

SUSY searches with the ATLAS detector

Vasiliki A. Mitsou

16th HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY Summer School and Workshop on the Standard Model and Beyond August 31 – September 12, 2016, Corfu, Greece

Higgsino

SUSY force particles

Supersymmetry (SUSY)

- What it is? •
 - global symmetry between fermions & bosons

b

 \widetilde{v}_{τ}

τ

Sleptons

q

Ž

W

- Why is it attractive?
 - Higgs: predicts a below-135-GeV Higgs scalar
 - may be SM-like
 - completely solves hierarchy problem
 - unification of gauge couplings at single scale
 - dark matter candidate

Framework versus model

- Sparticle masses from SUSY breaking not fixed by theory
 ⇒ huge parameter space to explore
 - MSSM: > 100 parameters
 - pMSSM: 19 parameters
 - CMSSM: 5 parameters
- How to test that at LHC?
- 1. Top-down approach
 - SUSY breaking mechanism → different models
 - GUT scale unification → few free parameters
- 2. Bottom-up approach
 - Phenomenological models
 - fix mass hierarchy and mass scales
 - scan remaining parameters
 - Simplified topologies
 - specific decay chain
 - easy to interpret results in terms of other models

R-parity and the LSP

Lightest Supersymmetric Particle (LSP) and R-parity conservation/violation largely define final states of SUSY events

Typical ATLAS SUSY search

- Signal selection targeting specific production/decay mode (simplified topology)
- Signal region (SR)
 - single-bin optimised for best discovery
 - to cover different mass hierarchies
 → few SRs for each final state
- Data-driven background estimate
 - irreducible backgrounds estimated using control region (CR) data as a constraint and Monte Carlo to extrapolate from CR to SR in likelihood fit
 - reducible background (fake/non isolated leptons, MET from jet mismeasurement) from data
 - only well modelled variable in CR \rightarrow SR extrapolations
 - validation regions (VR) to check assumptions in background estimate and CR → SR variable modelling

Corfu 2016 V.A. Mitsou

LHC and ATLAS performance

"NEW" denotes results not presented at ICHEP LHC: F

Great performance from ATLAS

Strong production

Production of 1st and 2nd generation squarks and gluinos with subsequent cascade decay to lighter sparticles

Strong prod: 0L + jets + MET

- Final states with 2-6 jets, MET & no isolated lepton (e/μ)
- Signal enhancement based on: M_{eff}, MET, R_{iigsaw}
- 30 signal regions defined targeting different search scenarios and phase space

Excludes gluino (squark) masses up to 1.86 (1.35) TeV for massless LSP
 For gluino decay via χ̃₂⁰, gluino masses below 1.9 TeV excluded for m(χ̃₂⁰) ~ 600 GeV

Strong prod: 1 lepton + 2-6 jets + MET

- Targeting 1-step decays with variety of mass hierarchies
- MET triggered; one soft (6-35 GeV) or hard (> 35 GeV) lepton; 2 to 6 jets
- Dominant background W+jets and ttbar
- Background normalised to CRs with low $m_{\mbox{\scriptsize T}}$ and aplanarity

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}} (1 - \cos[\Delta \phi(\boldsymbol{p}_{\rm T}^{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})])$$

Strong prod: 0L + multijets + MET

- Veto on isolated leptons (e/μ)
- ≥ 8 jets up to ≥ 10 jets, consistent with decays of heavy objects, *reclustered* into smaller number of high-mass jets $M_{\rm J}^{\Sigma} = \sum_{i} m_{j}^{R=1.0}$
- Discrimination also with MET/VH_T

- $H_{T} = \sum p_{T}^{jet}$ ATLAS-CONF-2016-095 see also PLB 757 (2016) 334 $p_{q} = \int_{q}^{q} \int_{\tilde{\chi}_{1}^{\pm}}^{q} \int_{\tilde{\chi}_{2}^{0}}^{W} \int_{\tilde{\chi}_{1}^{0}}^{\tilde{\chi}_{1}^{\pm}} \int_{\tilde{\chi}_{2}^{0}}^{\tilde{\chi}_{1}^{0}} \int_{\tilde{\chi}_{1}^{0}}^{\tilde{\chi}_{1}^{\pm}} \int_{\tilde{\chi}_{2}^{0}}^{\tilde{\chi}_{1}^{0}} \int_{W}^{\tilde{\chi}_{1}^{0}}$
- For a pMSSM slice with bino-like $\tilde{\chi}_1^{\ 0}$ and higgsino $\tilde{\chi}_1^{\ \pm}/\tilde{\chi}_2^{\ 0}$, gluino masses up to **1500 GeV** excluded
- For 2-step simplified model m(g̃) < 1600 GeV excluded at 95% CL, extending previous limits

Signal Region

 γ + jets

 $e \rightarrow \gamma$ fakes

 $W\gamma$

 $Z\gamma$

 $t\bar{t}\gamma$

Observed events

Expected SM events

Strong prod: γ + jets + MET

- Targeting neutralino NSLP decaying to gravitino and photon with non-100% branching ratios
- Low-background signature
- Wγ, ttγ, γ+jets normalised in CRs

- No significant excess observed
- Limits set represent 400 GeV improvement w.r.t. Run-1

ATLAS-CONF-2016-066

 SR_{H}

 1.49 ± 0.45

 0.70 ± 0.24

 0.37 ± 0.09

 0.32 ± 0.32

 0.03 ± 0.01

 0.00 ± 0.00

1

 SR_L

 0.78 ± 0.18

 0.18 ± 0.11

 0.30 ± 0.07

 0.08 ± 0.08

 0.10 ± 0.04

 0.07 ± 0.03

3

Corfu 2016 V.A. Mitsou

Strong production – summary

Exclusion curves not necessarily directly comparable; different:

- stop decay channels
- sparticle mass hierarchies
- simplified decay scenarios

"Natural" SUSY

To cancel large top corrections to Z mass (fine-tuning) ...

Stop: 1 lepton + (b)jets + MET

- Search for stop and for dark matter production in association with two tops
- Selection based on MET, m_T, H_T
- 7 SRs for specific scenarios and phase space
 - 3.3σ excess in DM_low SR

- Exclusion for m(t
 ₁) < ~830 GeV for massless LSP
- Maximal coupling of g = 3.5 is excluded @95% CL for a (pseudo-)scalar mediator mass up to (350)
 320 GeV assuming a 1 GeV DM mass

ATLAS-CONF-2016-050 see also 1606.03903 $\bar{t}(\bar{b})$

Corfu 2016 V.A. Mitsou

Direct stop production – summary

Electroweak production

Summary 8-TeV results

Sensitive to details of scenario considered, e.g. nature of gaugino (bino, wino, higgsino)

EW prod: 2/3 leptons + MET

- Two opposite-sign leptons (e/μ) or 3 leptons and large MET
- Jet veto (2L), b-jet veto (3L) and Z veto applied
- Large (s)transverse mass, m_{τ} (m_{τ_2}), in 3L (2L) SRs

 $m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$

ATLAS Preliminar

400

- Results interpreted in simplified models of chargino and neutralino production
- Limits set extend previous from Run-1 by 140 GeV for $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production and by **300 GeV** for $\tilde{\chi}_1^+ \tilde{\chi}_2^0$ production

Corfu 2016 V.A. Mitsou

EW prod: di-taus + MET

- Analysis similar to 2L (e/μ)
- Motivated by models with light staus leading to dark matter relic density consistent with cosmological observations

- Limits are derived in scenarios of $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ pair production and $\tilde{\chi}_1^+ \tilde{\chi}_2^0$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ associated production
- $\tilde{\chi}_1^{\pm}$ masses and common $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0}$ masses up to **580** and **700 GeV** respectively are excluded at 95% CL assuming a massless $\tilde{\chi}_1^{0}$

 ν_{τ}/τ

ATLAS-CONF-2016-093

20

 τ/ν_{1}

 τ/ν_{τ}

EW prod: dark matter in pMSSM

- Aim: study EW SUSY searches impact on dark matter candidates
- Focusing on the gaugino-higgsino and Higgs sector (EWKH) of the phenomenological minimal supersymmetric SM (pMSSM)

1.0

0.9

0.8

0.7

0.3

0.2

0.1

0.0

 10^{0}

N^{bin} 5'0 V^{bin} 5'0 excl / N^{bin} 5'0

arXiv:1608.00872 see also PRD 93 (2016) 052002

- ATLAS searches substantially impact models with $m(\tilde{\chi}_1^0) < 65$ GeV, excluding 86% of such models
- Searches have limited impact on models with larger $m(\tilde{\chi}_1^0)$ due to either heavy gauginos or compressed mass spectra

22

R-parity violation and long-lived particles

- No results with 2016 data on LL particles yet
- Emphasis on RPV analyses with ~14 fb⁻¹ presented here

EW prod: 4 leptons + MET with RPV decays

- RPV SUSY scenarios with L-number violation can result in signatures with high lepton multiplicities and substantial MET
- Requiring 4L (e/μ) + MET in chargino production with indirect LSP RPV decay
- Two SRs defined targeting different chargino mass ranges

Chargino masses up to **1.14 TeV** are excluded for large LSP masses

ATLAS-CONF-2016-075

Corfu 2016 V.A. Mitsou

- In the gluino cascade decay model, gluinos with masses up to 1 1.55 TeV are excluded, depending on neutralino mass
- In the gluino direct decay model, gluinos with masses up to 1080 GeV are excluded

- Data

tī

W + Jets

Z + Jets

Multi-jet

≥4 N_{b-tac}

Others

Gluino RPV decays to 1 lepton and jets

100

50

Data/Model

0.5

 $\begin{array}{c} \text{St} \\ \text{B} \text{ jets } (\text{p}_{\text{T}} > 60 \text{ GeV}) \\ \text{M} \\ \text{150} \\ \text{V} \\ \text{S} = 13 \text{ TeV}, 14.8 \text{ fb}^{-1} \end{array}$

ATLAS Preliminary

MC/Model

 $m(\tilde{g}) = 1.7 \text{ TeV}, m(\tilde{\chi}^0) = 675 \text{ GeV}$

2

- Requiring one isolated lepton (e/μ) and many jets (>5 in six bins) and b-jets (four bins starting from 0)
- All bins are fitted to SUSY model prediction to obtain model-dependent results

Jet multiplicity	0b obs. [fb]	0b exp. [fb]	\geq 3b obs. [fb]	\geq 3b exp. [fb]
$\geq 8 \text{ jets } (p_{\mathrm{T}} > 40 \text{ GeV})$	2.2	$3.3^{+1.3}_{-0.9}$	8.4	$4.7^{+2.0}_{-1.3}$
$\geq 9 \text{ jets } (p_{\mathrm{T}} > 40 \text{ GeV})$	1.1	$1.1_{-0.3}^{+0.5}$	2.8	$2.1^{+0.9}_{-0.6}$
$\geq 10 \text{ jets } (p_{\mathrm{T}} > 40 \text{ GeV})$	0.43	$0.52^{+0.26}_{-0.14}$	1.19	$1.1_{-0.31}^{+0.45}$
$\geq 8 \text{ jets } (p_{\mathrm{T}} > 60 \text{ GeV})$	1.2	$1.1^{+0.4}_{-0.3}$	1.5	$1.4^{+0.5}_{-0.4}$
$\geq 9 \text{ jets } (p_{\mathrm{T}} > 60 \text{ GeV})$	0.97	$0.46^{+0.22}_{-0.13}$	0.5	$0.6\substack{+0.2\\-0.2}$
$\geq 10 \text{ jets } (p_{\rm T} > 60 \text{ GeV})$	0.2	$0.2^{+0.1}_{-0.1}$	0.26	$0.29^{+0.14}_{-0.08}$

- For $\tilde{g} \rightarrow t t \tilde{\chi}_1^0 \rightarrow t t u ds$, gluino masses up to 1.75 TeV are excluded at 95% CL
- In a model with $\tilde{g} \rightarrow \tilde{t} \tilde{t}_1$ with $\tilde{t}_1 \rightarrow bs$, gluino masses up to 1.4 TeV are excluded

Stop RPV decays to jets

- Requiring at least four jets matched by minimising separation angle
- SR defined w.r.t. asymmetry A and cosθ* of jets boosted in resonance system

No excess observed → Exclude λ " stop-q-q coupling for 250 GeV < m(stop) < 405 GeV and 445 GeV < m(stop) < 510 GeV

ATLAS-CONF-2016-084

A Sta	TLAS SUSY Se atus: August 2016	ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$							
	Model	e, μ, τ, γ	Jets J	$E_T^{miss} \int \mathcal{L}$	dt[fb]	⁻¹) Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference	
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\xi}_{0}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\xi}_{1}^{0} \\ \tilde{z}\tilde{s}, \tilde{g} \rightarrow q \tilde{\xi}_{1}^{0} \\ \tilde{z}\tilde{s}, \tilde{g} \rightarrow q \tilde{g} \tilde{\xi}_{1}^{0} \\ \tilde{z}\tilde{s}, \tilde{g} \rightarrow q \tilde{g} (\mathcal{U}/\gamma) \tilde{\xi}_{1}^{0} \\ \tilde{z}\tilde{s}, \tilde{g} \rightarrow q q (\mathcal{U}/\gamma) \tilde{\xi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q (\mathcal{U}/\gamma) \tilde{\xi}_{1}^{0} \\ \tilde{G}MSB (\ell NLSP) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{array}{c} 0.3 e, \mu/1-2 \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 e, \mu \\ 2 e, \mu (SS) \\ 1-2 \tau + 0-1 \\ 2 \gamma \\ \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets	Yes 2 Yes 1: Yes 2: Yes 1: Yes 2: Yes 2: Yes 2: Yes 2:	0.3 3.3 3.2 3.3 3.2 3.2 3.2 3.2 3.2 0.3 3.2 0.3 0.3 0.3	v. š 1.30 v 608 GeV š 608 GeV š 8 š 1.31 š 1.32 š 1.32 š 1.32 š 1.33 š 900 GeV F ^{1/2} scale 805 GeV	$\begin{array}{c c} \textbf{1.85 TeV} & rr(ij) = rr(ij) \\ \hline \textbf{1.85 TeV} & rr(i_1^{23}) < 200 \ \text{GeV}, m[1^{14} \ \text{gen}, \tilde{q}] = rr(1^{2-4} \ \text{gen}, \tilde{q}) \\ & rr(i_1^{23}) < 200 \ \text{GeV}, m[1^{24} \ \text{gen}, \tilde{q}] = rr(1^{2-4} \ \text{gen}, \tilde{q}) \\ \hline \textbf{1.80 TeV} & rr(i_1^{23}) < 0.0 \ \text{GeV}, m[i_1^{24}] = 0.5 \ [rr(i_1^{25}) + rr(i_2)] \\ \hline \textbf{1.7 TeV} & rr(i_1^{23}) < 400 \ \text{GeV} \\ \hline \textbf{1.80 TeV} & rr(i_1^{23}) < 400 \ \text{GeV} \\ \hline \textbf{2.0 TeV} \\ \hline \textbf{1.80 TeV} & rr(i_1^{23}) < 400 \ \text{GeV} \\ \hline \textbf{1.80 TeV} & rr(i_1^{23}) < 950 \ \text{GeV}, rr[NLSP] < 0.1 \ \text{mm}, \mu < 0 \\ rr(i_1^{23}) < 430 \ \text{GeV} \\ rr(i_1) = 1.8 \ \text{TeV} \\ rr(i_1) = 1.8 \ \text{L}^{12} \ \text{eff}, rm(\mu) - m(\mu) = 1.5 \ \text{TeV} \\ \hline \end{array}$	1 507.05625 ATLAS-CONF-2016-078 1804.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1907.05079 1806.09150 1507.05493 ATLAS-CONF-2016-068 1503.03290 1502.01518	
3 rd gen § med.	23, 2→6531 23, 2→1171 23, 2→6371 23, 2→6371	0 0-1 e,μ 0-1 e,μ	3 F 3 F	Yes 1/ Yes 1/ Yes 2	4.8 4.8 0.1	8 8 8 1.3	1.89 TeV π(ℓ ³ ₂)=0.3eV 1.89 TeV π(ℓ ³ ₂)=0.3eV 7 TeV m(ℓ ³ ₂)=0.3eV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600	
3 rd gen. squarks direct production	$\begin{array}{l} E_1E_1, E_1 \rightarrow b_1^{P_1}\\ E_1E_1, E_1 \rightarrow b_1^{P_1}\\ \tilde{x}_1\tilde{x}_1, \tilde{x}_1 \rightarrow b_1^{P_1}\\ \tilde{x}_1\tilde{x}_1(\text{reatural GMSB})\\ \tilde{x}_1\tilde{x}_1\tilde{x}_1\tilde{x}_2 \rightarrow \tilde{x}_1 + Z\\ \tilde{x}_2\tilde{x}_1\tilde{x}_2 \rightarrow \tilde{x}_1 + L\end{array}$	0 $2 e, \mu$ (SS) $0 \cdot 2 e, \mu$ $0 \cdot 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 6 jets + 2 b	Yes 1 Yes 1. Yes 4.7/1 Yes 4.7/1 Yes 2 Yes 2 Yes 1 Yes 2	3.2 3.2 3.3 3.2 3.2 0.3 3.3 0.3	b. 840 GeV b. 325-685 GeV Vi7-170 GeV 200-720 GeV i. 90-323 GeV i. 150-600 GeV i. 150-600 GeV i. 150-600 GeV i. 320-620 GeV	$\begin{array}{l} m(\tilde{\epsilon}_{1}^{2}) < 100 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) < 150 \mathrm{GeV}, \ m(\tilde{\epsilon}_{1}^{2}) = m(\tilde{\epsilon}_{1}^{0}) + 100 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 2 m(\tilde{\epsilon}_{1}^{0}), \ m(\tilde{\epsilon}_{1}^{2}) = 55 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 1 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 1 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 50 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 10 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 10 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 10 \mathrm{GeV} \\ m(\tilde{\epsilon}_{1}^{2}) = 0 \mathrm{GeV} \end{array}$	1806.08772 ATLAS-CONF-2016-097 1209.2102, ATLAS-CONF-2018-077 1508.08618, ATLAS-CONF-2018-077 1804.07773 1409.5222 ATLAS-CONF-2016-098 1506.08616	
EW direct	$\begin{array}{c} \tilde{t}_{1,k} \tilde{t}_{1,k}, \tilde{t} \rightarrow \tilde{\ell} \tilde{\ell}_{1}^{0} \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} \rightarrow \tilde{\ell} \ell \tilde{\ell} \tau \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} \rightarrow \tilde{\ell} \ell \tilde{\ell} \tau \\ \tilde{k}_{1}^{+} \tilde{k}_{2}^{0} \rightarrow \tilde{\ell}_{k} \tau \tilde{\ell} \tilde{\ell} \tau \tilde{\ell} \tau), \tilde{\ell} \tilde{\ell} \tilde{k} \tilde{\ell} (\tilde{\ell} \tau) \\ \tilde{k}_{1}^{+} \tilde{k}_{2}^{0} \rightarrow W \tilde{\ell}_{1}^{+} \tilde{k}_{2}^{0} \\ \tilde{k}_{1}^{+} \tilde{k}_{2}^{0} \rightarrow W \tilde{\ell}_{1}^{+} \tilde{k}_{2}^{0}, h \rightarrow b \tilde{t} / W W / \tau \\ \tilde{k}_{2}^{+} \tilde{k}_{3}^{0} \rightarrow \tilde{k}_{2}^{0} \rightarrow \tilde{\ell} \tilde{\ell} \\ GGM (bino NLSP) weak prod. \end{array}$	$2 e, \mu$ $2 r, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ $r/\gamma\gamma = e, \mu, \gamma$ $4 e, \mu$ $1 e, \mu + \gamma$ 2γ	0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		$\begin{array}{c} m(\tilde{k}_{1}^{2}){\simeq}0~{\rm GeV} \\ m(\tilde{k}_{2}^{2}){\simeq}0~{\rm GeV}, m(\tilde{\ell},\tilde{\ell}){\simeq}0.5(m(\tilde{\ell}_{1}^{2}){+}m(\tilde{k}_{1}^{2})) \\ m(\tilde{k}_{1}^{2}){\simeq}0~{\rm GeV}, m(\tilde{\ell},\tilde{\ell}){\simeq}0.5(m(\tilde{\ell}_{1}^{2}){+}m(\tilde{k}_{1}^{2})) \\ m(\tilde{k}_{1}^{2}){\simeq}m(\tilde{k}_{2}^{2}), m(\tilde{k}_{1}^{2}){\simeq}0.5(m(\tilde{k}_{1}^{2}){+}m(\tilde{k}_{1}^{2})) \\ m(\tilde{k}_{1}^{2}){\simeq}m(\tilde{k}_{2}^{2}), m(\tilde{k}_{1}^{2}){\simeq}0.5(m(\tilde{k}_{1}^{2}){+}m(\tilde{k}_{1}^{2})) \\ m(\tilde{k}_{1}^{2}){\simeq}m(\tilde{k}_{2}^{2}), m(\tilde{k}_{1}^{2}){\simeq}0.5(m(\tilde{k}_{2}^{2}){+}m(\tilde{k}_{1}^{2})) \\ m(\tilde{k}_{2}^{2}){\simeq}m(\tilde{k}_{2}^{2}), m(\tilde{k}_{1}^{2}){=}0, m(\tilde{k}_{2}^{2}){=}0.5(m(\tilde{k}_{2}^{2}){+}m(\tilde{k}_{1}^{2})) \\ cr<1~mm \\ cr<1~mm \\ cr<1~mm \\ \end{array}$	1409.5294 1409.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1406.5086 1507.05493	
Long-lived particles	Direct $\hat{k}_1^* \hat{k}_1^-$ prod., long-lived \hat{k} Direct $\hat{k}_1^* \hat{k}_1^-$ prod., long-lived \hat{k} Stable, stopped \hat{g} R-hadron Stable \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, stable $\hat{\tau}, \hat{k}_1^0 \rightarrow \hat{\tau}(\hat{e}, \hat{\mu}) + \hat{\tau}$ GMSB, $\hat{k}_1^0 \rightarrow \hat{\sigma}, \hat{k}_1^0 \rightarrow \hat{\sigma}, \hat{\mu})$ $\hat{g}_{\hat{g}}, \hat{k}_1^0 \rightarrow \hat{\sigma}, \hat{\ell} = \hat{\sigma}, \hat{\ell}_1^0 \rightarrow \hat{\sigma}, \hat{\ell} = \hat{\ell}, \hat{\ell}_1^0 \rightarrow \hat{\ell}, \hat{\ell} = \hat{\ell}, $	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	1 jet - 1-5 jets - - - - ts -	Yes 2 Yes 1 Yes 2 - 1 Yes 2 - 1 Yes 2 - 2 - 2	0.3 8.4 7.9 3.2 9.1 0.3 0.3 0.3	3 ⁺ 270 GeV 8 ⁺ 495 GeV 8 850 GeV 8 537 GeV 3 ⁺ 440 GeV 3 ⁺ 1.0 TeV 3 ⁺ 1.0 TeV	$\begin{array}{c} \operatorname{rr}(\tilde{e}_{1}^{2}) \operatorname{-rr}(\tilde{e}_{1}^{2}) = 180 \ \mathrm{MeV}, \ r(\tilde{e}_{1}^{2}) = 0.2 \ \mathrm{rn}, \\ \operatorname{rr}(\tilde{e}_{1}^{2}) \operatorname{-rr}(\tilde{e}_{1}^{2}) = 180 \ \mathrm{MeV}, \ r(\tilde{e}_{1}^{2}) < 15 \ \mathrm{nn}, \\ \operatorname{rr}(\tilde{e}_{1}^{2}) \geq 100 \ \mathrm{GeV}, \ 10 \ \mathrm{pn} < r(\tilde{g}) < 1000 \ \mathrm{n}, \\ 1.57 \ \mathrm{TeV} \\ \operatorname{rr}(\tilde{e}_{1}^{2}) \geq 100 \ \mathrm{GeV}, \ r> 10 \ \mathrm{nn}, \\ 10 < \mathrm{lang} < 50 \\ 1 < r(\tilde{e}_{1}^{2}) < 3 \ \mathrm{nn}, \ \mathrm{SPSB} \ \mathrm{model}, \\ 7 < \mathrm{cr}(\tilde{e}_{1}^{2}) < 40 \ \mathrm{rrm}, \ \mathrm{m}(\tilde{g}) = 1.3 \ \mathrm{TeV}, \\ 8 < \mathrm{cr}(\tilde{e}_{1}^{2}) < 40 \ \mathrm{rrm}, \ \mathrm{m}(\tilde{g}) = 1.1 \ \mathrm{TeV}. \end{array}$	1310.3675 1506.05332 1310.6584 1606.05120 1604.04520 1411.6795 1400.5542 1504.05182	
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \mathfrak{d}_{p} + \mathfrak{X}, \mathfrak{d}_{p} {\rightarrow} \mathfrak{o}_{p} / \mathfrak{e}_{2} / \mu \tau \\ Blinear RFV CMSSM \\ \mathfrak{X}_{1}^{+} \mathfrak{X}_{1}^{-}, \mathfrak{X}_{1}^{+} {\rightarrow} \mathfrak{W}_{2}^{0}, \mathfrak{X}_{1}^{0} {\rightarrow} \mathfrak{sev}, \mathfrak{spl}_{1}, \mathfrak{X}_{1}^{-} {\rightarrow} \mathfrak{sev}, \mathfrak{spl}_{2}, \mathfrak{X}_{1}^{0} {\rightarrow} \mathfrak{sev}, \mathfrak{spl}_{2}, \mathfrak{X}_{1}^{0} {\rightarrow} \mathfrak{sev}, \mathfrak{spl}_{2}, \mathfrak{x}_{1}^{0} {\rightarrow} \mathfrak{sev}, \mathfrak{spl}_{2}, \mathfrak{x}_{1}^{0} {\rightarrow} \mathfrak{spl}_{2}, \mathfrak{spl}_{2$	$eji_e e _{ij}e _{i}$ $2 e, \mu (SS)$ $\mu \mu \nu 4 e, \mu$ $\tau 3 e, \mu + \tau$ 0 4 $2 e, \mu (SS)$ 0 $2 e, \mu$	- 0-3 b - - 5 lange- R jet 5 lange- R jet 0-3 b 2 jets + 2 b 2 b	Yes 2 Yes 1 Yes 2 Yes 2 s 1 s 1 Yes 1 Yes 1 2	3.2 0.3 3.3 0.3 4.8 4.8 3.2 5.4 0.3	$\begin{array}{c c} \tilde{v}_{*} \\ \tilde{v}_{*} \tilde{s} \\ \tilde{v}_{*} \tilde{s} \\ \tilde{s}_{1}^{*} \\ \tilde{s}_{1}^{*} \\ \tilde{s} \\ \tilde{s} \\ \tilde{v} \\ \tilde{s} \\ \tilde{t}_{*} \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 607.08070 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-067 ATLAS-CONF-2016-067 ATLAS-CONF-2016-067 ATLAS-CONF-2016-037 ATLAS-CONF-2015-015	
Other	Scalar charm, $\tilde{c} \rightarrow < \tilde{\xi}_1^0$	D	2 c	Yes 2	0.3	2 510 GeV	m(²³)<200 GeV	1501.01325	
*Only a selection of the available mass limits on new 10 ⁻¹ 1 Mass scale [TeV]									

Summary & outlook

- ATLAS developed a vast program to search for supersymmetry
 - no significant excess seen so far
- In simplified scenarios, exclusion achieved
 - up to ~1.9 TeV for gluinos
 - up to ~900 GeV for top squarks
 - more results are continuously become available
- ~30 (100) fb⁻¹ data expected by end of 2016 (end of Run-2)
- Very challenging years for SUSY ahead of us!

More results:

https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/SupersymmetryPublicResults

Corfu 2016 V.A. Mitsou

RJigsaw variables

- decompose an event assuming a decay topology
- compute invisible momenta by minimizing each hemisphere mass
- all momenta of decay tree available for selection (masssensitive scale variables, angles for compressed topologies)

