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INTRODUCTION AND MOTIVATION

Exact [3-functions and anomalous dimensions

1. In arenormalizable field theory, its quantum behaviour is depicted by:
> The n-point correlation functions.

> The dependence of the coupling with the energy scale.

2. Their dependence is encoded within the RG flow equations

dA

Ba = dlnuz )

which are usually determined perturbatively.
3. Can we obtain the all-loop (3-function? New fixed points towards the IR?

4. Can we also calculate the all-loop correlators of various operators?

We study these aspects for the non-Abelian bosonized Thirring model.
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NON-ABELIAN THIRRING MODEL

Consider the WZW action Witten (1983):

k — - k _ 3
SWZW,k(g):*EJdZO'TV (g 19, ¢8 la,g>+mJ.BTr (g 1dg> ,

invariant under the left-right current algebra symmetry: g — Q' (04 ) g Q(o_).

The holomorphic and anti-holomorphic currents obey the OPEs

dap  Jabe IS4 (0)
JL(2)I5(0) = 2 + = 4 regular, J9(2)J%(0) = regular
4 (2)J1(0) 2 Jrz gular, J4(z) q:( ) gular,
JG =—iTr(s* a+gg71), JC = —iTr(* gi1 0-g), Dy = Tr(tagtbgfl),

where: [[ay 1] = fabcles Tr(latb) = dap and fuca foca = —€G Sab -

The non-abelian bosonized Thirring model is defined through

A
S=Swzwx+k=2L szojiji
’ 27




NON-ABELIAN THIRRING MODEL

Symmetries of the non-abelian bosonized Thirring model:

A
S = Swzw, +k 2—” J d?oJe st .
T

1. Itis invariant under the generalized parity symmetry:
A AT g—g !, of 5 oF.

2. The perturbation is not exactly marginal

. >\2
i <0, Ag=Abu.

Kutasov (1989 =———— <
utasov ( ) Ba TATESE

3. The corresponding effective action is invariant under the inversion of the coupling:

Kutasov (1989) A — AL, k— —k, k> 1.

4. The left-right current algebra symmetry is broken for a generic matrix Agp.
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THE RESUMMED ACTION

By a gauging procedure we can construct the following action Sfetsos (2013)
k _ —1
Skalg) = Swaws + - szch (V'I=D") 0 A =Abw-

describes integrable interpolations from a WZW to (non-abelian T-duals) PCM models.
Sfetsos (2013), Itsios—Sfetsos—KS—Torrieli (2014)

Properties

> For A < 1 we get the non-Abelian Thirring model.
> Invariance under the generalized parity symmetry: g — g~ !, o — oF

> Weak-strong duality, S_g At (ghH = Sk, (g), with the dressed currents given by

i B -
S (8in = =75 I — AD) I Te(3 gg7')
i
1+A

I8 = (I—-AD") ' Te(g 0 _g)

where J9. (¢! )7,(77\71 = 7\2]‘1 (&)



LIMITING CASES
There are two interesting limits:

1. Zoom around A = 1:
2 a
K L Val
A:l—?Jr..., g:]Itht;( ey

we get the non-abelian T-dual

k>1,

1 -1 )
Sunoret = 3= | P00 (€14 1) [0 fuy i i

of the PCM with respect to Gy, or Gg

2

Spem = ~— JdZUTr (g713+gg715—g)
27
2. Zoom around A = —1:
1 . Val®
7\:—1+W+, g:]I+1k17+..., k>>1,

we have the pseudodual model

1 Sub 1
SpseUdo-dual = gJ' d’*c 0.4V (b;ﬂ + gfab) a_v?

Nappi 1980
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CONSTRAINTS ON 3 FUNCTION

The 3 function at one-loop in !/k expansion takes the form:

dA 1

dln p? - 72’((7‘) ’

B=
» From CFT perturbations we expect that:

1
FA) =~ 5 <G A+ 0N
» Due to the weak—strong duality we have the constraint:

AATHA=F(N).

Let us compute f(A)




GENERAL APPROACH

Consider a 1+1-dimensional non-linear o-model with action

2
=5 Jd 0Euv 04 X9_XY, Euv = Guv + Buv

The one-loop (-functions for G and By~ read:

Ecker—Honerkamp 71, Friedan 80, Braaten—Curtright—Zachos 85

dE.~
dlnpu?
where the last term corresponds to field redefinitions (diffeomorphisms).

:R;V+V;£u,

Generalities:

» The Ricci tensor and the covariant derivative includes torsion, i.e. H = dB
» The o-model is renormalizable within the zoo of metrics and 2-forms

» Not given that the RG flows will retain the form at hand of G, and B+



ISOTROPIC CASE

The RG flow at one-loop in 1/k expansion retains the form of the o-model

dA A2
= —__ , 0< A1, kdoesnotflow
dlInp? 2k(1+A)?

Itsios—Sfetsos—KS (2014) 3

Properties of the flow

1. In agreement with the all-loop isotropic Thirring model Kutasov 89

2. Invariance under the weak-strong duality, i.e. A —= A1, k+— —k for k> 1

2
3. It behaves according to CFT expectations around A < 1 = 3 ~ —% + 0N

4. The (-function can be solved explicitly:
_ G
A=A 2InA =~ (1—1
2% ( O) )
where UV at A — 07 and towards the IR at A — 17,

1

S = Swzw k +k% [T & Sialg) = Swzwp + ﬁ JIe (At =D") " U
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REGULARIZATION METHOD

Starting point is the non-Abelian Thrirring model

A 2
S:SWZW,k‘Fk%J'd O'J“Jr.]a,.

To compute the current correlators we expand around the WZW model.

Schematically we compute the O(A") correction of the correlation function
(F1(x1,X1)F2(x2, %) .o >/En7)\

-1 (—5) szzl P U (20) TN () e Fy (51, B Fa G ) )
n. s

Regularization scheme

The internal points cannot coincide with external ones:

’Dn:{(zlyzb"'»zﬂ) eC: ‘Zi_x_il > &€ >0}7 VZ#‘],

and some basic integrals

d*z d?z
Y=Y =mln ‘xlzlzy J T N7 /= - v :7[25(2)(X12).
JD] (z—x1)(Z2—2) p, (x1 —2)%(Z—%)?



RESULTS

Perturbative results, well defined behaviour at A = £1 and weak-strong duality:

1. B-function and anomalous dimension of the current operator

CG7\2 ) CG7\2
=——7" <0, =20
R TTTES\E LA BN ITRPNE

In agreement with the results derived from the effective action.
Itsios, Sfetsos, KS (2014), Appadu, Hollowood (2015), Georgiou, Sfetsos, KS (2015)

2. All-loop two and three-point functions — leading in 1/k expansion

) . 5
(Ja(xl)Jb(xz)>k,)\ = 2(;7?(”) T4 (F2)hen = — ) ab2
X, VR, 12|
. 1 A )\2
<Ja(xl)«]b(x2)JL (.X3)>k‘7\ = A+ fahc ,
k(1 —A)(1 + A)3 x12%13%23
—_r )\ -
(900 )P ()T (73))ap = JabeX12

k(L= A)(1 + A)? x3,%13%23
Georgiou, Sfetsos, KS (2016)

The expressions match (under a rescaling) with Konechny—Quella (2011) for supergroups.



OPES AND EQUAL-TIME COMMUTATORS
Using the above we find the OPE algebra

Je ) () = dap +C(7\)fabc‘lc(x2) +d(}\)fabcj (X2)X12 n

2+Y(“ —V(” X12 x2
Xlz Xlz 12

- hy TJ(x Je
F )T () = —y V) Dt +d(}\)fabz,-, (X2) +d(7\)fabc_-] (x2)
lxi2? x12 X2

+.o,
where x5 := x; — x and

1 A c(A) 1+ A2

= = =1+2x, =
V(1 —=22) 14+A d(A) XX 2A

Having the OPEs, we can compute the equal-time commutators:

d(\)

i k .
[5%(01), 8" (02)] ;—nsahé'(m)+f,,bcs"(a2)é(mz),

59(01), 3 (02)] = —;—i 558" (012) + fune 5(02) 8(012)
[$9(01),8%(02)] = 0,

Rajeev’s (1989)

withx = o +itand 8 = 5o /755 (V9 =ATY), 80 = 2\ /Es (TP —AU9) .
Deformation of the PB for the PCM, also realized by the resumed effective action.
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CONCLUSION & OUTLOOK

Our resummed action

k —1
Sia(g) :SWZWkJr*JdZUJ‘_’,. ()\_'HfDT) Jv
’ ’ 27 ab

enraptures the all-loop isotropic Thirring model at leading order in 1/k expansion
S = Swaw -k szoJ" Je
) o +J—

The agreement is based upon:

1. Symmetries of the actions

2. Invariance under the weak—strong duality, i.e. A — A~!,  k+— —k for
3. PB-functions and anomalous dimension y(/)
4

. Current algebra — Rajeev’s deformation of the PB of the isotropic PCM

Extensions:

> We can also include affine primary fields
Georgiou, Sfetsos, KS (2016)

» Subleading in !/k expansion, beyond the weak—strong duality:
Kutasov (1989) A— A"l k— —k—cg

» Cases beyond isotropy Ay 7# A dap

k> 1



FERMIONIC MODEL

Exactly solvable QFT describing self-interacting massless Dirac fields in 1+1 dimensions.

» An 1+1 dimensional action with fermions in the fundamental representation of SU(N)
Dashen-Frishman (1973)&(1975) 1 Lim = —22 g, g* — &Y ja jan = 0,1
ashen—Frishman (1973)&( ): im == Ju ST =Ty , w=0,1,
where J§, = Yy, ¥, witha = 1,...,N? — 1, are the SU(N) currents and J,, the U(1).
» For N = 1 we recover the Abelian case (prototype) Thirring (1958)
» It is invariant under SU(N) x U(1) (vector) and U(1) axiar

» The non-Abelian term breaks SU(N) A ias, i.€. 6“]3‘1 = gv fabe Jh“]ff

47

> The theory is scale-invariant only for gy = 0 and gy = ;75

Jabe 75 (0)

> There is a current algebra at level one J% (z)J%.(0) = % + .
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