Sudden Future Singularities in Quintessence and Scalar-Tensor Quintessence Models

Andreas Lymperis

Department of Physics

University of Patras

Collaborators:

S. Lola (Patras), L. Perivolaropoulos (Ioannina)

Introduction

- Theoretical challenges of ACDM model —— alternative dark energy models which predict the existence of exotic cosmological singularities.
- These singularities can be either geodesically complete or incomplete
- Classification of Singularities
- Behaviour of the scale factor $\alpha(t)$ and/or its derivatives at the time t_s
- Energy density and pressure of the content of the universe at $t_{\mathcal{S}}$.

• John D. Barrow ("Sudden future singularities" (2004), arXiv:gr-qc/0403084) [gr-qc])

Scale Factor:
$$a(t) = \left(\frac{t}{t_s}\right)^m (a_s - 1) + 1 - \left(1 - \frac{t}{t_s}\right)^q$$

- Big-Bang singularity at t=0
- New type of singularity at $t=t_{\rm S}$ a Sudden Future Singularity (SFS)
- ightharpoonup Divergence of the scalar curvature $R = 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right) \to \infty$
- \triangleright Manifests as a singularity of pressure p (or $\ddot{\alpha}$) only
- \triangleright Leads to the dominant energy condition (DEC) $\rho \geq |p|$ violation only

$$\alpha = finite \qquad \dot{\alpha} = finite \qquad \ddot{\alpha} \to -\infty$$

$$\rho = finite \qquad p \to \infty \qquad \text{for } t = t_s$$

Quintessence Models

• Action:

$$\mathcal{S} = \int \left[\frac{1}{2} R + \frac{1}{2} g^{\mu\nu} \phi_{;\mu} \phi_{;\nu} - V(\phi) \right] \sqrt{-g} d^4x$$

• Potential:

$$V(\phi) = A|\phi|^n, \qquad A > 0$$
 $0 < n < 1$

$$3H^2 = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$

• Dynamical equations:
$$3H^2 = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
 $\ddot{\phi} = -3H\dot{\phi} - An|\phi|^{n-1}\Theta(\phi)$ $2\dot{H} = -\dot{\phi}^2$

$$2\dot{H} = -\dot{\phi}^2$$

$$lackbox{P} H, \dot{H}, \dot{\phi} \rightarrow finite \qquad lackbox{P} \phi^{n-1} \rightarrow \infty, \ddot{\phi} \rightarrow \infty, \ddot{H} \rightarrow \infty \qquad \text{as} \qquad t \rightarrow t_s \ (\phi \rightarrow 0)$$

$$t \to t_s \ (\phi \to 0)$$

 $\triangleright \ddot{a} \rightarrow \infty$ - a Generalized Sudden Future Singularity (GSFS)

• Scale Factor: $a(t) = a_s + b(t_s - t) + c(t_s - t)^2 + d(t_s - t)^q$

2 < q < 3

As $t o t_s \longrightarrow a o a_s$ and $\ddot{a} o \infty$

• Scalar Field: $\phi(t) = f(t_s - t) + h(t_s - t)^r$

1 < r < 2

As $t o t_s \longrightarrow \phi o 0$ and $\ddot{\phi} o \infty$

ightharpoonup Power Exponents: r = n + 1

$$r = n + 1$$

$$q = r + 1$$
 \longrightarrow $q = n + 2$

$$q = n + 2$$

Consistent with the qualitatively expected range of

$$r, q, \text{ for } 0 < n < 1$$

Observationally testable prediction of this class of models

$$H(z_s) = (1 + z_s)^3$$

Scalar-Tensor Quintessence Models

Action:

$$\mathcal{S} = \int \left[\frac{1}{2} F(\phi) R + \frac{1}{2} g^{\mu\nu} \phi_{;\mu} \phi_{;\nu} - V(\phi) \right] \sqrt{-g} d^4x$$

$$F = 1 - \lambda \phi$$

Potential:

$$V(\phi) = A|\phi|^n, \qquad A > 0$$

• Dynamical equations:
$$3FH^2 = \frac{\dot{\phi}^2}{2} + V - 3H\dot{F}$$

$$\ddot{\phi} + 3H\dot{\phi} - 3F_{\phi}\left(\frac{\ddot{a}}{a} + H^2\right) + An|\phi|^{(n-1)}\Theta(\phi) = 0$$

$$-2F\left(\frac{\ddot{a}}{a} - H^2\right) = \dot{\phi}^2 + \ddot{F} - H\dot{F}$$

$$-2F\left(\frac{\ddot{a}}{a}-H^2\right) = \dot{\phi}^2 + \ddot{F} - H\dot{F}$$

$$H, \dot{\phi}, F, \dot{F} \rightarrow finite$$

$$H, \dot{\phi}, F, \dot{F} \to finite$$
 $\phi^{n-1} \to \infty, \ddot{\phi} \to \infty, \ddot{F} \to \infty$ as $t \to t_s \ (\phi \to 0)$

$$t \to t_s \; (\phi \to 0)$$

$$\triangleright \ddot{a} \rightarrow \infty$$

 $ightharpoonup \ddot{a}
ightharpoonup \infty$ - a Sudden Future Singularity (SFS)

• Scale Factor: a(t) =

$$a(t) = a_s + b(t_s - t) + c(t_s - t)^2 + d(t_s - t)^q$$

1 < q < 2

As $t
ightarrow t_s$

 \rightarrow $a \rightarrow a_s$

and

 $\ddot{a} \to \infty$

• Scalar Field:

$$\phi(t) = f(t_s - t) + h(t_s - t)^r$$

1 < r < 2

As $t
ightarrow t_s$

 \rightarrow ϕ

and

 $\ddot{\phi} \rightarrow \infty$

Power Exponents:

$$q = r$$

$$r = n + 1$$

$$r = n + 1$$
 \longrightarrow $q = n + 1$

Consistent with the qualitatively expected range of r, q, for 0 < n < 1

Conclusions

• Scalar-tensor quintessence models: $\ddot{a} \to \infty$ \longrightarrow a stronger singularity occurs - an SFS singularity (due to divergence of Ricci scalar).

• The additional linear and quadratic terms of $\frac{t_s-t}{}$ in the form of the scale factor play an important role as $t\to t_s$. In the scalar-tensor case the quadratic term becomes subdominant close to the singularity.

• The relations of the Hubble parameter H(z), may be used as observational signatures of such singularities in this class of models.

THANK YOU