

Electroweak Physics at the LHC

— Lecture 1 —

Electroweak Issues and Higher-Order Corrections

Stefan Dittmaier

Albert-Ludwigs-Universität Freiburg

Contents

Recapitulation of the Standard Model

Generic features of electroweak corrections

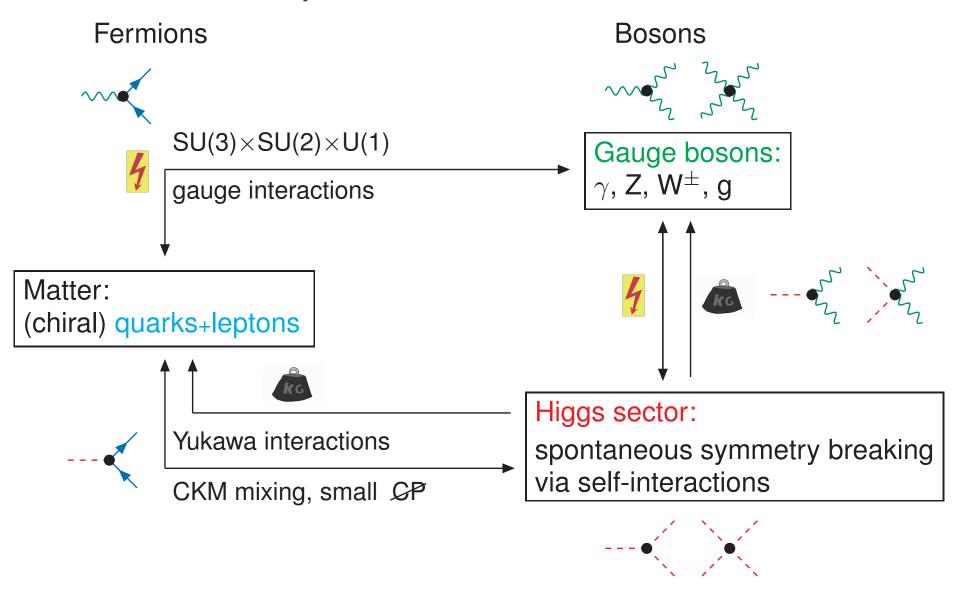
Input parameter schemes

Photon radiation off leptons

Electroweak corrections at high energies

Unstable particles in QFT

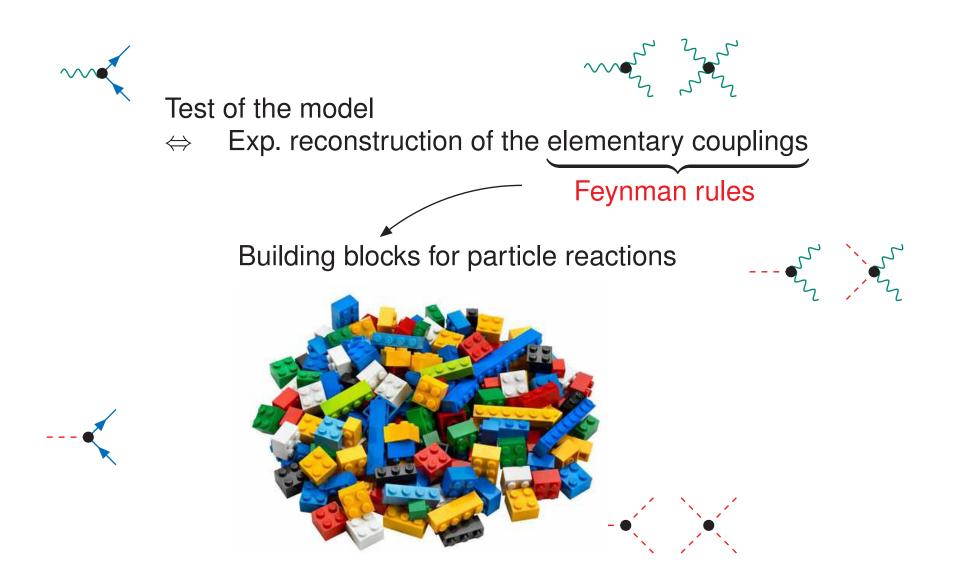
Recapitulation of the Standard Model

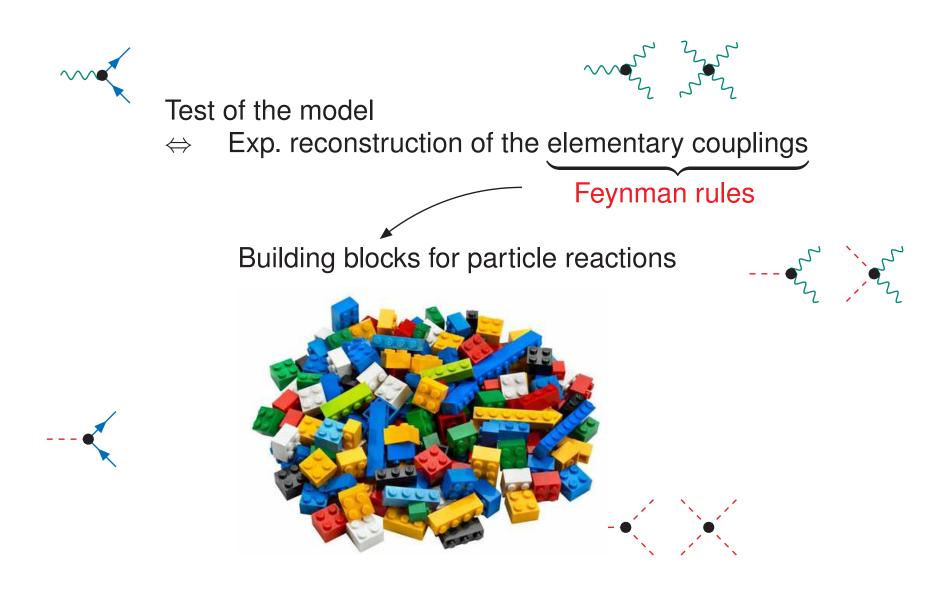


Test of the model

⇔ Exp. reconstruction of the elementary couplings

Feynman rules





Standard Model extensions

→ more fields, more particles, more interactions, ...

Feynman rules derived from SM Lagrangian:

 \hookrightarrow Recapitulate EW gauge interactions!

Gauge-boson couplings to fermions

 \hookrightarrow induced by "minimal substitution" in free Lagrangian $\mathcal{L}_{0,\text{ferm}} = \sum_f i \overline{\psi_f} \partial \psi_f$:

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ig_2 T_I^a W_{\mu}^a + ig_1 \frac{Y}{2} B_{\mu}$$

$$T_{
m I}^a = {
m weak \ isopsin} = egin{cases} \sigma^a/2 & {
m for \ left-handed} \ f \ 0 & {
m for \ right-handed} \ f \end{cases}$$

 $Y={
m weak}$ hypercharge, fixed by Gell-Mann–Nishijima relation $Q=T_{
m I}^3+Y/2$

Identification of photon after "Weinberg rotation" about weak mixing angle $\theta_{\rm W}$:

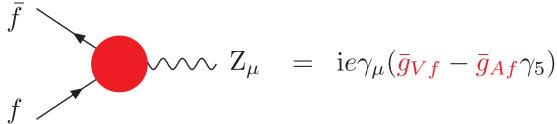
$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} c_{\mathrm{W}} & s_{\mathrm{W}} \\ -s_{\mathrm{W}} & c_{\mathrm{W}} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix} \quad \text{with } g_{2} = \frac{e}{s_{\mathrm{W}}}, \ g_{1} = \frac{e}{c_{\mathrm{W}}}, \quad s_{\mathrm{W}} \equiv \sin \theta_{\mathrm{W}}$$

⇒ Interaction vertices:

$$f \longrightarrow W_{\mu} \frac{\mathrm{i}e}{\sqrt{2}s_{\mathrm{W}}} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) \qquad f \longrightarrow A_{\mu} -\mathrm{i}Q_{f} e \gamma_{\mu}$$

$$f \longrightarrow Z_{\mu} \mathrm{i}e \gamma_{\mu} (g_{Vf} - g_{Af} \gamma_{5}), \qquad g_{Vf} = -\frac{s_{\mathrm{W}}}{c_{\mathrm{W}}} Q_{f} + \frac{T_{\mathrm{I},f}^{3}}{2c_{\mathrm{W}} s_{\mathrm{W}}}, \quad g_{Af} = \frac{T_{\mathrm{I},f}^{3}}{2c_{\mathrm{W}} s_{\mathrm{W}}}$$

Effective $Zf\bar{f}$ couplings from $e^+e^- \to Z/\gamma^* \to f\bar{f}$ @ LEP1



Leptonic couplings from LEP1 asymmetry measurements, e.g.:

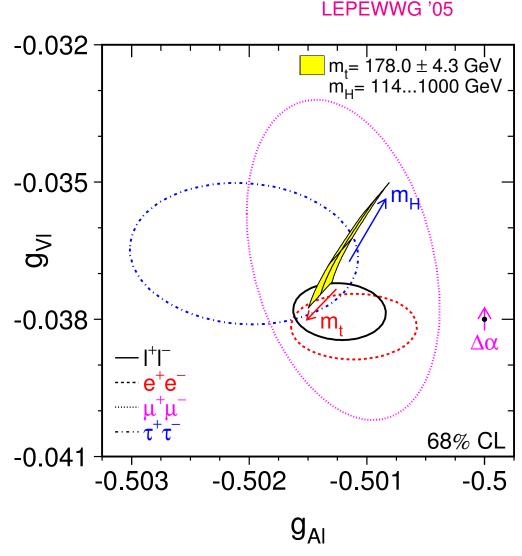
$$A_{\rm FB}^{0,f} = \frac{\sigma_{f,\rm F}^0 - \sigma_{f,\rm B}^0}{\sigma_{f,\rm F}^0 + \sigma_{f,\rm B}^0} = \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_f$$

(F/B = For/Backward hemisphere)

with
$$\mathcal{A}_f = \frac{2 \bar{g}_{Vf} \bar{g}_{Af}}{\bar{g}_{Vf}^2 + \bar{g}_{Af}^2}$$

Good agreement with SM

- lepton universality confirmed
- ullet constraints on $m_{
 m t}$ and $M_{
 m H}$



Translation of effective couplings into effective weak mixing angle

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \frac{1}{4} \left(1 - \text{Re} \left\{ \frac{g_{Vl}}{g_{Al}} \right\} \right)$$

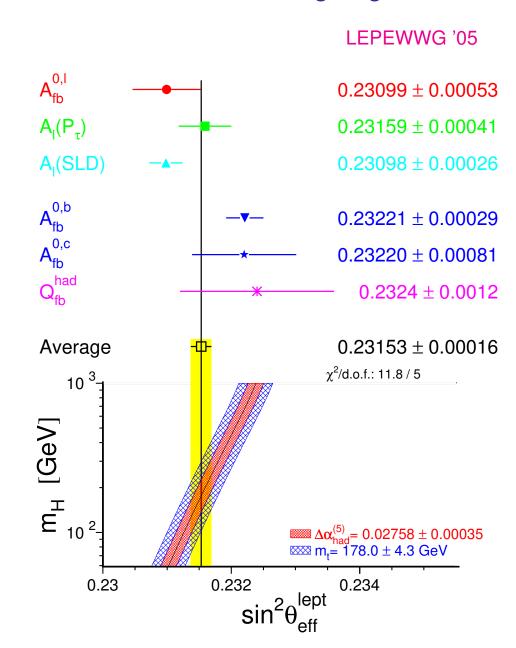
Important features:

- high sensitivity to $M_{
 m H}$
- combination of very different observables
- $\sim 3\sigma$ difference between $A_{\rm FB}^{0,b}({\sf LEP})$ and $A_{\rm LR}^{0,l}({\sf SLD})$

with the initial-state pol. asymmetry

$$A_{\rm LR}^{0,l} = \frac{\sigma_{\rm L}^0 - \sigma_{\rm R}^0}{\sigma_{\rm L}^0 + \sigma_{\rm R}^0} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$$

 \Rightarrow Precise LHC result on $\sin^2 \theta_{\rm eff}^{\rm lept}$ highly desirable!



Gauge-boson self-interactions

$$\mathcal{L}_{YM} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu},$$

with the field-strength tensors

$$W^a_{\mu\nu} = \partial_{\mu}W^a_{\nu} - \partial_{\nu}W^a_{\mu} + g_2\epsilon^{abc}W^b_{\mu}W^c_{\nu}, \qquad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

⇒ Feynman rules for gauge-boson self-interactions: (fields and momenta incoming)

$$W_{\mu}^{+}$$
 W_{ν}^{-}
 V_{ρ}

$$W_{\mu}^{+} \sim V_{\rho} \qquad ieC_{WWV} \Big[g_{\mu\nu}(k_{+} - k_{-})_{\rho} + g_{\nu\rho}(k_{-} - k_{V})_{\mu} + g_{\rho\mu}(k_{V} - k_{+})_{\nu} \Big]$$

$$W_{\nu}^{-} \sim W_{\rho} \qquad \text{with } C_{WW\gamma} = 1, \quad C_{WWZ} = -\frac{c_{W}}{s_{W}}$$

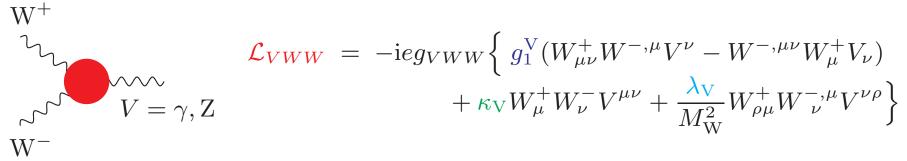
 \rightarrow testable in di-boson production ee/pp $\rightarrow VV$

$$W^+_\mu$$
 V_ρ
 W^-_ν V'_σ

$$\begin{aligned} W_{\mu}^{+} & \searrow V_{\rho} & \text{ i} e^{2} C_{WWVV'} \Big[2g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\sigma\nu} - g_{\mu\sigma}g_{\nu\rho} \Big] \\ W_{\nu}^{-} & \text{ with } C_{W^{2}\gamma^{2}} = -1, C_{W^{2}\gamma Z} = \frac{c_{W}}{s_{W}}, C_{W^{2}Z^{2}} = -\frac{c_{W}^{2}}{s_{W}^{2}}, C_{W^{4}} = \frac{1}{s_{W}^{2}} \end{aligned}$$

 \rightarrow testable in tri-boson production ee/pp $\rightarrow VVV$ and vector-boson scattering $pp(VV \rightarrow VV) \rightarrow VV + 2jets$

General parametrization (C- and P-conserving):



Meaning for static W^+ bosons:

$$Q_{
m W}=eg_1^{\gamma}={
m electric\ charge\ (=}\,e\ {
m by\ charge\ conservation})$$
 $\mu_{
m W}=rac{e}{2M_{
m W}}(g_1^{\gamma}+\kappa_{\gamma}+\lambda_{\gamma})={
m magnetic\ dipole\ moment}$ $q_{
m W}=-rac{e}{M_{
m W}^2}(\kappa_{\gamma}-\lambda_{\gamma})={
m electric\ quadrupole\ moment}$

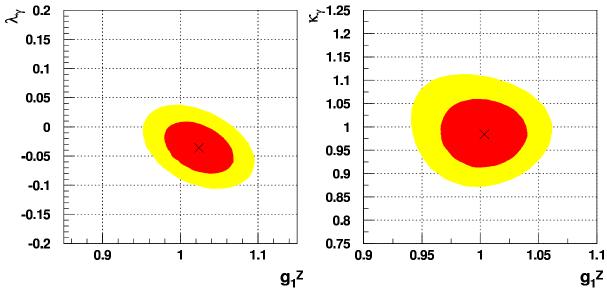
Standard Model values:

$$g_1^{\mathrm{V}} = \kappa_{\mathrm{V}} = 1, \quad \lambda_{\mathrm{V}} = 0$$

Restriction to $SU(2) \times U(1)$ -symmetric dim-6 operators:

$$\kappa_{\rm Z} = g_1^{\rm Z} - (\kappa_{\gamma} - 1) \tan^2 \theta_{\rm W}, \qquad \lambda_{\rm Z} = \lambda_{\gamma}$$

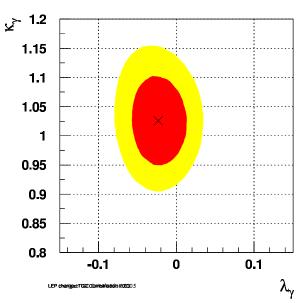
LEP2 constraints on charged TGCs from $e^+e^- \rightarrow WW \rightarrow 4 \, f$



$$\Delta g_1^Z = -0.009_{-0.021}^{+0.022}$$

$$\Delta \kappa_{\gamma} = -0.016^{+0.042}_{-0.047}$$

$$\lambda_{\gamma} = -0.016^{+0.021}_{-0.023}$$



LEP Preliminary

95% c.l.
68% c.l.
× 2d fit result

Standard Model values verified at the level of 2–4%

Similar results from Tevatron and LHC Run 1

LHC will tighten limits further!

Generic features of electroweak corrections

Relevance of EW corrections @ LHC

- 2015: LHC restarts @ 13-14 TeV

$$\hookrightarrow \delta_{\rm EW} \sim \text{some } 10\%$$

- integrated LHC luminosity will reach some 100 fb⁻¹
 - → many measurements at several-% level

 \hookrightarrow typical size of δ_{EW}

• planned high-precision measurements: XS ratios, $M_{\rm W}$, $\sin^2 \theta_{\rm eff}^{\rm lept}$

 $\hookrightarrow \delta_{\mathrm{EW}}$ is crucial ingredient

Spirit of this lecture

- describe salient features of EW corrections, in particular enhancement effects
- prepare the ground for the discussion of W/Z production processes coming in the follow-up lectures

Features of and issues in EW precision calculations

Relevance and size of EW corrections

generic size $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$ suggests NLO EW \sim NNLO QCD but systematic enhancements possible, e.g.

- by photon emission
 - \hookrightarrow kinematical effects, mass-singular log's $\propto \alpha \ln(m_\mu/Q)$ for bare muons, etc.
- at high energies
 - \hookrightarrow EW Sudakov log's $\propto (\alpha/s_{\mathrm{W}}^2) \ln^2(M_{\mathrm{W}}/Q)$ and subleading log's

EW corrections to PDFs at hadron colliders

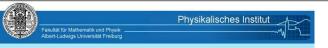
induced by factorization of collinear initial-state singularities, new: photon PDF

Instability of W and Z bosons

- realistic observables have to be defined via decay products (leptons, γ 's, jets)
- off-shell effects $\sim \mathcal{O}(\Gamma/M) \sim \mathcal{O}(\alpha)$ are part of the NLO EW corrections

Combining QCD and EW corrections in predictions

- how to merge results from different calculations
- reweighting procedures in MC's



Input parameter schemes

SM input parameters: (natural choice)

 $\alpha_{\rm s}$, α , $M_{\rm W}$, $M_{\rm Z}$, $M_{\rm H}$, m_f , $V_{\rm CKM}$

Issues:

- Setting of α : process-specific choice to
 - avoid sensitivity to non-preturbative light-quark masses
 - minimize universal EW corrections

Schemes: fix $M_{\rm W}$, $M_{\rm Z}$ and α

 $\diamond \alpha(0)$ -scheme: relevant for external photon

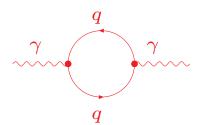
 $\diamond \alpha(M_{\rm Z})$ -scheme: relevant for internal photons at high energies (γ^*)

 $\Leftrightarrow G_{\mu}$ -scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{\mathrm{W}}^2(1 - M_{\mathrm{W}}^2/M_{\mathrm{Z}}^2)/\pi$, relevant for W, Z

- Warnings / pitfalls:
 - $^{\diamond}$ α must not be set diagram by diagram, but global factors like $\alpha(0)^m \alpha_{G_{\mu}}^n$ in gauge-invariant contributions mandatory!
 - \diamond weak mixing angle: $s_{\rm W} \neq$ free parameter if $M_{\rm W}$ and $M_{\rm Z}$ are fixed!
 - Yukawa couplings are uniquely fixed by fermion masses!

The universal radiative corrections $\Delta \alpha$ and $\Delta \rho$

Running electromagnetic coupling $\alpha(s)$:



becomes sensitive to unphysical quark masses m_q

for |s| in GeV range and below (non-perturbative regime)

 \hookrightarrow charge-renormalization constant δZ_e sensitive to m_a

Solution:

fit hadronic part of $\Delta \alpha(s) = -\operatorname{Re}\{\Sigma_{\mathrm{T,ren}}^{AA}(s)/s\}$ and thus of δZ_e

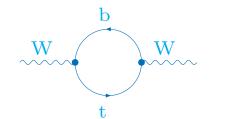
via dispersion relations to
$$R(s) = \frac{\sigma(\mathrm{e^+e^-} \to \mathrm{hadrons})}{\sigma(\mathrm{e^+e^-} \to \mu^+\mu^-)}$$
 Jegerlehner et al.

$$\Rightarrow$$
 Running elmg. coupling: $\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha_{\text{ferm} \neq \text{top}}(s)}$

Leading correction to the ρ -parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

Veltman '77



$$\Delta
ho_{
m top} \sim \frac{\Sigma_{
m T}^{ZZ}(0)}{M_{
m Z}^2} - \frac{\Sigma_{
m T}^{WW}(0)}{M_{
m W}^2} \sim \frac{3G_{\mu}m_{
m t}^2}{8\sqrt{2}\pi^2}$$

Fermi constant G_{μ} as input parameter – the quantity Δr

μ decay including higher-order corrections

 \hookrightarrow Relation between G_{μ} , $\alpha(0)$, $M_{\rm W}$, and $M_{\rm Z}$ including corrections:

$$\alpha_{G_{\mu}} \equiv \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathrm{W}}^2 \left(1 - \frac{M_{\mathrm{W}}^2}{M_{\mathrm{Z}}^2} \right) = \alpha(0) (1 + \Delta r)$$

Δr comprises quantum corrections to μ decay

(beyond electromagnetic corrections in Fermi model)

Sirlin '80, Marciano, Sirlin '80

$$\Delta r_{1-\text{loop}} = \Delta \alpha(M_{\text{Z}}^2) - \frac{c_{\text{W}}^2}{s_{\text{W}}^2} \Delta \rho_{\text{top}} + \Delta r_{\text{rem}}(M_{\text{H}})$$

$$\sim 6\% \qquad \sim 3\% \qquad \sim 1\%$$

$$\alpha \ln(m_f/M_{\text{Z}}) \qquad G_{\mu} m_{\text{t}}^2 \qquad \alpha \ln(M_{\text{H}}/M_{\text{Z}})$$

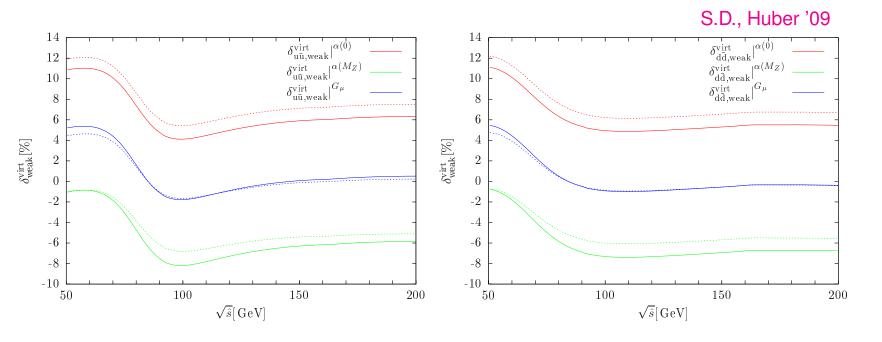
Input-parameter schemes including electroweak NLO corrections

Cross section: $\sigma_{\rm NLO} = \alpha^N A_{\rm LO} (1 + \delta_{\rm EW}), \quad \delta_{\rm EW} = \mathcal{O}(\alpha)$

- $\alpha(0)$ -scheme: $\sigma_{LO} = \alpha(0)^N A_{LO}$
- $\alpha(M_{\rm Z})$ -scheme: $\sigma_{\rm LO} = \alpha(M_{\rm Z})^N A_{\rm LO}, \quad \delta_{\rm EW}^{\alpha(M_{\rm Z})} = \delta_{\rm EW}^{\alpha(0)} + N \Delta \alpha(M_{\rm Z}) + \dots$
- G_{μ} -scheme: $\sigma_{\rm LO} = \alpha (G_{\mu})^N A_{\rm LO}, \quad \delta_{\rm EW}^{G_{\mu}} = \delta_{\rm EW}^{\alpha(0)} + N \Delta r + \dots$
- Mixed scheme: $N=n+n_{\gamma}, \quad n_{\gamma}=$ # external photons $\sigma_{\mathrm{LO}}=\alpha(G_{\mu})^{n}\alpha(0)^{n_{\gamma}}A_{\mathrm{LO}}, \quad \delta_{\mathrm{EW}}^{\mathrm{mix}}=\delta_{\mathrm{EW}}^{\alpha(0)}+n\Delta r+\dots$
 - \diamond absorbs all $\Delta \alpha$ terms in LO to all orders
 - \diamond absorbs $\Delta \rho$ terms in LO (all for Ws up to 2 loops, parts for Zs)
 - \diamond factor α in $\delta_{\rm EW}$ can still be adjusted appropriately (e.g. $\alpha \rightarrow \alpha(0)$ if γ radiation dominates, $\alpha \rightarrow \alpha_{G_{\mu}}$ if weak corrections dominate)
 - \diamond example: $q\bar{q}' \to W\gamma$, $n=n_{\gamma}=1$

Example: weak corrections to Z production





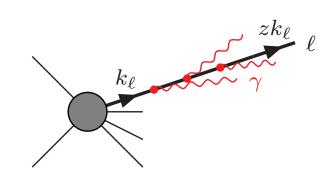
- off-sets between NLO EW corrections in different schemes
- dashed lines include leading 2-loop effects from $\Delta \alpha$ and $\Delta \rho$
 - \hookrightarrow highest stability against h.o. corrections in G_{μ} scheme here

Photon radiation off leptons

Collinear final-state radiation (FSR) off leptons

Leading logarithmic effect is universal:

$$\sigma_{\mathrm{LL,FSR}} = \int \underline{\mathrm{d}}\sigma^{\mathrm{LO}}(k_l) \int_0^1 \mathrm{d}z \quad \underline{\Gamma}_{\ell\ell}^{\mathrm{LL}}(z,Q^2) \quad \Theta_{\mathrm{cut}}(zk_l)$$
hard scattering leading-log structure function, $Q = \mathrm{typ.}$ scale



- $\Gamma^{\rm LL}_{\ell\ell}(z,Q^2)$ known to $\mathcal{O}(\alpha^5)$ + soft exponentiation, equivalent description by QED parton showers
- $\bullet \ \mathcal{O}(\alpha) \ \text{approximation:} \quad \Gamma^{\mathrm{LL},1}_{\ell\ell}(z,Q^2) = \frac{\alpha(0)}{2\pi} \bigg[\ln \bigg(\frac{Q^2}{m_\ell^2} \bigg) 1 \bigg] \left(\frac{1+z^2}{1-z} \right)_+$
- Alternative approach: QED parton shower
 - \hookrightarrow advantage: photons described with finite p_{T} and definite multiplicity

Impact on predictions:

- log-enhanced corrections for "bare" leptons (muons) → large radiative tails
- KLN theorem: mass-singular FSR effects cancel if $(\ell \gamma)$ system is inclusive (full integration over z)
- full FSR not universal, in general not even separable from other EW corrections

Radiative tail from final-state radiation

results if resonances reconstructed from decay products

Typical situations:
$$e^+e^- \to WW/ZZ \to 4f$$
, $pp \to Z \to f\bar{f} + X$

Final-state radiation:

resonance for

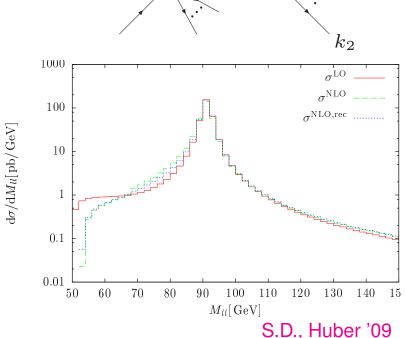
$$M^2 = (k_1 + k_2)^2 < (k_1 + k_2 + k_\gamma)^2 \sim M_Z^2$$

 \hookrightarrow radiative tail in distribution $\frac{d\sigma}{dM}$ of reconstructed invariant mass M for $M < M_Z$

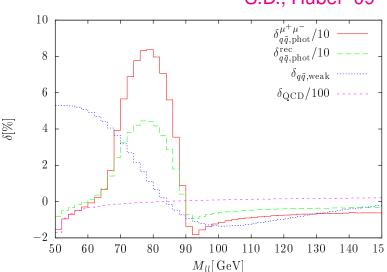
Example: Single-Z production

- ullet radiative tail with corrections up to $\sim 80\%$
- FSR effect drastically reduced by photon recombination ("rec"):

If
$$R_{l\gamma} < 0.1$$
 then $(l\gamma) \to \tilde{l}$ with $p_{\tilde{l}} = p_l + p_{\gamma}$.



 \mathbf{Z}

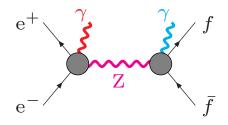


Comparison with radiative tail from initial-state radiation

appears if initial state is fixed

Typical situations:
$$e^+e^- \rightarrow Z \rightarrow f\bar{f}$$
,

$$\mu^+\mu^- \to Z, H, ? \to f\bar{f}$$



 \hookrightarrow scan over s-channel resonance in $\sigma_{\rm tot}(s)$ by changing CM energy \sqrt{s}

Initial-state radiation:

Z can become resonant for
$$s=(p_++p_-)^2 > (p_++p_--k_\gamma)^2 \sim M_Z^2$$

 \hookrightarrow radiative tail for $s>M_Z^2$ due to "radiative return"

Final-state radiation:

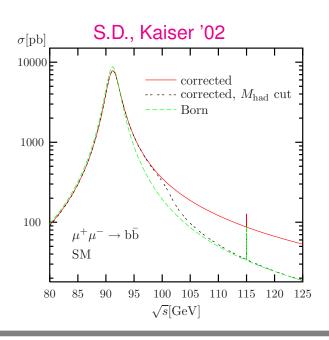
$$s=k_{\rm Z}^2\sim M_{\rm Z}^2$$
 for FSR

 \hookrightarrow only rescaling of resonance

Example:

cross section for $\mu^-\mu^+ \to b\bar{b}$ in lowest order and including photonic and QCD corrections, with and without invariant-mass cut

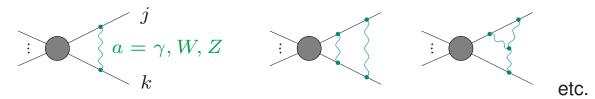
$$\sqrt{s} - M(b\bar{b}) < 10 \,\mathrm{GeV}$$



Electroweak corrections at high energies

Electroweak corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange



+ sub-leading logarithms from collinear singularities

Typical impact on $2 \to 2$ reactions at $\sqrt{s} \sim 1 \, \mathrm{TeV}$:

$$\begin{split} \delta_{\rm LL}^{\rm 1-loop} &\sim -\frac{\alpha}{\pi s_{\rm W}^2} \ln^2\!\left(\frac{s}{M_{\rm W}^2}\right) \; \simeq -26\%, \qquad \delta_{\rm NLL}^{\rm 1-loop} &\sim +\frac{3\alpha}{\pi s_{\rm W}^2} \ln\!\left(\frac{s}{M_{\rm W}^2}\right) \; \simeq 16\% \\ \delta_{\rm LL}^{\rm 2-loop} &\sim +\frac{\alpha^2}{2\pi^2 s_{\rm W}^4} \ln^4\!\left(\frac{s}{M_{\rm W}^2}\right) \! \simeq 3.5\%, \qquad \delta_{\rm NLL}^{\rm 2-loop} &\sim -\frac{3\alpha^2}{\pi^2 s_{\rm W}^4} \ln^3\!\left(\frac{s}{M_{\rm W}^2}\right) \! \simeq -4.2\% \end{split}$$

⇒ Corrections still relevant at 2-loop level

Note: differences to QED / QCD where Sudakov log's cancel

- massive gauge bosons W, Z can be reconstructed \hookrightarrow no need to add "real W, Z radiation"
- ullet non-Abelian charges of W, Z are "open" o Bloch-Nordsieck theorem not applicable

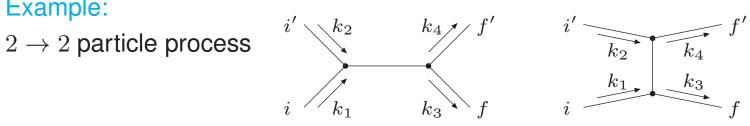
Extensive theoretical studies at fixed perturbative (1-/2-loop) order and suggested resummations via evolution equations Beccaria et al.; Beenakker, Werthenbach; Ciafaloni, Comelli; Denner, Pozzorini; Fadin et al.;

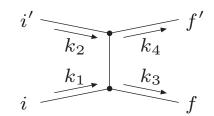
Ciafaloni, Comelli; Denner, Pozzorini; Fadin et al. Hori et al.; Melles; Kühn et al., Denner et al.; Manohar et al. '00–

High-energy limit – Sudakow versus Regge regime

Sudakov regime: all invariants $k_i \cdot k_j \gg M_W^2$!

Example:





Kinematic variables in centre-of-mass frame in high-energy limit ($k_i^2 \to 0$):

$$s=(k_1+k_2)^2\sim 4E^2,$$
 $E=$ beam energy, $t=(k_1-k_3)^2\sim -4E^2\sin^2(\theta/2),$ $\theta=$ scattering angle, $M_{34}=\sqrt{s}\sim 2E,$ $k_{\rm T}=k_{3,\rm T}\sim E\sin\theta$

High-energy limits in distributions:

- $\frac{\mathrm{d}\sigma}{\mathrm{d}k_{\mathrm{T}}}$: $k_{\mathrm{T}}\gg M_{\mathrm{W}} \Rightarrow s, |t|\gg M_{\mathrm{W}}^2 \Rightarrow \text{Sudakov domination}$ $\frac{\mathrm{d}\sigma}{\mathrm{d}M_{34}}$: $M_{34}\gg M_{\mathrm{W}} \Rightarrow \text{small } |t| \text{ possible } \Rightarrow \text{ in general no Sudakov domination}$ (i.e. typically smaller corrections)

Example: Drell-Yan production

Neutral current: pp $\to \ell^+\ell^-$ at $\sqrt{s}=14\,\mathrm{TeV}$ (based on S.D./Huber arXiv:0911.2329)

$M_{\ell\ell}/{ m GeV}$	50-∞	100-∞	200-∞	500-∞	$1000-\infty$	2000-∞
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\delta_{ m qar{q}, phot}^{ m rec}/\%$	-1.81	-4.71	-2.92	-3.36	-4.24	-5.66
$\delta_{ m qar{q},weak}/\%$	-0.71	-1.02	-0.14	-2.38	-5.87	-11.12
$\delta_{ m Sudakov}^{(1)}/\%$	0.27	0.54	-1.43	-7.93	-15.52	-25.50
$\delta_{ m Sudakov}^{(2)}/\%$	-0.00046	-0.0067	-0.035	0.23	1.14	3.38

no Sudakov domination!

Charged current: $pp \to \ell^+ \nu_\ell$ at $\sqrt{s} = 14 \, \mathrm{TeV}$ (based on Brensing et al. arXiv:0710.3309)

$M_{\mathrm{T}, \nu_{\ell}\ell}/\mathrm{GeV}$	50-∞	100−∞	200−∞	500-∞	1000-∞	2000-∞
$\sigma_0/{ m pb}$	4495.7(2)	27.589(2)	1.7906(1)	0.084697(4)	0.0065222(4)	0.00027322(1)
$\delta_{\mathrm{q}ar{\mathrm{q}}}^{\mu^+ u\mu}/\%$	-2.9(1)	-5.2(1)	-8.1(1)	-14.8(1)	-22.6(1)	-33.2(1)
$\delta_{ m qar{q}}^{ m rec}/\%$	-1.8(1)	-3.5(1)	-6.5(1)	-12.7(1)	-20.0(1)	-29.6(1)
$\delta_{ m Sudakov}^{(1)}/\%$	0.0005	0.5	-1.9	-9.5	-18.5	-29.7
$\delta_{ m Sudakov}^{(2)}/\%$	-0.0002	-0.023	-0.082	0.21	1.3	3.8

Sudakov domination!

Unstable particles in QFT

Problem of unstable particles:

description of resonances requires resummation of propagator corrections

Dyson series and propagator poles (scalar example)

$$G^{\phi\phi}(p) = \frac{\mathrm{i}}{p^2 - m^2} + \frac{\mathrm{i}}{p^2 - m^2} \mathrm{i}\Sigma(p^2) \frac{\mathrm{i}}{p^2 - m^2} + \dots = \frac{\mathrm{i}}{p^2 - m^2 + \Sigma(p^2)}$$

 $\Sigma(p^2)=$ renormalized self-energy, $\ m=$ ren. mass

stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2)=0$

unstable particle:
$$\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$$

 \hookrightarrow location μ^2 of propagator pole is complex, possible definition of mass M and width Γ : $\mu^2 = M^2 - \mathrm{i} M \Gamma$

Different proposals:

Naive fixed-width schemes:

$$\frac{1}{p^2-M^2}
ightarrow \frac{1}{p^2-M^2+\mathrm{i}M\Gamma}$$
 in all or at least in resonant propagators

- Pole scheme Stuart '91; Aeppli et al. '93, '94; etc. Isolate resonance pole and introduce width Γ only there.

Pole approximation: isolate and keep only leading (=resonant) terms

- Effective field theory approach Beneke et al. '04; Hoang, Reisser '04
 - → gauge invariant, involves pole expansions,
 but can be combined with threshold expansions
- Complex-mass scheme Denner, S.D., Roth, Wackeroth '99; Denner, S.D., Roth, Wieders '05

The complex-mass scheme at NLO

Basic idea: mass² = location of propagator pole in complex p^2 plane

Application to gauge-boson resonances:

• replace $M_{
m W}^2 o \mu_{
m W}^2 = M_{
m W}^2 - {
m i} M_{
m W} \Gamma_{
m W}$, $M_{
m Z}^2 o \mu_{
m Z}^2 = M_{
m Z}^2 - {
m i} M_{
m Z} \Gamma_{
m Z}$ and define (complex) weak mixing angle via $c_{
m W}^2 = 1 - s_{
m W}^2 = \frac{\mu_{
m W}^2}{\mu_{
m Z}^2}$

• virtues:

- ◇ gauge-invariant result (Slavnov–Taylor identities, gauge-parameter independence)
 → unitarity cancellations respected!
- perturbative calculations as usual (loops and counterterms)
- no double counting of contributions (bare Lagrangian unchanged!)

drawbacks:

- \diamond unitarity-violating spurious terms of $\mathcal{O}(\alpha^2) \to \text{but beyond NLO accuracy }!$ (from t-channel/off-shell propagators and complex mixing angle)
- complex gauge-boson masses also in loop integrals

Commonly used mass/width definitions:

• "on-shell mass/width" $M_{\rm OS}/\Gamma_{\rm OS}$: $M_{\rm OS}^2-m^2+{\rm Re}\{\Sigma(M_{\rm OS}^2)\}\stackrel{!}{=}0$

$$\hookrightarrow G^{\phi\phi}(p) \underbrace{\qquad \qquad \qquad \qquad \qquad \qquad 1}_{p^2 \to M_{\mathrm{OS}}^2} \underbrace{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad }_{(p^2 - M_{\mathrm{OS}}^2)(1 + \mathrm{Re}\{\Sigma'(M_{\mathrm{OS}}^2)\}) + \mathrm{i}\,\mathrm{Im}\{\Sigma(p^2)\}}$$

comparison with form of Breit–Wigner resonance $\frac{R_{\rm OS}}{p^2-m^2+{
m i}m\Gamma}$

yields:
$$M_{\rm OS}\Gamma_{\rm OS}\equiv {\rm Im}\{\Sigma(M_{\rm OS}^2)\}\ /\ (1+{\rm Re}\{\Sigma'(M_{\rm OS}^2)\}), \qquad \Sigma'(p^2)\equiv {\partial\Sigma(p^2)\over\partial p^2}$$

• "pole mass/width" M/Γ : $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$

complex pole position: $\mu^2 \equiv M^2 - \mathrm{i} M \Gamma$

$$\hookrightarrow G^{\phi\phi}(p) \ \ \widetilde{_{p^2 \to \mu^2}} \ \ \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} \ = \ \frac{R}{p^2 - M^2 + \mathrm{i} M \Gamma}$$

Note: $\mu = \text{gauge independent for any particle}$ (pole location is property of S-matrix)

 $M_{\rm OS} =$ gauge dependent at 2-loop order Sirlin '91;

Sirlin '91; Stuart '91; Gambino, Grassi '99; Grassi, Kniehl, Sirlin '01

Relation between "on-shell" and "pole" definitions:

Subtraction of defining equations yields:

$$M_{\rm OS}^2 + \text{Re}\{\Sigma(M_{\rm OS}^2)\} = M^2 - iM\Gamma + \Sigma(M^2 - iM\Gamma)$$

Equation can be uniquely solved via recursion in powers of coupling α :

ansatz:
$$M_{\mathrm{OS}}^2 = M^2 + c_1 \alpha^1 + c_2 \alpha^2 + \dots$$
 $M_{\mathrm{OS}} \Gamma_{\mathrm{OS}} = M \Gamma + d_2 \alpha^2 + d_3 \alpha^3 + \dots$, $c_i, d_i = \mathrm{real}$ counting in α : $M_{\mathrm{OS}}, M = \mathcal{O}(\alpha^0), \quad \Gamma_{\mathrm{OS}}, \Gamma, \Sigma(p^2) = \mathcal{O}(\alpha^1)$

Result:

$$M_{\text{OS}}^{2} = M^{2} + \text{Im}\{\Sigma(M^{2})\} \text{Im}\{\Sigma'(M^{2})\} + \mathcal{O}(\alpha^{3})$$

$$M_{\text{OS}}\Gamma_{\text{OS}} = M\Gamma + \text{Im}\{\Sigma(M^{2})\} \text{Im}\{\Sigma'(M^{2})\}^{2}$$

$$+ \frac{1}{2} \text{Im}\{\Sigma(M^{2})\}^{2} \text{Im}\{\Sigma''(M^{2})\} + \mathcal{O}(\alpha^{4})$$

i.e. $\{M_{OS}, \Gamma_{OS}\} = \{M, \Gamma\}$ + gauge-dependent 2-loop corrections

Important examples: W and Z bosons

In good approximation: $W \to f\bar{f}'$, $Z \to f\bar{f}$ with masses fermions f, f'

so that:
$$\operatorname{Im}\{\Sigma_{\mathrm{T}}^{\mathrm{V}}(p^2)\} = p^2 \times \frac{\Gamma_{\mathrm{V}}}{M_{\mathrm{V}}} \, \theta(p^2), \qquad \mathrm{V} = \mathrm{W}, \mathrm{Z}$$

$$\hookrightarrow M_{\text{OS}}^2 = M^2 + \Gamma^2 + \mathcal{O}(\alpha^3)$$
 $M_{\text{OS}}\Gamma_{\text{OS}} = M\Gamma + \frac{\Gamma^3}{M} + \mathcal{O}(\alpha^4)$

In terms of measured numbers:

W boson: $M_{\rm W} \approx 80 \, {\rm GeV}$, $\Gamma_{\rm W} \approx 2.1 \, {\rm GeV}$

 $\hookrightarrow M_{\rm W,OS} - M_{\rm W,pole} \approx 28 \, {\rm MeV}$

Z boson: $M_{\rm Z} \approx 91 \, {\rm GeV}$, $\Gamma_{\rm Z} \approx 2.5 \, {\rm GeV}$

 $\hookrightarrow M_{\rm Z,OS} - M_{\rm Z,pole} \approx 34 \, {\rm MeV}$

Exp. accuracy: $\Delta M_{\mathrm{W,exp}} = 29 \,\mathrm{MeV}, \quad \Delta M_{\mathrm{Z,exp}} = 2.1 \,\mathrm{MeV}$

→ Difference in definitions phenomenologically important!

Example of W and Z bosons continued:

Approximation of massless decay fermions:

$$\Gamma_{V,OS}(p^2) = \Gamma_{V,OS} \times \frac{p^2}{M_{V,OS}^2} \theta(p^2), \qquad V = W, Z$$

Fit of W/Z resonance shapes to experimental data:

• ansatz
$$\left| \frac{R'}{p^2-m'^2+\mathrm{i}\gamma'p^2/m'} \right|^2$$
 yields: $m'=M_{\mathrm{V,OS}}, \quad \gamma'=\Gamma_{\mathrm{V,OS}}$

• ansatz
$$\left| \frac{R'}{p^2-m'^2+\mathrm{i}\gamma'p^2/m'} \right|^2$$
 yields: $m'=M_{\mathrm{V,OS}}, \quad \gamma'=\Gamma_{\mathrm{V,OS}}$
• ansatz $\left| \frac{R}{p^2-m^2+\mathrm{i}\gamma m} \right|^2$ yields: $m=M_{\mathrm{V,pole}}, \quad \gamma=\Gamma_{\mathrm{V,pole}}$

the two forms are equivalent: Note:

$$R = \frac{R'}{1 + i\gamma'/m'}, \quad m^2 = \frac{m'^2}{1 + \gamma'^2/m'^2}, \quad m\gamma = \frac{m'\gamma'}{1 + \gamma'^2/m'^2}$$

Literature

For more details see "Dictionary for electroweak corrections" in

J. Butterworth, et al., "Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report," arXiv:1405.1067 [hep-ph], page 11,

and original references therein.