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Introduction to cosmic inflation

Let us assume, that the flat FRW Universe with the metric tensor

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) ,

is filled with a homogeneous scalar field φ(t) with potential V (φ).
The a(t) is the scale factor. Then Einstein equations are following

3H2 = ρ =
1

2
φ̇2 + V , 2Ḣ = −(ρ+ P) = −φ̇2 , (1)

where H = ȧ
a is a Hubble parameter.

Let us note that

Ḣ

H2
= − 3φ̇2

φ̇2 + 2V
⇒ Ḣ � H2 for φ̇2 � V . (2)

When H ∼ const one obtains a ∼ eHt → exponential expansion of
the Universe! This is an example of the cosmic inflation.
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φ̇2 + V , 2Ḣ = −(ρ+ P) = −φ̇2 , (1)

where H = ȧ
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Primordial inhomogeneities

What we observe are anisotropies of the CMB radiation. We know
how to relate them to primordial curvature perturbations R
generated during inflation. We define the power spectrum of R by

PR(k) =
k3

2π2
|Rk |2 . (3)

3 observables in here

I Normalisation of PR at some k?

I k-dependence of the spectrum:

ns − 1 =
d logPR
d log k

= 2

(
V ′′

V

)
− 3

(
V ′

V

)2

I Tensor-to scalar ratio r = Ph/PR ' 8
(
V ′

V

)2
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Comparison to the data
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Motivation

I How to get an inflationary potential consistent with the data?

I No point of asking for too much - let’s just hope that the
potential is locally flat somewhere!

I What could be responsible for such a local flatness? A
stationary point! The saddle point doesn’t fit the data (too
small ns), so we need higher order stationary points.

I Why asking for little? Let’s look for a general potential, which
would be as flat as it’s possible!
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Flat scalar potentials!

Let’s start from a general scalar theory with minimal coupling to
gravity

S =

∫
d4√−g

[
1

2
R +

1

2
(∂φ)2 − V (f (φ))

]
, (4)

where

f (φ) = ξ

n∑
k=1

λk φ
k , (5)

In general such a potential does not need to be flat anywhere and
therefore it is not suitable for inflation. We want to assume that V
(and therefore f (φ)) is at least locally flat ⇒ has a stationary
point at some φs . The maximal order of φs is n − 1, which gives

f (φ) =
ξ

n
(n λn)

−1
n−1

(
1−

(
1− (n λn)

1
n−1 φ

)n)
. (6)



Flat potentials for finite n
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Starobinsky inflation as a maximally flat theory

What would happen if we require n→∞, i.e. infinitely flat
potential around the stationary point? For general form of λ the
f (φ) does not converge. But for

λn =
1

ξ

(
ξ

n

)n

(7)

one finds in the n→∞ limit

f (φ) = 1− e−ξφ (8)

so for V ∝ f 2 one obtains

V ∝ (1− e−ξφ)2 , (9)

which is the generalised Einstein frame Starobinsky potential.



Flat potentials and α-attractors

α-attractors - theory with kinetic term with a pole

L =
√−g

 (∂ψ)2(
1− ψ2

6α2

)2 − V (ψ)

 . (10)

If you’d re-define the field to obtain a canonical kinetic term it
would appear, that any potential V (ψ) is stretched around the
pole, just like for V (f (ϕ)). In fact you can use f (ϕ) as a scalar
field and find a direct relation between f and ψ.

ψ(f ) =

√
6α

(
(6α(1− f )ξ)

√
2
3α
ξ − 1

)
(6α(1− f )ξ)

√
2
3α
ξ

+ 1

. (11)



Application to a scalar-tensor theory

S =

∫
d4√−g

[
1

2
f (ϕ)R +

1

2
(∂ϕ)2 −M2(f (ϕ)− 1)2

]
, (12)

Advantages? Very low scale of inflation and pre-inflationary era,
which may be a solution to the problem of initial conditions for

inflation



Conclusions

I You don’t need much - it’s enough if the potential is locally
flat! A stationary point and a general potential will make it!

I Higgs/Starobinsky inflation are examples of the flattest
potentials

I You can do the same for f (R) theory and the flattest possible
potential will also be Starobinsky-like

I If you implement this idea to the Scalar-tensor theory you will
get two flat regions - multi phase inflation, possible solution
to problem of initial conditions
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