

Corfu, Greece 2016

Electroweak Physics at the LHC

— Lecture 2 — Single-W/Z Production

Stefan Dittmaier

Albert-Ludwigs-Universität Freiburg

Contents

Drell–Yan-like W/Z production – physics goals

QCD and electroweak corrections to inclusive W/Z production

W/Z production with hard jets

Combination of QCD and EW corrections

Drell–Yan-like W/Z production

physics goals

Stefan Dittmaier, Electroweak Physics at the LHC – Lecture 2

W- and Z-boson production at hadron colliders

Physics goals:

- $M_{\rm Z}$ \rightarrow detector calibration by comparing with LEP1 result
- $\sin^2 \theta_{\rm eff}^{\rm lept} \rightarrow \text{ comparison with results of LEP1 and SLC}$
- $M_W \rightarrow \text{improvement to } \Delta M_W \sim 15 \text{ MeV}$, strengthen EW precision tests (W/Z shape comparisons even sensitive to $\Delta M_W \sim 7 \text{ MeV}$ at LHC) Besson et al. '08
- $\sigma, d\sigma \rightarrow$ precision SM studies
- decay widths $\Gamma_{\mathbf{Z}}$ and $\Gamma_{\mathbf{W}}$ from M_{ll} or $M_{\mathrm{T},l\nu_l}$ tails
- search for Z' and W' at high M_{ll} or $M_{T,l\nu_l}$
- information on PDFs

Tevatron example: M_W determination @ CDF (2012)

 $M_{\rm W}^{
m CDF} = 80.387 \, {
m GeV} \pm 19 \, {
m MeV}$ from fits to distributions in

a) transverse W-boson mass

b) transverse lepton momentum $p_{T,l}$

$$M_{\mathrm{T},l\nu} = \sqrt{2(E_{\mathrm{T},l}\not\!\!\!E_{\mathrm{T}} - \mathbf{p}_{\mathrm{T},l} \cdot \not\!\!\!p_{\mathrm{T}})}$$

Sensitivity to $M_{\rm W}$ via Jacobian peaks from W resonance at

$$M_{\mathrm{T},l\nu} \sim M_{\mathrm{W}}$$
 $p_{\mathrm{T},l} \sim M_{\mathrm{W}}/2$

 \Rightarrow Reduction of $\Delta M_{\rm W}$ requires higher theoretical precision in W resonance region !

(for Z resonance as well for reference)

Z-boson invariant-mass and transverse-momentum distributions

 $p_{\mathrm{T,Z}}$ distribution:

- probes jet recoil, i.e. QCD jet dynamics
- at low $p_{\rm T,Z}$ not describable with fixed-order predictions
 - \hookrightarrow QCD resummations required

FB asymmetry at the LHC

(plots taken from Dittmar, Djouadi, Nicollerat '03)

- Naive definition: "Good" definition: $A_{FB} = 0$ in pp collisions (no preferred direction!) identify boost direction of l^+l^- pair with quark direction (x spectra of q / \bar{q} on average lead to boost in q direction)
- Measureable $A_{\rm FB}$ can be enhanced upon excluding small Z rapidity Y_{ll} \hookrightarrow require e.g. $|Y_{ll}| > 0.8$
- $A_{\rm FB}$ can discriminate between different ${\rm Z}'$ models at the LHC

LHC measurements of $A_{\rm FB}$

Status after LHC run 1:

- high $M_{\mu\mu}$: no evidence for Z' bosons up to TeV scale
- $M_{\mu\mu} \sim M_Z$: first measurements of $\sin^2 \theta_{eff}^{lept}$ optimistic prospect: ~ LEP/SLC accuracy

But: improved theory predictions necessary !

QCD and electroweak corrections to inclusive W/Z production

SM predictions for W/Z production:

- NNLO QCD (differential)
- QCD resummations / parton showers
- NLO EW (+ h.o. improvements)
- NLO QCD/EW POWHEG matching
- NNLO QCD + parton shower
- $\mathcal{O}(\alpha \alpha_{\rm s})$ corrs. near resonances

Melnikov, Petriello '06; Catani et al. '09; Gavin et al. '10,'12

Arnold, Kauffman '91; Balazs et al. '95; ...

Baur et al. '97; Brein et al. '99; S.D., Krämer '01; Baur, Wackeroth '04; Arbuzov et al. '05; Carloni Calame et al. '06; ...

Bernaciak, Wackeroth '12; Barze et al. '13

Hoeche et al. '14; Karlberg et al. '14

S.D., Huss, Schwinn '14,'15

Some details on the NLO calculation

Loop corrections:

Field-theoretical subtlety:

gauge-invariant description of resonance with higher-order corrections

Corrections to $M_{T,l\nu}$ distribution in W production:

- QCD corrections (not shown) sizeable, but quite flat ($\sim 20-30\%$)
- EW corrections
 - o unambiguous separation into photonic and weak corrections for W
 - significant shape distortion near Jacobian peak
 - \hookrightarrow shift in M_W determination by $\sim 100(50) \,\mathrm{MeV}$ for bare (dressed) leptons
 - multi-photon final-state radiation relevant

Corrections to $p_{T,l}$ distribution in W production:

- QCD corrections huge (> 100%) for $p_{\mathrm{T},l} \gtrsim M_{\mathrm{W}}/2$ due to jet recoil
 - $\,\hookrightarrow\,$ importance of multi-jet merging / QCD parton-shower matching

• EW corrections

- \diamond shape distortion, etc., similar to $M_{\mathrm{T},l\nu}$ distribution
- observable cleaner experimentally, but more delicate theoretically than $M_{{
 m T},l
 u}$

Corrections to W/Z rapidity distribution

QCD predictions at LO / NLO / NNLO:

- particularly relevant in PDF fits
- QCD corrections show nice perturbative convergence
- EW corrections at the level of few % (mostly photonic)

Corrections to M_{ll} distribution in Z production – overview _{S.D., Huber '09}

Physikalisches Institut

Corrections to M_{ll} distribution in Z production – features

- QCD corrections significant, but quite flat in resonance region
- Photonic corrections
 - \diamond large radiative tail for $M_{ll} \lesssim M_Z$ from photonic final-state radiation
 - Multi-photon emission significant in resonance region
 - ◇ photon recombination reduces large corrections drastically (cancellation of large mass-singular corrections $\propto (\alpha \ln m_{\ell})^n$ a la KLN)
- weak corrections significant for large $M_{ll} \gg M_{ll}$
- $q\gamma$ channel seemingly significant, but swamped by QCD corrections (same signature, similar shape!)
- $\gamma\gamma$ channel significant off resonance with kinematical signature different from $q\bar{q}$ \hookrightarrow sensitivity to photon PDF in PDF fits !

W/Z production with hard jets

SM predictions for W/Z (\rightarrow leptons) + hard jets:

- NLO QCD to $W/Z+\leq 5\,{\rm jets}$
- NLO EW to W/Z + 1 jet
- NLO EW to Z + 2 jets
- NLO EW to $W_{(stable)} + \leq 3 \, jets$
- NNLO QCD to $W/Z+1\,{\rm jet}$

... Berger et al. '09,'10; Ellis et al. '09; Bern et al. '11–'13; Goetz et al. '14

Denner et al. '09-'12

Denner et al. '14

Kallweit et al. '14

Boughezal et al. '15; Gehrmann et al. '15

NNLO QCD corrections to W+jet production

Boughezal et al. '15

Technical breakthrough in treatment of IR divergences !

 \hookrightarrow "jettiness subtraction"

W/Z + higher jet multiplicities @ NLO QCD

 \hookrightarrow NLO QCD corrections known for W/Z + n jets with $n \leq 5$

Bern et al. '11-'13; Goetz et al. '14

Example: W + jets

- theoretical uncertainty reduced from $\sim 100\%$ (LO) to $\sim 30\%$ (NLO)
- good agreement between theory and LHC Run 1 data

W/Z + higher jet multiplicities @ NLO QCD+EW

QCD and EW orders mix for $W/Z + \ge 2$ jets Note:

Tree contributions: $\mathcal{O}(\alpha_{s}\alpha), \mathcal{O}(\alpha^{2})$

(W/Z emission suppressed in graphs)

$$V = \gamma, \mathbf{Z}, \mathbf{W}$$

Loop contributions: $O(\alpha_s^2 \alpha)$

Physikalisches Institut

W/Z + higher jet multiplicities @ NLO – results

Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

- normalization to $\sigma_{
 m QCD}^{
 m NLO}$
- $\mu_{\rm ren} = \mu_{\rm fact} = \hat{H}_{\rm T} = \sum E_{\rm T}$
- $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

W/Z + higher jet multiplicities @ NLO – results

Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

ät für Mathematik und Ph

- normalization to $\sigma_{
 m QCD}^{
 m NLO}$
- $\mu_{\rm ren} = \mu_{\rm fact} = \hat{H}_{\rm T} = \sum E_{\rm T}$
- $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

W/Z + higher jet multiplicities @ NLO – results

Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

at für Mathematik und Ph

- normalization to $\sigma_{
 m QCD}^{
 m NLO}$
- $\mu_{\rm ren} = \mu_{\rm fact} = \hat{H}_{\rm T} = \sum E_{\rm T}$
- $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

W/Z + higher jet multiplicities @ NLO – results Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

Observations:

• QCD corrections:

"giant K factors" in W + 1 jet due to real jet emission

(soft W's, hard jets recoiling against each other) Rubin, Salam, Sapeta '10

- \hookrightarrow multi-jet merging important (or apply jet veto)
- EW corrections: 2 competing effects in at high scales
 - ♦ negative EW Sudakov corrections $\propto \frac{\alpha}{s_{W}^{2}} \ln^{2}(M_{W}^{2}/\hat{s})$, etc.
 - \diamond positive tree-like contributions $\sigma_{\rm tree}$ of ${\cal O}(lpha_{
 m s}lpha^2)$
- combination of QCD and EW corrections:
 - \diamond QCD \times EW versus QCD + EW
 - \hookrightarrow large difference if QCD and EW are huge !
 - factorization of some universal effects known, but use with care:

$$\sigma_{\text{best}} = \sum_{ij} \sigma_{\text{QCD},ij} \times (1 + \delta_{\text{EW},ij}) + \sigma_{\text{tree}} + \sigma_{\gamma-\text{induced}}$$

issue ultimately resolved only by NNLO QCD-EW calculations

Combination of QCD and EW corrections

Stefan Dittmaier, Electroweak Physics at the LHC – Lecture 2

Corfu Summer School, Sep 2016 - 24

Combination of QCD and EW corrections to inclusive W/Z production

Issue unambiguously fixed only by calculating the 2-loop $\mathcal{O}(\alpha \alpha_s)$ corrections, until then rely on approximations and estimate the uncertainties:

Balossini et al. '09 (HORACE)

 \hookrightarrow limits precision in $M_{\rm W}$ measurement

Dominant $\mathcal{O}(\alpha \alpha_s)$ corrections calculated for resonance region S.D., Huss, Schwinn '14,'15

 $\Delta M_{\rm W}^{\mathcal{O}(\alpha\alpha_{\rm s})} \sim 14 \,{\rm MeV} \,(4 \,{\rm MeV})$ for bare muons (dressed leptons) Note:

$\mathcal{O}(\alpha \alpha_{\rm s})$ corrections in pole approximation $_{\rm S.D.,\ Huss,\ Schwinn\ '14,'15}$

 \hookrightarrow take only leading (=resonant) contributions in expansion about resonance poles

Factorizable contributions:

Non-factorizable contributions:

Physikalisches Institu

(only virtual contributions indicated)

- not yet known, but no significant resonance distortion expected
- no PDFs with $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections
- only $V l \overline{l}'$ counterterm contributions
- calculated \rightarrow very small, uniform correction
- significant resonance distortions from FSR
- calculated and compared to leading-log parton shower approach

(only virtual contributions indicated)

- could induce shape distortions
- \bullet calculated \rightarrow phenomenologically negligible

Non-factorizable $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections

Physikalisches Institut

Non-factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '14

W production:

Full non-factorizable $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections tiny

due to complete cancellation between virtual and real corrections

Non-factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '14

Z production:

Full non-factorizable $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections tiny

due to complete cancellation between virtual and real corrections

Initial–final factorizable $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections

Full $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections versus naive factorization

NLO QCD and EW corrections:

$$\sigma^{\mathrm{NLO}_{\mathrm{S}}} \equiv \sigma^{\mathrm{LO}} \underbrace{\left(1 + \delta_{\alpha_{\mathrm{S}}}\right)}_{=K_{\mathrm{QCD}}^{\mathrm{NLO}}} = \sigma^{0} + \sigma^{\mathrm{LO}} \underbrace{\left(\frac{\sigma^{\mathrm{LO}} - \sigma^{0}}{\sigma^{\mathrm{LO}}} + \delta_{\alpha_{\mathrm{S}}}\right)}_{\equiv \delta_{\alpha_{\mathrm{S}}}'},$$

 $\Delta \sigma^{\text{NLO}_{ew}} = \sigma^0 \, \delta_{\alpha}, \qquad \sigma^0 = \text{LO contribution with NLO PDFs}$

 $\mathcal{O}(\alpha \alpha_{\rm s})$ -corrected cross section:

$$\sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}} = \sigma^{\mathrm{NLO}_{\mathrm{s}}} + \Delta \sigma^{\mathrm{NLO}_{\mathrm{ew}}} + \underbrace{\Delta \sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}}_{\mathrm{ini-fin}}}_{=\sigma^{\mathrm{LO}}\,\delta^{\mathrm{ini-fin}}_{\alpha_{\mathrm{s}}\alpha}}$$

Naive factorization @ $O(\alpha \alpha_s)$:

 $\sigma_{\text{naive fact}}^{\text{NNLO}_{s\otimes ew}} = \sigma^{\text{NLO}_{s}}(1+\delta_{\alpha}) = \sigma^{\text{LO}}(1+\delta_{\alpha_{s}})(1+\delta_{\alpha})$

\Rightarrow Comparison of relative corrections:

$$\frac{\sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}} - \sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}}_{\mathrm{naive fact}}}{\sigma^{\mathrm{LO}}} = \delta^{\mathrm{ini-fin}}_{\alpha_{\mathrm{s}}\alpha} - \delta'_{\alpha_{\mathrm{s}}} \frac{\delta_{\alpha}}{\delta_{\alpha}}$$

Initial–final factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections W production: (γ recombination applied, "dressed leptons")

Naive factorization works!

Naive factorization deteriorates for $p_{{\rm T},\mu^+}\gtrsim M_{\rm W}/2$

Important issues:

- comparison of $\delta_{\alpha_s \alpha}^{ini-fin}$ with MC approach $d\sigma_{\alpha_s} \otimes (\gamma \text{ shower})$
- estimate shifts in $M_{\rm W}$ by $\delta^{\rm ini-fin}_{lpha_{
 m s}lpha}$

Initial–final factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15 Z production: (no γ recombination applied, "bare leptons")

Naive factorization fails !

Naive factorization takes "wrong QCD *K* factor"

Important issues:

- comparison of $\delta_{\alpha_s \alpha}^{ini-fin}$ with MC approach $d\sigma_{\alpha_s} \otimes (\gamma \text{ shower})$
- estimate shift in $M_{\rm Z}$ by $\delta^{\rm ini-fin}_{\alpha_{\rm s}\alpha}$

Initial–final factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15

Z production: Leading-log QED \otimes NLO QCD

Two QED FSR leading-log approaches: "Differential factorization" works!

• QED structure-function:

$$\sigma_{\alpha\alpha_{s},LL FSR} = \int_{0}^{1} dz_{1} \underbrace{\Gamma_{\ell\ell}^{LL}(z_{1},Q^{2})}_{\text{leading-log structure}} \int_{0}^{1} dz_{2} \Gamma_{\ell\ell}^{LL}(z_{2},Q^{2}) \int d\sigma_{NLO QCD}(z_{1}k_{\ell}+,z_{2}k_{\ell}-)$$

$$= \text{leading-log structure}_{\text{function}, Q = \text{typ. scale} \in (M_{Z}/2, 2M_{Z})}$$

$$\mathcal{O}(\alpha) \text{ approximation:} \quad \Gamma_{\ell\ell}^{LL,1}(z,Q^{2}) = \frac{\alpha(0)}{2\pi} \left[\ln\left(\frac{Q^{2}}{m_{\ell}^{2}}\right) - 1 \right] \left(\frac{1+z^{2}}{1-z}\right)_{+}$$

$$= \text{QED parton-shower PHOTOS}$$

$$= \text{Barberio van Fijk Was}$$

