow \bar{p} + X (\simeq 25\%)$$

$$p(CR) + He(ISM) \longrightarrow \bar{p} + X (\simeq 4\%)$$

$$\alpha(CR) + He(ISM) \longrightarrow \bar{p} + X (\simeq 1\%)$$

> ./bin/usine_run -l inputs/init.par \$USINE/output 1 1 1 H,He,H-BAR 0.564 3.0 EkN

USINE is interfaced with ROOT6 and takes avantage of the MINUIT package for minimisation.

UsineRun	@ Fit	@ Minimiser	<pre>@ string</pre>	@ M=0	@ -	@ Minuit
UsineRun	@ Fit	@ Algorithm	<pre>@ string</pre>	@ M=0	@ -	@ combined
UsineRun	@ Fit	@ NMaxCall	@ int	@ M=0	<u>@</u> –	@ 500000
###### N.B.:	EDMmax=0.001*tolera	nce _* up (from minuit doo	c)			
UsineRun	@ Fit	@ Tol	@ double	@ M=0	@ -	@ 1.e-1
UsineRun	@ Fit	<pre>@ Precision</pre>	@ double	@ M=0	@ -	@ 1.e-8
UsineRun	@ Fit	<pre>@ PrintLevel</pre>	@ int	@ M=0	@ -	@ 2
UsineRun	@ Fit	@ IsMINOS	@ bool	@ M=0	@ -	@ Ø
UsineRun	@ Fit	<pre>@ IsUseBinRange</pre>	@ bool	@ M=0	@ -	@ Ø
UsineRun	@ Fit	<pre>@ NExtraInBinRange</pre>	@ int	@ M=0	@ -	@ 5
UsineRun	<pre>@ FitFreePars</pre>	@ Transport	@ string	@ M=1	@ -	@ delta:FIT,LIN,[0.1,0.9],0.701,0.02
UsineRun	<pre>@ FitFreePars</pre>	@ Transport	<pre>@ string</pre>	@ M=1	@ -	@ Va:FIT,LIN,[2,100],81.,1
UsineRun	<pre>@ FitFreePars</pre>	@ Transport	<pre>@ string</pre>	@ M=1	@ -	@ Vc:FIT,LIN,[0.,30],4,1
UsineRun 	<pre>@ FitFreePars</pre>	@ Transport	@ string	@ M=1	@ -	@ K0:FIT,LOG,[-4,0],-1.68,0.5
UsineRun	<pre>@ FitTOAData</pre>	<pre>@ QtiesExpsEType</pre>	@ string	@ M=0	@ -	@ B/C:AMS:kR
UsineRun	<pre>@ FitTOAData</pre>	<pre>@ ErrType</pre>	@ string	@ M=0	@ -	@ kERRTOT
UsineRun	<pre>@ FitTOAData</pre>	@ EminData	@ string	@ M=0	@ -	@ 45
UsineRun	<pre>@ FitTOAData</pre>	@ EmaxData	<pre>@ string</pre>	@ M=0	<u>@</u> –	@ 5e9
UsineRun	<pre>@ FitTOAData</pre>	@ TStartData	@ string	@ M=0	@ -	@ 1950-01-01_00:00:00
UsineRun	<pre>@ FitTOAData</pre>	@ TStopData	@ string	@ M=0	@ -	@ 2100-01-01_00:00:00

USINE is interfaced with ROOT6 and takes avantage of the MINUIT package for minimisation.

USINE is interfaced with ROOT6 and takes avantage of the MINUIT package for minimisation.

Introduction

A universal break in the spectra of cosmic ray nuclei?

Pointed by PAMELA and confirmed by AMS-02: an universal kink at R~200 GV?

This feature is not predicted by the conventional propagation models!

4

Introduction

A universal break in the spectra of cosmic ray nuclei?

Pointed by PAMELA and confirmed by AMS-02: an universal kink at R~200 GV?

 $\Delta_{kinck} \sim 0.12 - 0.13$

This feature is not predicted by the conventional propagation models!

USINE is interfaced with ROOT6 and takes avantage of the MINUIT package for minimisation.

Positron excess... with respect to what?

- **1-Introduction**
- **2- Cosmic ray physics**
- **3- USINE: introduction**
- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

Electrons and positrons soon in USINE

Mathieu Boudaud

TOOLS - 13-09-2017

Electrons and positrons: the high-energy approximation

We cannot solve analytically the transport equation when energy losses processes take place in different places in the Galaxy.

We need a **numerical** algorithm to solve the transport equation (GALPROP, DRAGON, PICARD, etc.)

Electrons and positrons: the high-energy approximation

The pinching method

 $\partial_{z}[V_{C}\operatorname{sign}(z)\psi] - K(E)\Delta\psi + 2h\,\delta(z)\,\partial_{E}\left\{\left[b_{\operatorname{disc}}(E) + \frac{b_{\operatorname{halo}}^{eff}(E)}{\operatorname{halo}}\right]\psi - D(E)\,\partial_{E}\psi\right\} = Q(E,\vec{x})$

The pinching method

MB+(2016a)

$$\bar{\xi}_i(E) = \frac{\int\limits_E^{+\infty} dE_S \left[J_i(E_S) + 4k_i^2 \int\limits_E^{E_S} dE' \frac{K(E')}{b(E')} B_i(E', E_S) \right]}{\int\limits_E^{+\infty} dE_S B_i(E, E_S)}$$

$$J_{i}(E_{S}) = \frac{1}{h} \int_{0}^{L} dz_{S} \mathcal{F}_{i}(z_{S}) Q_{i}(E_{S}, z_{S}) \qquad Q_{i}(E, z) = \frac{2}{R^{2} J_{1}^{2}(\alpha_{i})} \int_{0}^{R} dr \, r \, J_{0}(\xi_{i}) \, Q(E, r, z)$$

$$B_{i}(E, E_{S}) = \sum_{n=2m+1}^{+\infty} Q_{i,n}(E_{S}) \exp\left[-C_{i,n}\lambda_{D}^{2}\right] \qquad C_{i,n} = \frac{1}{4} \left[\left(\frac{\alpha_{i}}{R}\right)^{2} + (nk_{0})^{2} \right]$$

$$Q_{i,n}(E) = \frac{1}{L} \int_{-L}^{L} dz \, \varphi_{n}(z) \, \frac{2}{R^{2} J_{1}^{2}(\alpha_{i})} \int_{0}^{R} dr \, r \, J_{0}\left(\alpha_{i}\frac{r}{R}\right) \, Q(E, r, z)$$

Mathieu Boudaud

EDU - 24-07-2017

The pinching method

$$\partial_{z} [V_{C} \operatorname{sign}(z) \psi] - K(E) \,\Delta \,\psi + 2h \,\delta(z) \,\partial_{E} \left\{ \left[b_{\operatorname{disc}}(E) + \frac{b_{\operatorname{halo}}^{eff}(E)}{\operatorname{halo}} \right] \,\psi - D(E) \,\partial_{E} \,\psi \right\} = Q(E, \vec{x})$$

From now we are able to compute the positron flux analytically, **including all propagation effects**!

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

The HE approximation \Rightarrow error up to 50% at 10 GeV!

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

Positrons can be used as an independent probe for the propagation parameters.

The degeneracy between K_0 and L can be lifted!

Lavalle+(2014)

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

Lavalle+(2014)

Positrons can be used as an independent probe for the propagation parameters.

The degeneracy between K_0 and L can be lifted!

 $K_0 \, [\mathrm{kpc}^2/\mathrm{Myr}]$ V_C [km/s] *L* [kpc] V_a [km/s] Case δ MIN 0.85 0.0016 13.5 22.4 MED 0.70 0.0112 12 52.9 4 MAX 0.46 0.0765 15 5 117.6

Ruled out!

The AMS-02 positrons data favour the **MAX-type** sets of propagation parameters.

(result confirmed by AMS-02 antiprotons and recent B/C)

The dark matter scenario

Astrophysical secondary positrons

• We need another component(s) to explain the positron data from ~1 GeV to ~500 GeV.

Novel constraints on MeV dark matter

Constraints on MeV DM with Voyager I

Positron excess... with respect to what?

- **1-Introduction**
- **2- Cosmic ray physics**
- **3- USINE: introduction**
- 4- Several ways to run USINE: examples
- 5- Electrons and positrons soon in USINE
- 6- Conclusions and prospects

Conclusions and prospects

What does USINE do?

• Computes the flux of Galactic nuclei and anti-nuclei

Why/when should you use USINE?

- Training in GCRs physics
- To test/study propagation models
- To test/study CR acceleration models
- To test/study impact of nuclear X-sections
- When speed matters! (e.g. for MCMC analysis)

• ...

Available now (beta version)

- CR nuclei and antinuclei for Z<30
- Leaky box, 1D model, 2D model

git clone https://gitlab.in2p3.fr/david-maurin/USINE.git

By the end of 2017 (if possible)

- Electrons and positrons
- Interface with MCMC engine

2018 (if possible)

- CRs from Dark Matter
- Solar modulation: 1D spherical symmetry
- Z>30
- ...

Mathieu Boudaud

Conclusions and prospects

Thank you for your attention!

Questions?

Mathieu Boudaud

TOOLS - 13-09-2017

Back up

Mathieu Boudaud

Antiprotons

Astrophysical background of secondary antiprotons

Mathieu Boudaud

LMPT - 09-02-2017