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Recapitulation of the Standard Model
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Structure and elementary interactions of the Standard Model

Fermions Bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)

gauge interactions

Yukawa interactions

CKM mixing, small CP

Higgs sector:

spontaneous symmetry breaking
via self-interactions
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Structure and elementary interactions of the Standard Model

Test of the model
⇔ Exp. reconstruction of the elementary couplings

︸ ︷︷ ︸

Feynman rules
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Structure and elementary interactions of the Standard Model

Test of the model
⇔ Exp. reconstruction of the elementary couplings

︸ ︷︷ ︸

Feynman rules

Building blocks for particle reactions

Standard Model extensions → more fields, more particles, more interactions, ...
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Feynman rules derived from SM Lagrangian:

→֒ Recapitulate EW gauge interactions !
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Gauge-boson couplings to fermions

→֒ induced by “minimal substitution” in free Lagrangian L0,ferm =
∑

f iψf /∂ψf :

∂µ → Dµ = ∂µ − ig2T
a
I W

a
µ + ig1

Y

2
Bµ

T a
I = weak isopsin =

{

σa/2 for left-handed f

0 for right-handed f

Y = weak hypercharge, fixed by Gell-Mann–Nishijima relation Q = T 3
I + Y/2

Identification of photon after “Weinberg rotation” about weak mixing angle θW:
(
Zµ

Aµ

)

=

(
cW sW

−sW cW

)(
W 3

µ

Bµ

)

with g2 =
e

sW
, g1 =

e

cW
, sW ≡ sin θW

⇒ Interaction vertices:

f

f̄ ′

Wµ

ie√
2sW

γµ
1
2
(1− γ5)

f

f̄

Aµ −iQfeγµ

f

f̄

Zµ ieγµ(gV f − gAfγ5), gV f = − sW

cW
Qf +

T 3
I,f

2cWsW
, gAf =

T 3
I,f

2cWsW
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Effective Zff̄ couplings from e+e− → Z/γ∗ → ff̄ @ LEP1

f̄

f

Zµ = ieγµ(ḡV f − ḡAfγ5)

Leptonic couplings from LEP1
asymmetry measurements, e.g.:

A0,f
FB =

σ0
f,F − σ0

f,B

σ0
f,F + σ0

f,B

=
3

4
AeAf

(F/B = For/Backward hemisphere)

with Af =
2ḡV f ḡAf

ḡ2V f + ḡ2Af

Good agreement with SM

• lepton universality confirmed

• constraints on mt and MH

LEPEWWG ’05

-0.041

-0.038

-0.035

-0.032

-0.503 -0.502 -0.501 -0.5

gAl

g
V

l

68% CL

l
+
l
−

e
+
e

−

µ+µ−

τ+τ−

mt

mH

mt= 178.0 ± 4.3 GeV
mH= 114...1000 GeV

∆α
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Translation of effective couplings into effective weak mixing angle

sin2 θlepteff =
1

4

(

1− Re

{
gV l

gAl

})

Important features:

• high sensitivity to MH

• combination of

very different observables

• ∼ 3σ difference between

A0,b
FB(LEP) and A0,l

LR(SLD)

with the initial-state pol. asymmetry

A0,l
LR =

σ0
L − σ0

R

σ0
L + σ0

R

1

〈|Pe|〉

⇒ Precise LHC result on sin2 θlepteff

highly desirable !

LEPEWWG ’05

10
2

10
3

0.23 0.232 0.234

sin
2θ

lept

eff

m
H
  

[G
e

V
]

χ2
/d.o.f.: 11.8 / 5

A
0,l

fb 0.23099 ± 0.00053

Al(Pτ) 0.23159 ± 0.00041

Al(SLD) 0.23098 ± 0.00026

A
0,b

fb 0.23221 ± 0.00029

A
0,c

fb 0.23220 ± 0.00081

Q
had

fb 0.2324 ± 0.0012

Average 0.23153 ± 0.00016

∆αhad= 0.02758 ± 0.00035∆α(5)

mt= 178.0 ± 4.3 GeV
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Gauge-boson self-interactions

→֒ induced by gauge-invariant Yang–Mills Lagrangian

LYM = −1

4
W a

µνW
a,µν − 1

4
BµνB

µν ,

with the field-strength tensors

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν , Bµν = ∂µBν − ∂νBµ

⇒ Feynman rules for gauge-boson self-interactions: (fields and momenta incoming)

W+
µ

W−
ν

Vρ
ieCWWV

[

gµν(k+ − k−)ρ + gνρ(k− − kV )µ + gρµ(kV − k+)ν
]

with CWWγ = 1, CWWZ = − cW
sW

→ testable in di-boson production ee/pp → V V

W+
µ

W−
ν

Vρ

V ′
σ

ie2CWWV V ′

[

2gµνgρσ − gµρgσν − gµσgνρ

]

with CW2γ2=− 1, CW2γZ= cW
sW

, CW2Z2=−
c2W
s2W

, CW4= 1
s2W

→ testable in tri-boson production ee/pp → V V V
and vector-boson scattering pp(V V→V V ) → V V+2jets
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(Non-)standard TGCs Gaemers, Gounaris ’79; Hagiwara, Hikasa, Peccei, Zeppenfeld ’87;
Bilenky, Kneur, Renard, Schildknecht ’93; etc.

General parametrization (C- and P-conserving):
W+

W−

V = γ,Z

LV WW = −iegV WW

{

gV1 (W
+
µνW

−,µV ν −W−,µνW+
µ Vν)

+ κVW
+
µ W

−
ν V

µν +
λV

M2
W

W+
ρµW

−,µ
ν V νρ

}

Meaning for static W+ bosons:

QW = egγ1 = electric charge (= e by charge conservation)

µW =
e

2MW
(gγ1 + κγ + λγ) = magnetic dipole moment

qW = − e

M2
W

(κγ − λγ) = electric quadrupole moment

Standard Model values:

gV1 = κV = 1, λV = 0

Restriction to SU(2)×U(1)-symmetric dim-6 operators:

κZ = gZ1 − (κγ − 1) tan2 θW, λZ = λγ
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LEP2 constraints on charged TGCs from e+e− → WW → 4 f
LEPEWWG ’04

∆gZ1 = −0.009+0.022
−0.021

∆κγ = −0.016+0.042
−0.047

λγ = −0.016+0.021
−0.023

Standard Model values verified

at the level of 2–4%

Similar results from Tevatron and LHC Run 1

LHC will tighten limits further !
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Generic features of

electroweak corrections
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Relevance of EW corrections @ LHC

• 2015: LHC restarts @ 13−14TeV

→֒ energy reach extends deeper into TeV range

→֒ δEW ∼ some 10%

• integrated LHC luminosity will reach some 100 fb−1

→֒ many measurements at several-% level

→֒ typical size of δEW

• planned high-precision measurements: XS ratios, MW, sin2 θlepteff

→֒ δEW is crucial ingredient

Spirit of this lecture

• describe salient features of EW corrections,

in particular enhancement effects

• prepare the ground for the discussion of W/Z production processes

coming in the follow-up lectures
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Features of and issues in EW precision calculations

Relevance and size of EW corrections

generic size O(α) ∼ O(α2
s ) suggests NLO EW ∼ NNLO QCD

but systematic enhancements possible, e.g.

• by photon emission

→֒ kinematical effects, mass-singular log’s ∝ α ln(mµ/Q) for bare muons, etc.

• at high energies

→֒ EW Sudakov log’s ∝ (α/s2W) ln2(MW/Q) and subleading log’s

EW corrections to PDFs at hadron colliders

induced by factorization of collinear initial-state singularities, new: photon PDF

Instability of W and Z bosons

• realistic observables have to be defined via decay products (leptons, γ’s, jets)

• off-shell effects ∼ O(Γ/M) ∼ O(α) are part of the NLO EW corrections

Combining QCD and EW corrections in predictions

• how to merge results from different calculations

• reweighting procedures in MC’s
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Input parameter schemes
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SM input parameters: (natural choice)

αs, α, MW, MZ, MH, mf , VCKM

Issues:

• Setting of α: process-specific choice to

⋄ avoid sensitivity to non-preturbative light-quark masses

⋄ minimize universal EW corrections

Schemes: fix MW, MZ and α

⋄ α(0)-scheme: relevant for external photon

⋄ α(MZ)-scheme: relevant for internal photons at high energies (γ∗)

⋄ Gµ-scheme: αGµ =
√
2GµM

2
W(1−M2

W/M
2
Z)/π, relevant for W, Z

• Warnings / pitfalls:

⋄ α must not be set diagram by diagram,

but global factors like α(0)mαn
Gµ

in gauge-invariant contributions mandatory !

⋄ weak mixing angle: sW 6= free parameter if MW and MZ are fixed !

⋄ Yukawa couplings are uniquely fixed by fermion masses !
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The universal radiative corrections ∆α and ∆ρ

Running electromagnetic coupling α(s):

γ

q

q

γ
becomes sensitive to unphysical quark masses mq

for |s| in GeV range and below (non-perturbative regime)

→֒ charge-renormalization constant δZe sensitive to mq

Solution:
fit hadronic part of ∆α(s) = −Re{ΣAA

T,ren(s)/s} and thus of δZe

via dispersion relations to R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
Jegerlehner et al.

⇒ Running elmg. coupling: α(s) =
α(0)

1−∆αferm6=top(s)

Leading correction to the ρ-parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

→֒ large effects from bottom–top loops in W self-energy Veltman ’77

W

t

b

W
∆ρtop ∼ ΣZZ

T (0)

M2
Z

− ΣWW
T (0)

M2
W

∼ 3Gµm
2
t

8
√
2π2
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Fermi constant Gµ as input parameter – the quantity ∆r

µ decay including higher-order corrections

µ−

Gµ

νµ

e−

ν̄e

+ QED corrections ⇐⇒
W

µ−

νµ

e−

ν̄e

+ EW corrections

→֒ Relation between Gµ, α(0), MW, and MZ including corrections:

αGµ ≡
√
2

π
GµM

2
W

(

1− M2
W

M2
Z

)

= α(0)(1 + ∆r)

∆r comprises quantum corrections to µ decay

(beyond electromagnetic corrections in Fermi model) Sirlin ’80, Marciano, Sirlin ’80

∆r1−loop = ∆α(M2
Z) − c2W

s2W
∆ρtop + ∆rrem(MH)

∼ 6% ∼ 3% ∼ 1%

α ln(mf/MZ) Gµm
2
t α ln(MH/MZ)

γ

f

f

γ W

t

b

W
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Input-parameter schemes including electroweak NLO corrections

Cross section: σNLO = αNALO (1 + δEW) , δEW = O(α)

• α(0)-scheme: σLO = α(0)NALO

• α(MZ)-scheme: σLO = α(MZ)
NALO, δ

α(MZ)
EW = δ

α(0)
EW +N∆α(MZ) + . . .

• Gµ-scheme: σLO = α(Gµ)
NALO, δ

Gµ

EW = δ
α(0)
EW +N∆r + . . .

• Mixed scheme: N = n+ nγ , nγ = # external photons

σLO = α(Gµ)
nα(0)nγALO, δmix

EW = δ
α(0)
EW + n∆r + . . .

⋄ absorbs all ∆α terms in LO to all orders

⋄ absorbs ∆ρ terms in LO (all for Ws up to 2 loops, parts for Zs)

⋄ factor α in δEW can still be adjusted appropriately

(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

⋄ example: qq̄′ → Wγ, n = nγ = 1
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Example: weak corrections to Z production

q

q̄

l−

l+
γ/Z

S.D., Huber ’09
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• off-sets between NLO EW corrections in different schemes

• dashed lines include leading 2-loop effects from ∆α and ∆ρ

→֒ highest stability against h.o. corrections in Gµ scheme here
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Photon radiation off leptons
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Collinear final-state radiation (FSR) off leptons

kℓ

ℓ
zkℓ

γLeading logarithmic effect is universal:

σLL,FSR =

∫

dσLO(kl)
︸ ︷︷ ︸

hard scattering

∫ 1

0

dz ΓLL
ℓℓ (z,Q2)

︸ ︷︷ ︸

leading-log structure

function, Q = typ. scale

Θcut(zkl)

• ΓLL
ℓℓ (z,Q2) known to O(α5) + soft exponentiation,

equivalent description by QED parton showers

• O(α) approximation: ΓLL,1
ℓℓ

(z,Q2) =
α(0)

2π

[

ln

(

Q2

m2
ℓ

)

− 1

](

1 + z2

1− z

)

+

• Alternative approach: QED parton shower

→֒ advantage: photons described with finite pT and definite multiplicity

Impact on predictions:

• log-enhanced corrections for “bare” leptons (muons) → large radiative tails

• KLN theorem: mass-singular FSR effects cancel if (ℓγ) system is inclusive
(full integration over z)

• full FSR not universal, in general not even separable from other EW corrections
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Radiative tail from final-state radiation

results if resonances reconstructed from decay products

Typical situations: e+e− → WW/ZZ → 4f ,

pp → Z → ff̄ +X

γ

k1

k2

Z

Final-state radiation:

resonance for

M2 = (k1+k2)
2 < (k1+k2+kγ)

2 ∼M2
Z

→֒ radiative tail in distribution dσ
dM

of reconstructed invariant mass M

for M < MZ

Example: Single-Z production
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S.D., Huber ’09

• radiative tail with corrections up to ∼ 80%

• FSR effect drastically reduced

by photon recombination (“rec”):

If Rlγ < 0.1 then (lγ) → l̃ with pl̃ = pl + pγ .
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Comparison with radiative tail from initial-state radiation

appears if initial state is fixed

Typical situations: e+e− → Z → ff̄ ,

µ+µ− → Z,H, ? → ff̄
Z

γ γ

e−

e+

f̄

f

→֒ scan over s-channel resonance in σtot(s) by changing CM energy
√
s

Initial-state radiation:

Z can become resonant for s = (p++p−)
2 > (p++p−−kγ)2 ∼M2

Z

→֒ radiative tail for s > M2
Z due to “radiative return”

Final-state radiation:

s = k2Z ∼M2
Z for FSR

→֒ only rescaling of resonance

Example:

cross section for µ−µ+ → bb̄ in lowest order

and including photonic and QCD corrections,

with and without invariant-mass cut
√
s−M(bb̄) < 10GeV

S.D., Kaiser ’02

Born
corrected, Mhad cut
corrected

SM

µ+µ− → bb̄

√
s[GeV]

σ[pb]

12512011511010510095908580

10000

1000

100
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Electroweak corrections at high energies
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Electroweak corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange

j

k

a = γ,W, Z

etc.

+ sub-leading logarithms from collinear singularities

Typical impact on 2 → 2 reactions at
√
s ∼ 1TeV:

δ
1−loop
LL ∼ − α

πs2W
ln

2
( s

M2
W

)

≃ −26%, δ
1−loop
NLL ∼ +

3α

πs2W
ln
( s

M2
W

)

≃ 16%

δ
2−loop
LL ∼ +

α2

2π2s4W
ln

4
( s

M2
W

)

≃ 3.5%, δ
2−loop
NLL ∼ − 3α2

π2s4W
ln

3
( s

M2
W

)

≃ −4.2%

⇒ Corrections still relevant at 2-loop level

Note: differences to QED / QCD where Sudakov log’s cancel
• massive gauge bosons W, Z can be reconstructed

→֒ no need to add “real W, Z radiation”

• non-Abelian charges of W, Z are “open” → Bloch–Nordsieck theorem not applicable

Extensive theoretical studies at fixed perturbative (1-/2-loop) order and

suggested resummations via evolution equations Beccaria et al.; Beenakker, Werthenbach;
Ciafaloni, Comelli; Denner, Pozzorini; Fadin et al.;
Hori et al.; Melles; Kühn et al., Denner et al.;
Manohar et al. ’00–
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High-energy limit – Sudakow versus Regge regime

Sudakov regime: all invariants ki · kj ≫ M2
W !

Example:

2 → 2 particle process

k1

k2

i

i′

f

f ′

k3

k4

k1

k2

i

i′

f

f ′

k3

k4

Kinematic variables in centre-of-mass frame in high-energy limit (k2j → 0):

s = (k1 + k2)
2 ∼ 4E2, E = beam energy,

t = (k1 − k3)
2 ∼ −4E2 sin2(θ/2), θ = scattering angle,

M34 =
√
s ∼ 2E,

kT = k3,T ∼ E sin θ

High-energy limits in distributions:

• dσ

dkT
: kT ≫MW ⇒ s, |t| ≫M2

W ⇒ Sudakov domination

• dσ

dM34
: M34 ≫MW ⇒ small |t| possible ⇒ in general no Sudakov domination

(i.e. typically smaller corrections)
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Example: Drell–Yan production

Neutral current: pp → ℓ+ℓ− at
√
s = 14TeV (based on S.D./Huber arXiv:0911.2329)

Mℓℓ/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞
σ0/pb 738.733(6) 32.7236(3) 1.48479(1) 0.0809420(6) 0.00679953(3) 0.000303744(1)

δrecqq̄,phot/% −1.81 −4.71 −2.92 −3.36 −4.24 −5.66

δqq̄,weak/% −0.71 −1.02 −0.14 −2.38 −5.87 −11.12

δ
(1)
Sudakov/% 0.27 0.54 −1.43 −7.93 −15.52 −25.50

δ
(2)
Sudakov/% −0.00046 −0.0067 −0.035 0.23 1.14 3.38

no Sudakov domination!

Charged current: pp → ℓ+νℓ at
√
s = 14TeV (based on Brensing et al. arXiv:0710.3309)

MT,νℓℓ
/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞

σ0/pb 4495.7(2) 27.589(2) 1.7906(1) 0.084697(4) 0.0065222(4) 0.00027322(1)

δ
µ+νµ
qq̄ /% −2.9(1) −5.2(1) −8.1(1) −14.8(1) −22.6(1) −33.2(1)

δrecqq̄ /% −1.8(1) −3.5(1) −6.5(1) −12.7(1) −20.0(1) −29.6(1)

δ
(1)
Sudakov/% 0.0005 0.5 −1.9 −9.5 −18.5 −29.7

δ
(2)
Sudakov/% −0.0002 −0.023 −0.082 0.21 1.3 3.8

Sudakov domination!
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Unstable particles in QFT
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Problem of unstable particles:

description of resonances requires resummation of propagator corrections

→֒ mixing of perturbative orders potentially violates gauge invariance

Dyson series and propagator poles (scalar example)

= + + + . . .

Gφφ(p) =
i

p2 −m2
+

i

p2 −m2
iΣ(p2)

i

p2 −m2
+ . . . =

i

p2 −m2 + Σ(p2)

Σ(p2) = renormalized self-energy, m = ren. mass

stable particle: Im{Σ(p2)} = 0 at p2 ∼ m2

→֒ propagator pole for real value of p2,

renormalization condition for physical mass m: Σ(m2) = 0

unstable particle: Im{Σ(p2)} 6= 0 at p2 ∼ m2

→֒ location µ2 of propagator pole is complex,

possible definition of mass M and width Γ: µ2 = M2 − iMΓ
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Different proposals:

• Naive fixed-width schemes:

1

p2 −M2
→ 1

p2 −M2 + iMΓ
in all or at least in resonant propagators

→֒ breaks gauge invariance only mildly (?),

but partial inclusion of widths in loops screws up singularity structure

• Pole scheme Stuart ’91; Aeppli et al. ’93, ’94; etc.

Isolate resonance pole and introduce width Γ only there.

→֒ consistent, gauge invariant, but involves subtleties

Pole approximation: isolate and keep only leading (=resonant) terms

→֒ consistent, gauge invariant,

but not reliable at threshold or in off-shell tails of resonances

• Effective field theory approach
Beneke et al. ’04; Hoang, Reisser ’04

→֒ gauge invariant, involves pole expansions,

but can be combined with threshold expansions

• Complex-mass scheme
Denner, S.D., Roth, Wackeroth ’99; Denner, S.D., Roth, Wieders ’05

→֒ gauge invariant, valid everywhere in phase space
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The complex-mass scheme at NLO

Basic idea: mass2 = location of propagator pole in complex p2 plane

→֒ consistent use of complex masses everywhere !

Application to gauge-boson resonances:

• replace M2
W → µ2

W =M2
W − iMWΓW, M2

Z → µ2
Z =M2

Z − iMZΓZ

and define (complex) weak mixing angle via c2W = 1− s2W =
µ2
W

µ2
Z

• virtues:

⋄ gauge-invariant result (Slavnov–Taylor identities, gauge-parameter independence)

→֒ unitarity cancellations respected !

⋄ perturbative calculations as usual (loops and counterterms)

⋄ no double counting of contributions (bare Lagrangian unchanged !)

• drawbacks:

⋄ unitarity-violating spurious terms of O(α2) → but beyond NLO accuracy !

(from t-channel/off-shell propagators and complex mixing angle)

⋄ complex gauge-boson masses also in loop integrals
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Commonly used mass/width definitions:

• “on-shell mass/width” MOS/ΓOS: M2
OS −m2 +Re{Σ(M2

OS)}
!
= 0

→֒ Gφφ(p) ˜p2→M2
OS

1

(p2 −M2
OS)(1 + Re{Σ′(M2

OS)}) + i Im{Σ(p2)}

comparison with form of Breit–Wigner resonance
ROS

p2 −m2 + imΓ

yields: MOSΓOS ≡ Im{Σ(M2
OS)} / (1 + Re{Σ′(M2

OS)}), Σ′(p2) ≡ ∂Σ(p2)

∂p2

• “pole mass/width” M/Γ: µ2 −m2 + Σ(µ2)
!
= 0

complex pole position: µ2 ≡M2 − iMΓ

→֒ Gφφ(p)
p̃2→µ2

1

(p2 − µ2)[1 + Σ′(µ2)]
=

R

p2 −M2 + iMΓ

Note: µ = gauge independent for any particle (pole location is property of S-matrix)

MOS = gauge dependent at 2-loop order Sirlin ’91; Stuart ’91; Gambino, Grassi ’99;
Grassi, Kniehl, Sirlin ’01
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Relation between “on-shell” and “pole” definitions:

Subtraction of defining equations yields:

M2
OS +Re{Σ(M2

OS)} = M2 − iMΓ + Σ(M2 − iMΓ)

Equation can be uniquely solved via recursion in powers of coupling α:

ansatz: M2
OS =M2 + c1α

1 + c2α
2 + . . .

MOSΓOS =MΓ + d2α
2 + d3α

3 + . . . , ci, di = real

counting in α: MOS,M = O(α0), ΓOS,Γ,Σ(p
2) = O(α1)

Result:

M2
OS = M2 + Im{Σ(M2)} Im{Σ′(M2)} + O(α3)

MOSΓOS = MΓ + Im{Σ(M2)} Im{Σ′(M2)}2

+ 1
2
Im{Σ(M2)}2 Im{Σ′′(M2)} + O(α4)

i.e. {MOS,ΓOS} = {M,Γ} + gauge-dependent 2-loop corrections
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Important examples: W and Z bosons

In good approximation: W → ff̄ ′, Z → ff̄ with masses fermions f, f ′

so that: Im{ΣV
T(p

2)} = p2 × ΓV

MV
θ(p2), V = W,Z

→֒ M2
OS = M2 + Γ2 + O(α3) MOSΓOS = MΓ +

Γ3

M
+ O(α4)

In terms of measured numbers:

W boson: MW ≈ 80GeV, ΓW ≈ 2.1GeV

→֒ MW,OS −MW,pole ≈ 28MeV

Z boson: MZ ≈ 91GeV, ΓZ ≈ 2.5GeV

→֒ MZ,OS −MZ,pole ≈ 34MeV

Exp. accuracy: ∆MW,exp = 29MeV, ∆MZ,exp = 2.1MeV

→֒ Difference in definitions phenomenologically important !
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Example of W and Z bosons continued:

Approximation of massless decay fermions:

ΓV,OS(p
2) = ΓV,OS × p2

M2
V,OS

θ(p2), V = W,Z

Fit of W/Z resonance shapes to experimental data:

• ansatz

∣
∣
∣
∣

R′

p2 −m′2 + iγ′p2/m′

∣
∣
∣
∣

2

yields: m′ =MV,OS, γ′ = ΓV,OS

• ansatz

∣
∣
∣
∣

R

p2 −m2 + iγm

∣
∣
∣
∣

2

yields: m =MV,pole, γ = ΓV,pole

Note: the two forms are equivalent:

R =
R′

1 + iγ′/m′
, m2 =

m′2

1 + γ′2/m′2
, mγ =

m′γ′

1 + γ′2/m′2

→֒ consistent with relation between “on-shell” and “pole” definitions !
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Literature

For more details see “Dictionary for electroweak corrections” in

J. Butterworth, et al., “Les Houches 2013: Physics at TeV Colliders: Standard
Model Working Group Report,” arXiv:1405.1067 [hep-ph], page 11,

and original references therein.
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