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Università del Piemonte Orientale, Alessandria, Italy

based on Joint work with Andrzej Borowiec and Anna Pachol

September 23, 2017



-Deformation of symmetries to quantum symmetries, and of spaces to non-
commutative spaces.

-Quantum Lie algebra as the algebra of infinitesimal symmetry transformations
on a noncommutative space.

-Wave equations in noncommutative spacetimes canonically constructed within
NC differential geometry.

-Application: Quantum Lie algebra of energy and momentum, i.e. of trans-
lation generators in k-Minkowski spacetime. Wave equations and dispersion
relations.

-Turning on a cuved metric background.



Some physical motivations for NC spacetimes

Classical Mechanics−→ Quantum Mechanics
functions (observables) on phase space become noncommutative (phase space
noncommutativity)

General Relativity −→ Quantum Gravity
Spacetime structure itself becomes noncommutative.

This expectation is supported by Gedanken experiments –e.g. localization of
test particles within Planck scale accuracy– suggesting that spacetime struc-
ture is not necessarily that of a smooth manifold (a continuum of points).

Below Planck scales it is then natural to conceive a more general spacetime
structure. A cell-like or lattice like structure, or a noncommutative one where
(as in quantum mechanics phase-space) uncertainty relations and discretiza-
tion naturally arise.

Space and time are then described by a Noncommutative Geometry
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NC spacetimes features, like generalized uncertainty relations (GUP) involving
space and time coordinates, or minimal area and volume elements arise also
in String Theory and Loop Quantum Gravity.

Yet another motivation to study deformed (noncommutative) spacetimes comes
from quantum gravity phenomenology. Even if quantum gravity effects should
become relevant at Planck scale, some quantum gravity signatures could be
detected at lower scales. This is the case for cumulative phenomena.
Example: light travelling in a quantum spacetime could have a velocity depen-
dent on the photons energy. Even a tiny modification of the usual dispersion
relations could then be detected due to the cumulative effect of light travelling
long distances.
A natural setting for this study is that of Gamma Ray Bursts (GRB) from distant
galaxies [Miguejio, Smolin, Amelino-Camelia, Ellis, Mavromatos, Nanopulos].
Another possibility is that of high precision (quantum) optics experiments based
on interferometry techniques [Hogan] [Genovese].



Summary

-Gedanken experiment: Localize at Planck scale is a way to test spacetime
structure.

- Spacetime structure might however be detected from deformed dispersion
relations of light, whose effects cumulate in time.

− − −
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A propotypical example of NC spacetime that appears in both the mathematics
and the phenomenology literatures is k-Minkowski spacetime:

x0 ? xi − xi ? x0 =
i

κ
xi .

The general construction we outline will be applied to k-Minkowski spacetime.

The deformation quantization method we consider is the Drinfeld twist method
used to deform spaces via a symmetry group.

Other approaches use the κ-Poincaré group that is not a Drinfeld twist of the
Poincaré group. Therefore, despite the κ-Minkwski space is the same, the
symmetries and the differential geometry will differ form those considered in
[Lukierski, Nowicki, Ruegg, Majid, Amelino-Camelia, et al.]



Drinfeld Twist F . A general method to obtain a wide class of NC spaces and
their symmetry Hopf algebras.

Key idea: First deform the symmetry group of a spacetime (e.g. conformal
group, Poincaré group) to a quantum group and then deform the algebra of
functions on spacetime so that it has this quantum group symmetry.

• G acts on M (G is a Lie group of transformations on spacetime M ).

• g acts on Fun(M) (g is Lie algebra of infinitesimal transformations)

t ∈ g acts as a derivation on Fun(M):

t(fh) = t(f)h+ ft(h) .

for short we write this Leibnirz rule as

∆(t) = t⊗ 1 + 1⊗ t
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Examples of twists F

For the general notion see [Drinfeld ’83, ’85]

Example 1: Moyal-Weyl deformation.
Let g Poincaré Lie algebra or conformal Lie algebra.

F = e−
i
2θ
µνPµ⊗Pν

(θµν constant antisymmetric matrix).

F = 1⊗ 1−
1

2
θµνPµ ⊗ Pν −

1

8
θµνθρσPµPρ ⊗ PνPσ + . . . . .

Notation:

F = fα ⊗ fα , F−1 = f̄α ⊗ f̄α .

Let A = Fun(M) then f ? h = f̄ α(f)f̄ α(h), i.e.,

f ? h = fh−
i

2
θµνPµ(f)Pν(h) + ....

= fh+
i

2
θµν∂µ(f)∂ν(h) + .... (1)

In particular xµ ? xν − xν ? xµ = iθµν.
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Example 2: Jordanian deformations, c.f. [Ogievetsky, ’93], [Borowiec, Pachol ’09]

F = eiD⊗σ , σ = ln(1 +
1

κ
P0) , [D,P0] = P0

where g = span{Pµ,Mµν, D} is the Poincaré-Weyl algebra (Poincaré plus
dilatation D). Can be also extended to the conformal algebra.

g acts on Fun(M) via D(f) = ixµ∂µ(f), P0(f) = i∂0f .

In this way Fun(M)? becomes the algebra of κ-Minkowski spacetime

x0 ? xk − xk ? x0 =
i

κ
xk , xi ? xk − xk ? xi = 0 (2)

Leibniz rule is deformed: Pµ(f ? g) = Pµ(f) ? eσ(g) + f ? Pµ(g), i.e.,

∆F (Pµ) = Pµ ⊗ eσ + 1⊗ Pµ .

The twist F deforms the Poincaré-Weyl group in a quantum Poincaré-Weyl
group. Are Pµ,Mµν, D elements of a quantum Lie algebra gF? No!
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Quantum Lie algebra gF [P.A., Dimitrijevic, Meyer, Wess, 06]

Canonical construction see also LNP 774 Springer §7

Given a twist F consider the quantization operator D defined by, for all t ∈ g,

D(t) = `fα(t) f̄α (3)

where `t′t′′ = `t′`t′′ product of Lie derivatives. Then

gF := {D(t), with t ∈ g} . (4)

Theorem gF is a quantum Lie algebra in the sense of Woronowicz:

i) Minimally deformed Leibniz rule

∆F(D(t)) = D(t)⊗ 1 + R̄α ⊗D(R̄α(t)) (5)

R̄α ⊗ R̄α = FF−1
21 .

ii) `FD(t)D(t′) ∈ gF closure under adjoint action (Lie derivative)
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Moreover, set tF = D(t), t′F = D(t′), and define

[tF , t′F ]F := `F
tF t
′F

then

[tF , t′F ]F = tFt′F − (R̄α(t))F(R̄α(t′))F .

Furthermore this deformed Lie bracket satisfies the braided-antisymmetry prop-
erty and the braided-Jacobi identity

[tF , t′F ]F = −[R̄α(t′F), R̄α(tF)]F

[tF , [t′F , t′′F ]F ]F = [[tF , t′F ]F , t
′′F ]F + [R̄α(t′F), [R̄α(tF), t′′F ]F ]F .

The Jordanian twist gives the quantum Poincaré-Weyl Lie algebra

gF = span{PF ,MF , DF} with

PFµ = Pµ
1

1 + 1
κP0

, MFµν = Mµν , DF = D .

Twisted commutators:

[MFµν, P
F
ρ ]F = MFµνP

F − PFρ MFµν − PFρ
1

κ
([P0,Mµν])F ,

[DF , PFµ ]F = DFPFµ − PFµ DF + PF
i

κ
P0 , (6)

while the remainig twisted commutators are usual commutators.
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The deformed Leibnitz rule

∆F
(
PFµ

)
= PFµ ⊗ 1 + (1−

1

κ
P0)⊗ PFµ

gives addition of momenta:

pFµ
tot

= pFµ + p′Fµ −
1

κ
pF0 p

′F
µ .

The deviation from the usual addition law is quadratic in the momenta (and
not exponential like in κ-Poincaré in the usual basis of generators). The total
energy is invariant under the usual permutation of the two particles.

− − −

We identify the physical Energy and momentum operators on κ-Minkowski
spacetime with PFµ because

-they are the quantum Lie algebra uniquely associated with the twist deforma-
tion F (in particular in the classical limit PFµ → Pµ).

-they are dual to the one forms dxµ in the sense that

df = dxµ ? iPFµ (f) ,

where PFµ =
Pµ

1+1
κP0

=
−i∂µ

1− i
κ∂0

and d is the usual differential that satisfies d(f ? g) = df ? g + f ? dg.
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Field equation The d’Alembert operator �F on κ-Minkowski spacetime can
be defined:

(1) as the quadratic Casimir ηµνPFµ PFν

(2) via the Hodge ∗F -operator, as the Laplace-Beltrami operator ∗Fd∗F d ,
where ∗F = D(∗).

These definitions coincide. Furthermore, the d’Alembert operator is invariant
under infinitesimal translations, rotations and boosts, and transforms as in the
commutative case under dilatations:[
PFµ ,�

F
]
F

= 0 ,
[
MFµν ,�

F ]F = 0 ,
[
DF ,�F

]
F

= −2i�F .

11



NC wave equation For a scalar field ϕ we have the wave equation

�Fϕ = PFµ P
µF =

1

(1− i
κ∂0)2

�ϕ = −m2ϕ , (7)

where � = ∂µ∂µ.

This wave equation was proposed on the basis of phenomenological consid-
erations in [Maguejio, Smolin ’01].

Rmk. For massless fields this wave equation is equivalent to the undeformed
one �ϕ = 0, (indeed the differential operator 1

(1− i

κ
∂0)2 is invertible. This result agrees with

the well known one for free fields in noncommutative Moyal-Weyl space). Therefore no
modified dispersion relations for massless fields.

Solutions ei(kx−ωt) of the wave equation satisfy however the modified Einstein-
Planck and de Broglie relations (we set Planck energy to be EP = −c~κ):

EF =
~ω

1 + ~ω
Ep

, PFi =
~pi

1 + ~ω
Ep

; (8)

hence maximum energy is Planck energy.

Rmk. For massive fields we still have EF2 = (PFi )2 +m2.
The wave eq. is solved by ϕ = e(ikx−wt) that gives the group velocity

vg =
dw

dk
= c2

k

ω
(1 +

m2c3

~2ωκ
) +O(

1

κ2
)
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Theorem: The diffeomorphism in momentum space considered in [Maguejio
Smolin] (so-called Deformed or Doubly special relativity paper)

pµ → U(pµ) =
pµ

1− λp0
,

coincides with the quantization map D:

Pµ → PFµ = D(Pµ) =
Pµ

1 + 1
κP0

This holds more in general for functions of momenta.
The nonlinear realization of the Lorentz group in momentum space considered
in [Maguejio Smolin]

M ′µν = UMµνU
−1

were the usual Lorentz generators are Mµν = pµ
∂
∂pν − pν

∂
∂pµ coincides with

the quantum generators:

M ′µν = MFµν = D(M ν
µ ) .

Rmk. Since D is defined on the abstract Lie algebra generators, and therefore
it is defined also in position space, this extends to position space the proposal
of [Maguejio Smolin]. Notice however that we obtain different energy momen-
tum generators.



With this paper we have therefore contributed to fill a gap between theory
and phenomenology. We have considered a top down approach where the
NC differential geometry constraints the formalims and points out the physical
generators as quantum Lie algebra elements.

Phenomenologically motivated deformed special relativity theories are obtained
and analized with these tools.

− − −

So far we have considered deformations of flat Minkowski spacetime. What
happens if we turn on a nontrivial backgroud metric besides nontrivial commu-
tativity?

The Laplace-Beltrami operator ∗Fd∗F d is a natural candidate for a scalar field
wave equation.

13



Toy model: 2-dim Friedman-Robertson-Walker-Lemaitre (FRWL) universe.

Metric

ds2 = dt2 + a2(t)dx2

a(t) - scale factor.
κ-noncommutativity: t ? x− x ? t = i

κx, we are in κ-FRWL spacetime.

Assume the solution of the form:

ϕ = λ (t) ? e−ikx

The NC wave equation

∗Fd ∗F dϕ = 0

reduces to

a ? ∂2
0λ+ ∂0 (a) ? eσ∂0λ+ a−1 ? k2λ = 0 (9)

-Expand the star product at first order in the NC deformation 1
κ.

-Change coordinates to conformal time η (as usually done in commutative case
as well).
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-Since the frequency ω is much higher than H0 the equation can be solved.
The variation of the speed of light vph with respect to the usual one c (of pho-
tons in flat spacetime, or of low energetic photons) turns out to be linear in the
frequency ω.

Conclusions

-We have considered a NC spacetime that in the flat case has a deformed
Poincaré Weyl symmetry (conformal symmetry). Equations of motion for mass-
less fields are derived from deformed symmetry principles and the differential
geometry of Drinfeld twist.

Turning on a curved metric we obtain nontrivial dispersion relations due to the
combined effect of curvature and noncommutativity.


