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Motivations

Quantum gravity is still rather poorly understood although it expected to play
a fundamental role in structure of our present universe.

Gravity is intrinsically non-linear, with a dimensional coupling constant and
non-renormalisable

Recent on-shell S-matrix computations in pure and extended supergravity
showed that many simplifications take place leading to surprisingly simple re-
sults compared to the Feynman graph approach

In this talk we want to explain that the remarkable properties of on-shell
gravity amplitudes allow to perform concrete physically motivated
computations in pure gravity coupled to various kind of massive matter
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A new window on gravitation

The detection of GW150914 by LIGO has open a new window on the
gravitational physics of our universe
I For the first time detection and test of GR in the strong gravity coupling

regime
I For the first time dynamics of Black hole (not just static object curving

space-time)
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A new window on gravitation

[Yunes, Yagi, Pretorius] have listed theoretical implications of
GW150914 in particular

GW150914 constrains a number of theoretical
mechanisms that modify GW propagation
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Quantum gravity as an effective field theory

[Donoghue] has explained that one can evaluate some long-range infra-red
contributions in any quantum gravity theory and obtain reliable answers
independent of the UV completion.

Some physical properties of quantum gravity are universal being independent
of the UV completion

They are infra-red contributions involving only the structure of the tree ampli-
tudes and independent of the UV completion
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Physics of the effective field theory approach

Using the effective field theory approach to gravity one can compute
I the classical (post-Newtonian) and quantum contributions to the

gravitational potential between masses
I Quantum corrections to the bending angle of massless particle by a

massive classical object
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Classical physics from loops

We will be considering the pure gravitational interaction between massive and
massless matter of various spin

LEH ∼

∫
d4x

(
−

2
κ2 R+ κhµνTµνmatter

)
,

We will be considering perturbative computations κ2 = 32πGN

M =
1
 h
Mtree +  h0M1−loop + · · · .

Pierre Vanhove (IPhT) Bending of Light in Quantum Gravity 14/09/2016 6 / 32



Classical physics from loops

The tree-level contribution is the 1-graviton exchange giving the classical
Newtonian potential in the non-relativistic limit

Mtree ∝ GN
(m1m2)

2

~q2

The potential is obtained by

V(r) =
∫

d3~q
(2π)3

1
4m1m2

M(~q) ei~q·~r
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

Putting back the factors of  h and c the Klein-Gordon equation reads

(�−
m2c2

 h2 )φ = 0

Notice that the  h dependence on the mass term
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

The triangle contribution with a massive leg p2
1 = p2

2 = m2 reads∫
d4`

(`+ p1)2(`2 − m2c2

 h2 )(`− p2)2

∣∣∣∣∣
finite part

∼
1

m2

(
log(s) +

π2mc
 h
√

s

)
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Classical physics from loops

The 1/ h term at one-loop contributes to the same order as the classical tree
term [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Donoghue, Holstein; Bjerrum-Bohr, Donoghue, Vanhove]

M =
1
 h

(
GN(m1m2)

2

~q2 +
G2

N(m1m2)
2(m1 + m2)

|~q|
+ · · ·

)
+ h0G2

N O(log(~q2))+· · ·

For the scattering between a massive matter of mass m and massless matter of
energy E one gets

M ∼
1
 h

(
GN

(mE)2

~q2 + G2
N

m3E2

|~q|

)
+  hG2

NO
(
log(~q2), log2(~q2)

)
.

The mechanisms generalizes to higher loop-order amplitudes to leads to the
higher order post-Newtonian corrections
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections

I If λ =  h/(m1 + m2) is the Compton wavelength

C
GNm1m2(m1 + m2)

(r ± λ)2 ' C
GNm1m2(m1 + m2)

r2 ± C
GNm1m2

 h︷          ︸︸          ︷
(m1 + m2)λ

r3

I Q in the potential V(r) is ambiguous but V(r) is not observable
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) + Q ′G2

N(m1m2)
2)

The coefficients of 1/
√
−q2 and log(−q2) in the amplitude are

unambiguously defined and depend on the long range physics
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) + Q ′G2

N(m1m2)
2)

I Q ′ is the short distance UV divergences of quantum gravity: need to add
the R2 term [’t Hooft-Veltman]

S =

∫
d4x|− g|

1
2

[
2

32πGN
R+ c1R

2 + c2RµνRµν + · · ·
]
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) +

)

The coefficients C and Q are independent of the UV completion and any quan-
tum gravity theory should give these computations
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Perturbative technics

Classical Newton’s potential is obtained in the non-relativistic limit

V(|~q|) =
GNm1m2

~q2 V(r) = −
GNm1m2

r

m1 m2

q2

hµν

is derived by a tree-level graph exchanging a graviton
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Loop amplitude

Since we are only interested in the long range graviton exchange, it is enough
to just evaluate the gravitons cut

hµν

hµν
m1

m2

we need to know the gravitational Compton amplitudes on a particle of spin s
with mass m

Xs,m + graviton→ Xs,m + graviton
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Gravitational compton scattering

Gravitational Compton scatting off a massive particle of spin s = 0, 1
2 , 1

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

using Feynman rules and DeWitt or Sannan’s 3- and 4-point vertices this is a
big mess but this will be simplified using the momentum kernel formalism to
gravity amplitude
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The Momentum Kernel formalism Gravity amplitude

The KLT relation allow to express the field theory multi-particle tree-level
amplitudes as bilinear of color ordered Yang-Mills amplitudes

Mtree
n = (−1)n−3

∑
σ,γ∈Sn−3

S[γ(2, . . . , n − 2)|σ(2, . . . , n − 2)]k1

×An(1,σ(2, . . . , n − 2), n − 1, n)Ãn(n − 1, n,γ(2, . . . , n − 2), 1)

The color ordered Yang-Mills amplitudes satisfy the annihilation relation
∀β ∈ Sn−2

∑
σ∈Sn−2

S(σ(2, . . . , n − 1)|β(2, . . . , n − 1))|k1A(1,σ(2, . . . , n − 1), n) = 0

[Bern, Carrasco, Johansson] [Kawai,Lewellen, Tye; Tye, Zhang;Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard,

Søndergaard, Vanhove; Stieberger]
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The Momentum kernel in field theory

The α ′ → 0 limit of the monodromy relations between string theory
amplitudes lead to an object named momentum kernel S

S[i1, . . . , ik|j1, . . . , jk]p :=

k∏
t=1

(
p · kit +

k∑
q>t

θ(t, q) kit · kiq

)

θ(t, q) = 1 if (it − iq)(jt − jq) < 0 and 0 otherwise

[Bern, Carrasco, Johansson; Bjerrum-Bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]

[Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]

Pierre Vanhove (IPhT) Bending of Light in Quantum Gravity 14/09/2016 15 / 32



Tree amplitudes with massive external legs I

We are interested into pure gravity amplitudes of gravitons scattering off
massive particles, the relation between gravity and YM amplitude stays the
same [Bjerrum-Bohr, Donoghue, Vanhove]

We remark

I The amplitude relation is valid in any dimensions
I The momentum kernel is a function of the scalar products ki · kj

I Massive particle in 4 dimensions are massless particle in higher
dimensions

This implies that the expression for the gravity amplitudes as bilinear of YM
amplitudes will apply as well with massive matter external states
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Tree amplitudes with massive external legs II
Another argument goes back to the way the relation is derived from the
properties of the string theory amplitudes

Avector(σ(1, . . . , n)) =
∫

xσ(1)<···<xσ(n)

dn−3x f (xi − xj)
∏

16i<j6n

(xi − xj)
2α ′ki·kj

I Massive state vop are of the form V =: (∂X)n+1eik·X : with α ′k2 = n

I The OPE between the plane-wave still gives (xi − xj)
2α ′ki·kj

I The function f (xi − xj) develops new poles 1/(xi − xj)
m with m integer to

accommodate for the masses α ′(k2
i + k2

j ) = m

But the momentum kernel and the amplitudes relations arises from the phases
of (xi − xj)

2α ′ki·kj they are still valid in the same form for massive external
states
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two Yang-Mills
amplitudes

M(Xsg→ Xsg) = GN × (p1 · k1)As(1234)Ã0(1324)

As(1234) is the color ordered amplitudes scattering a gluon off a massive spin
s state Xsg→ Xsg
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two QED Compton
amplitudes using the monodromy relations

(k1 · k2)As(1234) = (p1 · k2)As(1324)

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

The gravity Compton scattering is expressed as the square of QED (abelian)
Compton amplitudes

++=

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravity Low-energy theorems from QED

A first physical consequence of the relation between the gravitational
Compton amplitudes and the QED amplitudes are low-energy theorem for
gravity
These low-energy theorem are important for determining the long range -
small momentum transfer - contributions and for making the connection with
classical GR

M(Xsg→ Xsg) = GN
p1 · k1 p1 · k2

k1 · k2
As(1324)Ã0(1324)

The QED Compton amplitude is exact at fixed angle up to order p2 so this
immediately leads to the fact that the Compton gravity amplitude is exact up
to order p4

The relation provides a much simpler expression for the soft graviton
behaviour than the derivation by [Gross, Jackiw; Jackiw]
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Compton scattering

θ

The Compton scattering has the universal low-energy limit

dσComp
lab,S

dΩ

∣∣∣∣∣
NR

=
α2

2m2

[
(cos4 θ

2
+ sin4 θ

2
)(1 + O(

ωi

m
))

]
This is a consequence of the well-known low-energy theorems in QED
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Compton scattering

θ

It’s small angle limit is dominated by the contact interaction

(a) (b) (c)

lim
θ→0

dσComp
lab,S

dΩ
=

e2

8πm2 ,
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Gravitational Compton scattering

θ

The low-energy limit of the gravitational Compton scattering of gravitons on
a massive target

dσg−Comp
lab,S

dΩ
= G2m2

[
ctn4θ

2
cos4 θ

2
+ sin4 θ

2
+ O(

ωi

m
)

]
This is a consequence of the fact that the gravitational Compton scattering is
the product of two Compton scattering amplitudes and the low-energy
theorems in QED
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Gravitational Compton scattering

θ

At small-angle, we have Rutherford behavior of a 1
r long-range potential.

(a) (b)

(c) (d)

lim
θ→0

dσg−Comp
lab,S

dΩ
=

16G2m2

θ4 .

The interaction is dominated by the graviton pole
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Graviton photoproduction scattering

θ

The KLT relation expresses the amplitude as

M(Xsg→ Xsγ) =
κ

2e
pf · Ff · pi

ki · kf
×As(1234)

the product of the Compton scattering amplitudes on target of spin S times a
form factor
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Graviton photoproduction scattering

θ

The low-energy limit of the graviton photoproduction cross-section

dσphoto
lab,S

dΩ
−→
ω→0

Gα cos2 θ

2
(ctn2θ

2
cos2 θ

2
+ sin2 θ

2
).

This is again independent of the spin of the target as a consequence of the
QED low-energy theorems
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Graviton photoproduction scattering

θ

The small angle limit has the behavior of an effective 1/r2 potential
(a) (b)

(c) (d)

lim
θ→0

dσphoto
lab,S

dΩ
=

4Gα
θ2 ,

This is dominated by the photon pole
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

The cut contributions

M1−loop|singlet cut =

∫
d4−2ε`

`21`
2
2
∏4

i=1 `1 · pi

M1−loop|non−singlet cut =

∫
d4−2ε`

<e
(

tr−(/̀1/p1
/̀2/p2)

)4

`21`
2
2
∏4

i=1 `1 · pi
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

I In the non-relativistic limit the amplitude decomposes

M1−loop ' G2
N (m1m2)

4(I4(s, t) + I4(s, u))+G2
N(m1m2)

3s(I4(s, t) − I4(s, u))

+ G2
N(m1m2)

2 (I3(s, m1) + I3(s, m2)) + G2
N(m1m2)

2I2(s)
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

The result is given by

M1−loop ' G2
N(m1m2)

2

 6π︸︷︷︸
C

m1 + m2√
−q2

−
41
5︸ ︷︷ ︸

Q

log(−q2)


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Universality of the result I

In the case of scattering of particles of different spin S1 and S2 the
non-relativistic potential reads

M1−loop(q2) ' G2
N(m1m2)

2

(
C
(m1 + m2)√

−q2
+ Q h log(−q2)

)

C and Q have a spin-independent and a spin-orbit contribution

C, Q = C, QS−I 〈S1|S1〉 〈S2|S2〉+ C, QS−O
1,2 〈S1|S1〉~S2 ·

~p3 × p4

m2
+ (1↔ 2)

This expression is generic for all type of matter

the numerical coefficients are the same for all matter type
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Universality of the result II

The universality of the coefficients with respect to the spin of the external
states is a consequence of

I The reduction to the product of QED amplitudes
I the low-energy theorems of [Low, Gell-Mann, Goldberger] and [Weinberg]

In the non-relativistic limit the QED Compton amplitudes reads

A(Xsγ→ Xsγ) ' 〈S|S〉A(X0γ→ X0γ) +
~S · Â

m
The KLT formula gives that the tree gravity amplitude reads

M(Xsg→ Xsg) ' 〈S|S〉M(X0g→ X0g) +
~S · M̂

m

The low-energy theorem imply that Â and M̂ are independent of the spin s
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Universality of the result III

I In the cut this leads to universality of the result [Bjerrum-Bohr, Donoghue, Vanhove]

I This is totally what one expects from the equivalence principle and the
multipole expansion of the gravitational interaction between massive
states

I The long range quantum correction involves low-energy gravity degrees
of freedom and is independent of any microscopic high-energy model
dependent contributions
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The one-loop amplitude for massless particles

ℓ1

ℓ2

p1

p2
p3

p4

We consider the gravitational one-loop amplitude between a massless particle
of spin S and a massive scalar

κ−4 iM1−loop
S = boS(s, t) I4(s, t) + boS(s, u) I4(s, u)

+ tS
12(s) I3(s, 0) + tS

34(s) I3(s, M2)
+ buS(s, 0) I2(s, 0) .

The coefficients satisfy interesting BCJ relations

boS(s, t)
t − M2 +

boS(s, u)
u − M2 = tS

12(s)
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The amplitude

The low-energy approximation

iMtree+1−loop
S =

N(S)

 h

[
κ2 (2Mω)2

16s

+  h
κ4

16

(
4(Mω)4(I4(s, t) + I4(s, u)) + 3(Mω)2sI3(s)

−
15
4
(M2ω)2I3(s, M) + buS(Mω)2I2(s)

)]
For photon scattering only the amplitudes with helicity (++) and (−−) are
non-vanishing.

Therefore there is no birefringence effects to contrary to case with electrons
loops contributing to the interaction [Drummond, Hathrell;Berends,

Gastmans]
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The amplitude

iMtree+1−loop
S ' N(S)

 h

(Mω)2

4

×
[κ2

s
+ κ4 15

512
M√
−s

+  hκ4 15
512π2 log

(
−s
M2

)
−  hκ4 buS

(8π)2 log
(
−s
µ2

)
+  hκ4 3

128π2 log2
(
−s
µ2

)
+ κ4 Mω

8π
i
s

log
(
−s
M2

)]
The last line contains the infrared divergences

p1

p2

` ∝
∫

0

d4−2ε`

`2 2` · p1 2` · p2
∼

t−1−ε

ε2 .
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The bending angle via Eikonal approximation I

iM(b) ' 2(s − M2)
[
ei(χ1+χ2) − 1

]
χ1(b) is the Fourier transform of the one graviton (tree-level) exchange

χ1(b) =
1

2M2E

∫
d2q
(2π)2 e−iq·b M

(1)
S (q) ' 4GNME

[
1

d − 2
− log(b/2) − γE

]

χ2(b) is the Fourier transform of the two gravitons (one-loop) exchange

χ2(b) =
1

2M2E

∫
d2q
(2π)2 e−iq·b M

(2)
X (q)

' −G2
NM2E

15π
4b

−
G2

NM2E
2πb2

(
8buS + 9 − 48 log

b
2b0

)
.

Pierre Vanhove (IPhT) Bending of Light in Quantum Gravity 14/09/2016 30 / 32



The bending angle

The bending angle θS ' − 1
E
∂
∂b (χ1(b) + χ2(b)) is

θS '
4GM

b
+

15
4

G2M2π

b2 +
8buS + 9 − 48 log b

2b0

π

G2 hM
b3 .

I The classical contribution including the 1rst Post-Newtonian correction
is correctly reproduced

I The quantum corrections are new: not only from a quantum corrected
metric
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The bending angle

The bending angle θS ' − 1
E
∂
∂b (χ1(b) + χ2(b)) is

θS '
4GM

b
+

15
4

G2M2π

b2 +
8buS + 9 − 48 log b

2b0

π

G2 hM
b3 .

The difference between the bending angle for a massless photon and massless
scalar

θγ − θϕ =
8(buγ − buϕ)

π

G2 hM
b3 .
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Outlook

Recent progresses from string theory technics, on-shell unitarity, double-copy
formalism simplifies a lot perturbative gravity amplitudes computations

I The amplitudes relations discovered in the context of massless
supergravity theories extend to the pure gravity case with massive matter

I The use of quantum gravity as an effective field theory allows to
compute universal contributions from the long-range corrections

I We can reproduce the classical GR post-Newtonian corrections to the
potential and understand some generic properties using low-energy
theorems: hope to be able to simplify the computation of PPN
corrections.
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