

Measuring the Unitarity Triangle with LHCb

University of Oxford

On behalf of the LHCb Collaboration

Corfu Summer Institute

16th Hellenic School and Workshops on Elementary Particle Physics and Gravity Corfu, Greece 2016

LHCD

Outline

- General introduction
- The LHCb detector and running conditions
- Measurement of the Unitarity Triangle parameters
 - The angle $\boldsymbol{\beta}$
 - The triangle sides
 - The angle $\boldsymbol{\alpha}$
 - The focus of this talk : measurement of the angle γ
- Summary and outlook

Analyses presented here come largely from the full 2011 and 2012 datasets (7 and 8 TeV)

The puzzle of the matter abundance

- Matter and antimatter were produced in equal abundance after the Big Bang
- However matter is now manifest in our Universe
- After the first few microseconds, there must have been (10¹⁰-1) antiquarks for every 10¹⁰ quarks, the Universe is left with the remaining 1.

CP Violation and New Physics

- First Observation of CPV was in the Kaon system in 1964
- Nobel prize awarded in 1980
- First observation in B decays in 2001

- To date CP-violation only observed in the quark sector, but at levels far below that required to explain the asymmetry in the Universe
- There must be a mechanism(s) beyond the Standard Model by which differences between matter and anti-matter are generated.

Corfu Summer Institute 3 September 2016 N. Harnew

The CKM Matrix

- In the SM, quarks change flavour by the emission or absorption of a W[±] boson
 - Charge -1/3 quarks (d, s, b) are "mixed"
 - The mixing is described by the CKM matrix

$$\begin{pmatrix} u \\ c \\ t \end{pmatrix} \leftarrow W^{\pm} \rightarrow \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Corfu Summer Institute

3 September 2016

N. Harnew

W±

The CKM matrix

- The CKM matrix is unitary, and reduces to three rotation angles and one phase.
- The Wolfenstein parameterisation is commonly used to expand in orders of λ , the sine of the Cabibbo angle: $\lambda \sim 0.22$
- The phase gives rise to CP violation in the SM

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (1 - \rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Measured magnitudes:

$$V_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00014 & 0.22536 \pm 0.00061 & 0.00355 \pm 0.00015 \\ 0.22522 \pm 0.00061 & 0.97343 \pm 0.00015 & 0.0414 \pm 0.0012 \\ 0.00886^{+0.00033}_{-0.00032} & 0.0405^{+0.0011}_{-0.0012} & 0.99914 \pm 0.00005 \end{pmatrix}$$

PDG group: pdg.lbl.gov/2015/reviews/rpp2015-rev-ckm-matrix.pdf

Corfu Summer Institute

3 September 2016

The Unitarity Triangle

- 6 unitarity conditions of the CKM matrix
- Gives 6 triangles in the complex plane
- 2 of these triangles do not have a side much shorter than the other two:

The Unitarity Triangle

$$(V_{ub}^{*}V_{ud} + V_{cb}^{*}V_{cd} + V_{tb}^{*}V_{td}) = 0$$

- Unitarity condition \rightarrow triangle in the complex plane
- Divide through by $V^*_{cb}V_{cd}$
- Results in base of unit length

Unitarity triangle measurements

 Amazing progress in the last 20 years; the SM remains intact, but still a whole lot still to learn

LHCb data taking

- Nominal luminosity = 2 × 10³² cm⁻² s⁻¹ (50 times less than ATLAS/CMS) : however, LHCb has learned to run at >2 times this
 - 37 pb⁻¹ @ 7 TeV collected in 2010
 - I fb⁻¹ @ 7 TeV in 2011
 - 2 fb⁻¹ @ 8 TeV in 2012
 - 324 pb⁻¹ @ 13 TeV in 2015

LHCb Integrated Luminosity in pp collisions 2010-2016

I fb⁻¹ @ 13 TeV in 2016 !!

Corfu Summer Institute

3 September 2016

Corfu Summer Institute

3 September 2016

Measurement of angle β

Interference between B⁰ decay to $J/\psi K_{S}^{0}$ directly and via B⁰ $\overline{B^{0}}$ oscillation gives rise to a CP violating phase

$$\phi = \phi_{Mixing} - 2 \phi_{Decay} = 2\beta$$

Corfu Summer Institute

3 September 2016

LHCb measurement of $sin(2\beta)$

Phys. Rev. Lett 115,031601 (2015) $sin(2\beta)$ from $B^0 \rightarrow J/\psi K^0_s$ $\mathcal{A}_{J/\psi K^0_{\mathrm{S}}}(t) \equiv \frac{\Gamma(\overline{B}{}^0(t) \to J/\psi K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to J/\psi K^0_{\mathrm{S}})}{\Gamma(\overline{B}{}^0(t) \to J/\psi K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to J/\psi K^0_{\mathrm{S}})}$ $= S_{J/\psi K_{s}^{0}} \sin(\Delta m_{d} t) - C_{J/\psi K_{s}^{0}} \cos(\Delta m_{d} t).$ where $S_{I/\psi KS} = sin(2\beta)$ assuming $C_{I/\psi KS} (\equiv penguin contribution) = 0$ $S_{J/\psi K_s} = 0.731 \pm 0.035 \text{ (stat)} \pm 0.020 \text{ (syst)}$ 0.3 LHCb 0.2 $C_{l/\psi K_s} = 0.0308 \pm 0.032 \text{ (stat)} \pm 0.005 \text{ (syst)}$ -0.2World average from (HFAG) all modes : $sin(2\beta) = 0.691 \pm 0.0170$ 51015 $t \,(\mathrm{ps})$ +0.030World average from $B^0 \rightarrow J/\psi K^0_S(EPS \ 2015) : sin(2\beta) = 0.748$ -0.032

3 September 2016

The sides of the triangle

Corfu Summer Institute

3 September 2016

 Length of side from ratio of B_d and B_s : mixing frequencies extracted with input from lattice QCD (systematics cancel)

Corfu Summer Institute

3 September 2016

V_{ub} measurement for side opposite to β

- Closure test of UT mainly limited by |V_{ub}|
- Side opposite to β proportional to $|V_{ub}| / |V_{cb}|$
- V_{ud} and V_{cd} very well known. $|V_{cb}|$ known to better than 3%
- The decay rate $B \rightarrow X_u lv$ is directly proportional to $|V_{ub}|^2$ and which can be calculated using HQET

LHCb measurement of |V_{ub}|

- Current measurements of |V_{ub}| have an internal inconsistency between
 - + Exclusive measurement: $B^0 {\rightarrow} \pi^- \, \mu^+ \, \nu$
 - Inclusive measurement : $B^0/B^+ \rightarrow X_u \ \mu^+ \ \nu$
- LHCb recently in the game

19

- |V_{ub}|/ |V_{cb}| difficult at hadron colliders due to presence of neutrino
- LHCb measures $\Lambda_b \rightarrow p \ \mu^- \nu$
- Measurement relies on recent $\Lambda_b \rightarrow p$ form factors from the lattice)

(Nature Physics 10 (2015) 1038)

 $|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06 (|V_{cb}|) \times 10^{-3}$

Tension between inclusive and exclusive $|V_{ub}|$ persists : limits the precision on UT side

Corfu Summer Institute

3 September 2016

20

Corfu Summer Institute

3 September 2016

Measurement of α

- Constraints on α from B $\rightarrow \pi \pi$, $\rho \pi$ and $\rho \rho$ (Babar and Belle)
- $\alpha = (87.6^{+3.5}_{-3.3})^{\circ}$ world average measurement
- Compared to the prediction from the global CKM fit (not including the α -related measurements) $\alpha = (90.6 + 3.9 - 1.1)^{\circ}$ http://ckmfitter.in2p3.fr $\alpha \equiv \arg \left[-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}} \right]$
- As yet there has been no LHCb 'standalone' measurement of α
- LHCb can provide useful input to B-factories measurements to constrain alpha.

Corfu Summer Institute

3 September 2016

γ – why is this a key goal ?

- Loop processes are very sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Large uncertainty on γ, the only angle accessible at tree level : forms a SM benchmark*
- γ measurement theoretically

JHEP 01 (2014) 051, PRD 92(3):033002 (2015)

* assuming no New Physics in tree decays

3 September 2016

γ : indirect & direct determinations

Combination of all direct measurements (summer

2015)

$$=(73.2^{+6.3}_{-7.0})^{\circ}$$

http://ckmfitter.in2p3.fr

Reaching degree level precision from direct measurements is crucial Approach from CKM fit excluding all direct measurements of γ

$$\gamma = (66.9^{+0.94}_{-3.44})^{\circ}$$

EPJC (2016) 76 197

Uncertainties from LQCD, expect to reduce over the next decade

Corfu Summer Institute

3 September 2016

Several methods to measure γ

GGSZ Giri, Gronau, Soffer & Zupan, PRD 68 (2003) 054018

• $B_s^0 \rightarrow D_s K$ time dependent analysis

Dunietz & Sachs Phys. Rev. D37(1988) 3186, R.Aleksan, I. Dunietz & B. Kayser, Z. Phys. C54 (1992) 653

Corfu Summer Institute

3 September 2016

The time-integrated mode: $B^- \rightarrow D^0 K^-$

- Interference possible if $\overline{D^0}$ and D^0 decay to same final state
- Branching fraction for favoured B decay ~10⁻⁴

> Measurements require high statistics

Corfu Summer Institute

3 September 2016

Weak phase changes sign for equiv B⁺ diagram, thickness of arrows indicate relative strengths

 $\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{CP+} = \frac{1}{R_{CP+}} 2r_B(2F_+ - 1)\sin(\delta_B)\sin(\gamma)$ $\frac{N(B \rightarrow [KK]_D K) \times \Gamma(D \rightarrow K\pi)}{N(B \rightarrow [K\pi]_D K) \times \Gamma(D \rightarrow KK)} = R_{CP+} = 1 + r_B^2 + 2r_B(2F_+ - 1)\cos(\delta_B)\cos(\gamma)$

For CP+ eigenstates e.g KK, $\pi \pi$, $F_+ = I$; For non CP eigenstates, F_+ measured at CLEOCorfu Summer Institute3 September 2016N. Harnew28

B \rightarrow **D**($\pi \pi$)**h** (where h = K, π)

Corfu Summer Institute

3 September 2016

method _i(δ_B-γ) [π-K+]_⊂K $e^{i(\delta_D)}$

Weak phase changes sign for equivalent B⁺ diagram

- Decay into flavour-specific final states
- Larger interference effects than for GLW as both amplitudes of similar sizes.
- r_B, δ_B hadronic parameters again to be determined alongside γ ($r_B \sim 0.1$)
- Additional two parameters r_D, δ_D . External inputs from charm mixing $(r_D \sim 0.06)$

$$\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{ADS} = \frac{1}{R_{ADS}} 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\gamma)$$
$$\frac{N(B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}]_{D}K^{\pm})}{N(B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}]_{D}K^{\pm})} = R_{ADS} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$

Again, a counting experiment : observing the rate of B⁻ vs. B⁺ decaysCorfu Summer Institute3 September 2016N. Harnew30

$B \rightarrow D(K \pi)h$ (where h = K, π) ADS: Observation of CP violation in $B \rightarrow DK$, BF ~10⁻⁷ Events / ($10 \text{ MeV}/c^2$) 100LHCb LHCb ~ 550 B→DK 8σ $B^{-} \rightarrow [\pi^{-}K^{+}]_{D}K^{-}$ $B^+ \rightarrow [\pi^+ K^-]_{D} K^+$ 50 ._+++ LHCb LHCb 400 $B^{-} \rightarrow [\pi^{-}K^{+}]_{D}\pi^{-}$ $B^+ \rightarrow [\pi^+ K^-]_D \pi^+$ 200 5100 5500 5100 5200 5300 5400 5500 5200 5300 5400 $m(Dh^{\pm})$ [MeV/ c^2] arXiv:1603.08993 $A_{\kappa}^{\pi\kappa} = -0.403 \pm 0.056 \pm 0.011$ CPV also starts to become visible in $B \rightarrow D\pi$: Combined with $D \rightarrow KK D \rightarrow \pi\pi$ $A_{\pi}^{\pi K} = 0.100 \pm 0.031 \pm 0.009$ significance 3.9σ

Corfu Summer Institute

3 September 2016

N. Harnew

31

"GGSZ" method: Dalitz plot analysis

• Each point on the Dalitz plot represents a different value of r_D and δ_D (and differs between B⁺ and B⁻)

- D decays to multibody final state (>2 particles)
- Value of F₊ for certain self conjugate decays could be ~0.5
- Hence inclusive treatment can lose most of the sensitivity to $\gamma \rightarrow$ analyse the Dalitz plot

Model-independent GGSZ analysis

- Reduces to a counting experiment in bins of Dalitz Plot
- Use CLEO data to measure average values of r_D and δ_D in pre-defined

bins **PRD 82 (2010) 112006**

- Bin definition designed to minimise statistical loss
 - Bin yields + strong phase information \rightarrow measurement of x and y

$B \rightarrow D[K_{s}hh]K via GGSZ$

JHEP 10 (2014) 097

Time dependent analysis : u, c, tb \overline{s} \overline{s} s \overline{B}_{s}^{0} W^{\pm} W^{\pm} \overline{B}_s^0 D_s^+ K^{-} $\overline{u}, \overline{c}, \overline{t}$ \overline{b} \overline{u} \overline{s} b

 $V_{ub} \times V_{cs} \approx \lambda^3$

c

 \overline{s}

 D_s^+

 Interference between B⁰ decay to D_S⁺K⁻ directly and via B⁰ B⁰ oscillation gives a CP violating phase

 \overline{u}

s

 K^{-}

 $V_{cb} imes V_{us} pprox \lambda^3$

$$\phi = \phi_{\text{Decay}} - \phi_{\text{Mixing}} = (\gamma - 2\beta_{\text{S}})$$

$$\beta_{\text{S}} \text{ is (small) mixing phase, } \phi_{\text{s}} = -2\beta_{\text{S}} = 0.01 \pm 0.07 \pm 0.01 \text{ (syst) rad.}$$

$$Phys. Rev. (2013)$$

$$I12010$$

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right],$$

$$\frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right],$$

$$-C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right],$$

$$35$$

$B^0 \rightarrow \overline{D}_{s}^+ K^-$ continued

 Only I fb⁻¹ of data published so far. The full Run-I 3 fb⁻¹ measurement is expected towards the end of this year.

$$A_{f}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \quad A_{\overline{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \quad C_{f} = \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}},$$
$$S_{f} = \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \quad S_{\overline{f}} = \frac{-2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}.$$

Measure folded asymmetry distributions:

Contribution from different modes

- It is necessary to pursue different B decays to provide crosschecks
- Current measurements are dominated by statistical uncertainties
- Improved precision compared to previous combination by ~20%
- Good agreement with B factory results

BaBar : $\gamma = (69^{+17}_{-16})^{\circ}$

Belle: $\gamma = (73^{+15}_{-14})^{\circ}$

arXiv:1301.2033

PRD 87 (2013) 052015

3 September 2016

γ prospects : Run I \rightarrow Run 2 \rightarrow upgrade

- Run I target of 8° attained : analyses now mostly complete)
- 2016 data incoming
- Run 2 : target 4° (7-8 fb⁻¹)
- LHCb Upgrade : target
 0.9° (~50 fb⁻¹)

EPJC (2013) 73:2373

Summary and Outlook

- The LHCb experiment is performing spectacularly well
- So far all UT measurements are in good agreement with the Standard Model
 - \rightarrow New physics is becoming constrained in the flavour sector
- Up to 2018 we expect 7-8 fb⁻¹ of data, much of this at √s = 13 TeV) at ~twice the 8 TeV heavy-flavour production crosssection
- Still much room for new physics, but higher precision required → preparing for LHCb Upgrade beyond 2020 !

I would like to extend my thanks to Sneha Malde (University of Oxford) in preparing this talk

Corfu Summer Institute

3 September 2016

Loop vs tree measurements

- Loop processes are sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Largest uncertainty is on γ, a process accessible at tree level which forms a SM benchmark*

Spectacular results from e⁺e⁻ B factories on CP violation

Corfu Summer Institute

3 September 2016

N. Harnew

42

LHCb: CP violation in $B \rightarrow \pi^+\pi^- \& B_s \rightarrow K^+K^-$ (angle α/γ)

- I fb⁻¹ : ~9000 B⁰ $\rightarrow \pi^+\pi^-$ events
- First time-dependent CP asymmetry plot of $B^0 \rightarrow \pi^+\pi^-$ at a hadron collider

 $C_{\pi\pi} = -0.38 \pm 0.15 \pm 0.02$ cos term (direct) $S_{\pi\pi} = -0.71 \pm 0.13 \pm 0.02$ sine term (indirect)

Also first time-dependent asymmetry seen in $B_s \rightarrow K^+K^-$

$$C_{\rm KK} = 0.14 \pm 0.11 \pm 0.03$$

 $S_{\rm KK} = 0.30 \pm 0.12 \pm 0.04$

- Need to separate the topology of interest from random combinations
- Use of multi-variate analysis techniques. Useful variables include:
 - Impact parameters
 - Flight distances from primary vertex (B travels ~ a cm)
 - Flight distances from B removes e.g B $\rightarrow K\pi\pi$ backgrounds
 - Vertex quality
 - Particle ID
- Specific vetos against particular backgrounds

Corfu Summer Institute

3 September 2016

GLW: $B^- \rightarrow D^0$ (KK)h⁻ (where h = K, π)

Corfu Summer Institute

3 September 2016

ADS & GLW: comparison of results

ADS complementary decay : $D \rightarrow K3\pi$

 $A_{K}^{\pi K \pi \pi} = -0.313 \pm 0.102 \pm 0.038$ Relies on CLEO-c input.

Corfu Summer Institute

3 September 2016

Two methods for accessing D decay information

Two ways to deal with the varying r_{D} , δ_{D}

Model dependent

Model independent

- r_D and δ_D determined from flavour tagged decays (eg Babar/Belle) via amplitude model
- Systematic uncertainties due to model hard to quantify

- Use CLEO data to measure average values of r_D and δ_D in pre-defined bins PRD 82 (2010) 112006
- Direct phase information, uncertainties on which can be propagated

Example of B^0 mode: $B^0 \rightarrow DK^*$

- Favoured and suppressed decay both colour suppressed
- $r_B \sim 0.3 \rightarrow$ larger interference
- $K^* \rightarrow K^+\pi^-$, charge of kaon tags flavour of B at decay
- Yields at LHCb now becoming viable for analysis

Selection of $B^0 \rightarrow DK^*$

- Yields ~ 90 in K_sππ , (10 in ~K_sKK). Twice yield of B factories.
- Irreducible B_s
 backgrounds
- Look for differences in the Dalitz plot distributions

JHEP 1606 (2016) 131

GGSZ analysis $B^0 \rightarrow DK^*$, $D \rightarrow K_s \pi \pi$

- Divide Dalitz plot into bins and look at asymmetries in yields
- Measured parameters are again x, y (dependent on γ)
- Input on average strong phases from CLEO used in model independent method (MD gives similar results).
 Corfu Summer Institute 3 September 2016

Combining results from LHCb

LHCb measurement	Type/ Dataset	Reference
B⁺→DK⁺ D→2h,4h	ADS/(q-)GLW (3fb ⁻¹)	PLB 760 (2016) 117
$B^0 \rightarrow DK\pi$	Dalitz (3fb ⁻¹)	arXiv: 1602.03455
$B^0 \rightarrow DK^* D \rightarrow Ks\pi\pi$	GGSZ MD (3fb ⁻¹)	JHEP 1606 (2016) 131
B ⁺ →DK ⁺ D→hh π^0	ADS/q-GLW (3fb ⁻¹)	PRD 91(2015) 112014
B ⁺ →DKππ, D→2h	ADS/GLW (3fb ⁻¹)	PRD 92 (2015) 112005
B ⁰ →DK* D→2h	ADS (3fb ⁻¹)	PRD 90 (2014) 112002
B⁺→DK D→K₅hh	GGSZ MI (3fb ⁻¹)	JHEP 10 (2014) 097
B ⁺ →DK, D→KsKπ	ADS (3fb ⁻¹)	PLB 733 (2014) 36
$B_s \rightarrow D_s K, D_s \rightarrow hhh$	Time dep (Ifb ^{-I})	JHEP 11 (2014) 060

Results new or updated since last combination (2014)

LHCb-PAPER-2016-032

Corfu Summer Institute

3 September 2016

New results from 2015

Other $B \rightarrow DK$ 'like' results completed in 2014

Combining results : other inputs

Parameters	Source	Reference
Charm mixing and CPV in D \rightarrow hh	HFAG	www.slac.stanford.edu/xorg/ hfag/charm/index.html
к, δ _D : D→K3π, D→Kππ ⁰	LHCb & CLEO data	PLB 757 (2016) 520
κ, δ_D : D→K _s Kπ	CLEO data	PRD 85 (2012) 092016
CP fraction D \rightarrow 4 π , D \rightarrow hh π^0	CLEO data	PLB 747 (2015) 9
Strong phase information for $D \rightarrow K_{s}hh$	CLEO data	PRD 82 (2010) 112006
Constraint on ϕ_s	LHCb data	PRL 114 (2015) 041801

LHCb combination results

- Frequentist combination : 71 observables and 32 parameters (Bayesian interpretation is consistent)
- Improved precision compared to previous combination by ~20%
- Good agreement with B factory results

- Full upgrade in LS2
- Run at higher luminosity from 2021 onwards (~4 x 10^{32} cm⁻²s⁻¹ \rightarrow 2 x 10^{33} cm⁻²s⁻¹)
- L0 hardware trigger \rightarrow software trigger
 - Increase efficiency for hadronic modes
- External inputs will benefit from BES-III data

LHCb upgrade projection (50 fb⁻¹) for γ is 0.9°

EPJC (2013) 73:2373

This precision will pin down all UT parameters : and hopefully New Physics

3 September 2016