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Highlights

Foreword



Applied holography

Macroscopic extension of AdS/CFT: gravity plus matter on D + 1-
dim asymptotically AdS background <+ phenomenological D-dim
boundary CFT in a macroscopic state — potentially hydrodynamic

Quantum field theory: Compute correlation functions & transport
coefficients of the CFT macroscopic states — AdS/QCD (quark-gluon
plasma), AdS/CMT (superconductors, rotating cold atoms, ...)

Genuine exp. & th. puzzles: measure and compute the Hall
viscosity in neutral rotating Bose—Einstein condensates

(Super)gravity:
» Usual Holy Grail: string theory in non-perturbative regime
» Less usual: study the integrable sector of Einstein’s equations



Integrable sector of Einstein’s equations
Reminder: solution generating techniques ieners 59; Ernst ‘6s; Geroch 711

(M.8.8) = (S A @) 2 (S A,¢) = (Mg.{)

» Examples with A = 0:

» 4 -3 0U= 5L(2, R) [Geroch '71]
» 4 — 2 U = affine algebra — integrable [elinskii, Zakharov '78;. . ]

many others in supergravity up to 11 dim
> CaVeat: |eSS pOWerfUl When A 7é 0 [Leigh, Petkou, Petropoulos, Tripathy '14]

Question: does holography provide an alternative? (caarei, Gath, Leigh,
Mukhopadhyay, Petkou, Petropoulos, Pozzoli, Siampos '11-'15]

exact reconstruction

(M'gbulk) — (B'gbry.'T) — (B'g;n'y.'T/) — (M'g;mlk)

r—soo “yr N

(Note: pure-gravity 4-dim bulk — simplest string low-energy approx.)



Here

The questions:
» Can one appropriately design boundary data such that exact bulk
Einstein solutions exist that reproduce them — reconstruction?
» Can one find “U” relating these distinguished boundary data —
acting as bulk solution-generating transformations?

The answer: yes, boundary data can be tuned to produce exact bulk
solutions and holographic Geroch-like transformations do exist

The spirit: set conditions that relate “initial momentum” and “initial
position” — inspired from gravitational or Yang—Mills self-duality

Bonus: boundary data = macroscopic CFT state on a background —
exact transport properties for the boundary state



Highlights

From the bulk to the boundary: the boundary data



Holography

Bulk: Einstein space with A = —3k?, asymptotically locally AdS —
emerges as an ADM-like radial Hamiltonian evolution from data on
the time-like initial hypersurface at r — oo

» The “initial” hypersurface is the conformal boundary 3
» The “initial” data are

> the boundary metric dsgry_ = guydxtdx?

> the boundary “second fundamental form” T, dx"dx"

TH symmetric, traceless with V,, T = O: interpreted as
holographic energy—momentum tensor vev on the macroscopic state of
the boundary-CFT — possibly a fluid

Reminder: here pure gravitational bulk backgrounds — no
boundary currents J¥ — neutral boundary states



Boundary metric & boundary energy—momentum tensor
Packaged in the Fefferman—Graham on-shell expansion of the
D + ]._dlm bulk metrleOT lm’ge I [Fefferman, Graham '85]

» metric: “generalized coordinate” — leading term

> energy—momentum: “conjugate momentum” — subleading term

167tG
3k(kr)P—2

dr?

e K*ridsgy, +- -+

dspu = Tdxtdx® 4 -

» This requires a specific r-coordinate gauge: no lapse/shift

> All other terms are either vanishing or expressed with g, and
T,y & derivatives (Schouten, Cotton, ...)



A primer: Schwarzschild AdS4 black hole (d = 4, D = 3)

ds? = 4%y — (14 K22 = 2M) de? 4 2 (d6? + sin? ¢ dg?)

ds&ry_ = —dt? + k—lz (d9? +sin>#dg?) — R x S?
Tudxidx = 5 (2462 + % (402 +sin? 0dg?)) = 5 (30> +dsZ, )
conformal perfect fluid with u = 9; and ¢ = 2p = MKk?*/4rG

» the holographic fluid is not perfect (/s Z /anks)
> TH = T;‘evrf because of the kinematic state (fluid at rest)

Note: no information on any transport coefficient — to get insight on
transport coefficients we need more involved bulk Einstein spaces
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From the boundary to the bulk: integrability and resummation



The question

. 2 .
Given a boundary geometry dsbry' can one determine

> the conditions it should satisfy
> the stress tensor it should be accompanied with

for the FG expansion to be exactly resummable? — answer encoded
in integrability properties

> Integrability deeply related with self-duality properties: in the
'70s all integrable systems were thought to be SDYM
reductions ... many (and perhaps all?) of the ordinary or partial differential
equations that are regarded as being integrable or solvable may be obtained
from the self-duality equations (or its generalizations) by reduction. [Ward, '85]
» Self-duality appears in the ancestor of holography: LeBrun's
filling-in problem [Legrun, 's2]
> Problem: how to fill-in analytically the 3-dim Berger sphere?
» Solution: with a quaternionic space (Einstein & Weyl-self-dual)



At the heart of duality: the Weyl tensor

Atiyah—Hitchin-Singer packaging of the 5 Y ;s inside a symmetric
and traceless 3 x 3 complex matrix
va, #,v...=0,1,2 — (anti-)self-dual Weyl WEW

The existence of 4 principal null directions, potentially degenerate
with higher multiplicity, translates into special algebraic relationships
among the ¥s: Petrov type 1, 11, 111, D, N, O

Goldberg—Sachs theorem and extensions: 3 null, shearless, geodesic
congruence <+ algebraically special space



The 3-dim origin of the Weyl

: =+
Lm’ge—r expﬂl’lSlOTl Of W [Mansi, Petkou, Tagliabue '08; de Haro '08; Miskovic, Olea "09]

871G

-1t
= k2r3p TP+ - -

Wi

P = diag(Fi,—1,1) and T+ symmetric, traceless and conserved:

i

+ _
T = T d oGk

CI’“/

Property: remarkably simple (i.e. with degenerate eigenvalues) if the
space is Petrov algebraically special

Integrability/resummability <> setting conditions between “initial
momentum” and “initial position” < tuning T+



Reminder: the Cotton tensor

In 3 dim the Weyl tensor vanishes — conformal properties are captured
by the Cotton tensor

R
C}w _ €,llPO’ vp (Rv(f . 45]/(7)

Vel

» symmetric and traceless
» conformally covariant of weight 1
> identically conserved: V,CH =0



The pattern for exact bulk reconstruction

The metric dsfry_ must admit 2 symmetric, traceless and exactly
conserved rank-2 tensors T+ related by complex conjugation

Crucial observation: TH and CM can be arbitrarily complicated but
T}fv is expected to be simple for Petrov algebraically special bulks

: 2
For given dsbry_

» choose simple (canonical) T+ s.t.

VIT,, =0 (h)

» further impose on dsgry' the condition

C=8mGk’>ImT" Q)




» build the bulk with the resulting dsgry_ and the stress tensor

(T)

The exact bulk reconstruction works

» (h) and (C) are the boundary version of Einstein's Egs. for
algebraically special Petrov classes (which class <+ T+)

» (T) is a non-trivial boundary stress tensor allowing for probing
transport (fluid plus possibly non-hydrodynamic modes)

How does reconstruction work?



Derivative expansion i s

Alternative to the Fefferman—Graham expansion — originally designed
for the hydrodynamic regime & fluid/gravity correspondence

» boundary metric dsgry.

» boundary

> energy—momentum tensor T
> time-like hydrodynamic congruence u

The congruence u is redundant and arbitrary
> dsgry_ and T are sufficient to determine the bulk
» non-perfect relativistic fluids have no natural velocity

Purpose: organize the perturbative long-wave-length expansion,
both on the boundary and in the bulk, and potentially resum it



On the boundary (D = 3)

Fluids in 3-dim gravitational backgrounds are described in terms of 4
independent quantities u, €, p all in TH

T T e

with V,, T" = 0 plus an Eq. of state
> T;:,f = eulu” + ph* (hy,: metricon & L u)
» I1" as expansion in V"u — transport coefficients
Remarks:
» IT*¥ may contain non-hydrodynamic modes — asymptotic series

» Freedom in choosing u — Landau-Lifshitz frame: HE;/dro“V =0

example H?;) = 2y — (O — \/C%gep/\(y up(TAV)

> V- T, = O (V") for the expansion to make sense, and
this restricts the choice for u



In the bulk [Bhattacharyya et al '08; Caldarelli et al '12]

Guideline for the bulk reconstruction along null tubes supporting the
holographic coordinate r: Weyl covariance — the bulk metric should be

invariant under boundary conformal transformations
©

Tool: Weyl connection A = a — ZSu and Weyl covariant derivative

9 =V + wA (a is the acceleration and © = V - u)

dsg . = —2u(dr +rA) + r2k2dsbry + 5=

M2 1 IX,B 3T\},u ut C/“u 7]} anVU
+1% (1 gapwapw™) ot 2k6

+ terms with o, 0, Vo, ... + O (2*u)

> X = —2uV,w"dxt — w, rw, dxtdx — SuP R

> w=3(dutuna) n"=e"/ Sg,
> % = R+ 4V, A —2A, AV k= 3k/8nG



The resummatlon [Caldarelli et al "12; Mukhopadhyay et al "13; Gath et al '15]
paahyay

Assuming u shear-free a partial resummation is performed with

. <1 : 15 WapW ﬁ) — ! :
r? 2k4r2 0k r? + sirwapw™ P2

ds2, = —2u(dr+rA) +r k2dsbry —|— Z

u? (87-[GT/WU uVr+ Capu ,7;11/(7 o (R)
P2 k2 2k6

Why shear-free: convenient and unique in Lorentzian D = 3



Theorem: when
> 1 is the boundary time-like shearless congruence of dsgryl
> dslfry' obeys Egs. (h) and (C) for some canonical T+
» T given in Eq. (T)
(R) exact Einstein & Petrov-algebraic (9,: bulk null, geodesic,
shearless — Goldberg—Sachs)
This resummation method

> gives access to all Petrov-algebraic Einstein spaces: Kundt,
Robinson—Trautman, Plebanski-Demianski, . ..

» is based on a non-perfect-fluid stress—energy tensor:
T = TPf 4+ IT with finite-derivative corrections

> rich information on transport properties
> not in Landau-Lifshitz frame: IT,,u” #0 Il utu’ =0

We are controlling the integrable algebraically special sector of
Einstein’s equations from non-trivial boundary fluid dynamics
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A concrete example



Boundary metric & tensors T

A simple boundary metric without isometries

dst, = —dt® + 5 —dzd] (nv)

kz p2

with a unique shearless congruence u = —dt

» P(t,,() real & a priori arbitrary
» Cotton-tensor components C,,: 3rd-derivative of P

The T*s: Petrov-Segre type Dy & type Il & N

T = 52cdC (ﬁdt+ dg)



Integrability conditions

P, My, o, B, v and c.c. functions of t, {, 4

Obey
» partial differential equations following V- T* = 0 (h)
» the integrability constraints C = 871Gk? ImT " (C)

Combined — Robinson—Trautman equation

AK — 12Md, log P + 40:M = 0|

without any reference to a 4-dim bulk



Energy—momentum tensor and resummation

Using dsj,,, T = ReT" and u in Eq. (R)

ds2, = 2dtdr — 2Hdt? +2—d§d§

7’65

where o
2H = k*r? + K +2rd log P — =—
r

This is Robinson—Trautman space—time with t retarded time

» Einstein thanks to Robinson-Trautman
» Petrov type determined by the choice of T

» generically type I

» M =0: type lll (¥2 =0)

» M=p=0: typeN(‘szlfg,:O)
» B=79=0:type D



Robinson-Trautman physics

The bulk: generically time-dependent and singular at r = 0 (sources)

» Type Il (M # 0): black hole with horizon radiating away
gravitational waves - Schwarzschild AdS,

» Type lll & N (M = 0): pure gravitational waves I AdSy
» Type D: Schwarzschild AdS4 and C-metric (stationary)

The boundary: generically non-global-equilibrium

» Type Il: claim for hydrodynamic regime at late times
» Type lll & N: “pure radiation” at late times

» Type D: genuine stationary hydrodynamics at any time

Probing correlations and transport: under investigation (e rreias, Real 14

Bakas, Skenderis '14 & '15; Mukhopadhyay et al work in progress]
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Transforming the boundary data



Invariance transformation

Egs. (W) V - T* = 0 invariant under

W > zT", T~ —=zT, zeC

» Drastic modification of boundary data
Egs. (T) & (C) =

Toleraet), oozt
2 ' 2ik

local for T but non-local for dsgry.



» Non-local modification of dsfulk

Setting T, u'u’ = ¢e(x) £ igfzc(x) and z = |z| exp i

uv

» on the boundary: mixing of ¢(x) and ¢(x)

€ cosyp —siny €
(o) =Gy o) ()

» in the bulk: mixing of W and W™~ — non-local in ds?,,,

Y ~o S s+i—Kc —>—3|Z|ei¢ £+i—Kc
2= T ki3 3k3 2kir3 3k3

This is a non-trivial bulk solution-generating transformation



Back to duality

Generically € ~ mand ¢ ~ n — for the bulk parameters the mapping

reads
m cosyp singp\ (m
(n) ~ <—sim/» cosw) <n>

» For p = —7/2 and |z| = 1: gravitational duality map
(m,n) — (—n, m)

» For |z| = 1 and arbitrary i: missing U(1) of the SL(2, R)
Eh|erS—Ger0Ch group for A # O [Leigh, Petkou, Petropoulos, Tripathy '14]
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Outlook



The original question: is holography an alternative to Geroch-like
solution-generating techniques?

exact reconstruction

(M gbulk) (B gbry ) 7, (B'g/bry.' T/) ,/o:i,, (M'g/bulk)

» We handled the exact reconstruction: how to tune and combine
boundary data for resummable ascendent — for given dsfry.

> design T s.t. V- T =0 (h)
» impose C = 87tGk?> ImT* (C) & T = ReT™ (T)
(C) & (h) = Einstein’s Eqs. from the bry. in some integrable
sector
» We found “U”: inside (C), (T) & (h) with gravitational duality
as a discrete subgroup

What can we recover? Algebraically special spaces



Next

In the framework of integrability:
» State appropriately the invariance of the bulk under the choice of
u: include shear on the boundary
» Beyond algebraically special spaces: integrability &
resummation
» Euclidean holography: Przanowski—Tod & Calderbank—Pedersen
spaces

» Higher dimensions: 8 — 7, Spin,, G, ... as a generalization of
4 —3,50(4),50(3), ...

More on the physics of boundary CFTs: probe of transport properties
and the remarkable relationships among coefficients, thermal
correlators, way to equilibrium, . ..
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The ancestor of holography



LeBrun’s filling-in — 1982

The problem (Euclidean)

» A round S3 can be “filled-in" by H,
dr?

1 T r2 + r2dQ§~3 — r2d0§3

2
dSH4 =

» How to fill-in analytically a Berger sphere?
2 1)2 2)2 3)2
dQBerger - (0 ) + (U ) +,)/(0- )
(¢ Maurer-Cartan forms of SU(2))

The answer: Einstein space with self-dual Weyl tensor — quaternionic

Space [LeBrun '82; Pedersen '86; Pedersen, Poon "90; Tod '94; Hitchin '95]



A classic example

Bianchi IX AdS Schwarzschild-=Taub-NUT

» Einstein space with A = —3k?, mass M, nut charge n
ds? = ﬁ + (r* — n?) (d6® + sin® 8dg?)
V(r)

2
+V(r) <C|T + 4nsin? gd(p>

V(r) = =25 [P+ n? = 2Mr + k2 (r* — 6n%r? — 3n*)]

-2

> Weyl (anti-)self-dual (i.e. quaternionic) iff
M = £n(1 — 4kn?)

<= no conical singularity at r = n



The boundary geometry: ds? T 52—'; + k2 rzdsbzry.

2
dsgry. - <CIT +4n Sil"l2 129dq)> + % (dﬂ2 + sin2 19C|([?2)

1
= 5 () +(0?)?) +4?(c?)?
with T=—-2n(¢p+¢) and 0 <9<, 0< ¢ <271,0 < p < 4rm

ol =sindsinyde + cosyp dd
0? =sindcospde — sinyp dd
03 = cos¥de + dy.

. ) 2 .
Conclusion: dsbry_ is a Berger sphere



Highlights

Gravitational duality



Gravitational duality

Similar to electric-magnetic duality in general relativity — Euclidean
regime

» Solve Einstein's Egs. — self-dual gravitational instantons
[Newman, Tamburino, Unti '63; Eguchi, Hanson '78]
» Provide another handle for understanding the theory

> “near regime [works by Bunster, Julia, Henneaux. . .]
» mass and nut as electric and magnetic charges [powker '74]

Self-duality deeply related with integrability — in the 70 all
integrable systems were thought to be SDYM reductions (wa, s,



Curvature decomposition

Metric ds® = 55068, connection one-form wag and curvature
two-form Rag € 6 of SO(4) = SO(3)ss @ SO(3)4sa

» Reducible under SO(3)sq and SO(3).sq: 6 = (3,1) @ (1, 3)
» Curvature two-form (A, p...=0,1,2)
(3.1) Sy =3 (R + 32 RM)
(1,3) Ay =1 (Ra — 3er0R™)
and similarly for the connection one-form
» Basis for the space of two-forms A2
(3,1) ¢* = 0" N0+ 34,01 N O
(1,3) x) =0" N0 — %GAWGV A 6Y



Atiyah—Hitchin-Singer decomposition of Sy, Ay (caren, Debeoer, Deise 67: Atiyan,
Hitchin, Singer '78]
— lywter o L Lo+ v
Sy = %WWq) + 1125% + %C;WX
_ 1 — LU 1 1r-~— v
AH - 2 W;WX + 125Xnu + 2 va¢

with W= and C* 3 x 3 matrices, and s a function encoding the 20
components of the Riemann

» s = R/2 scalar curvature — 1
> C}ﬁ traceless Ricci — 9
>

W}f; self-dual Weyl tensor symmetric and traceless — 5

> Wy, anti-self-dual Weyl tensor symmetric and traceless — 5

Quaternionic spaces: CT =0 s=2A W~ =0or W' =0&
Einstein & Weyl (anti-)self-dual



Here the signature is Lorentzian : (+ — ++)

» W™ and W~ are complex-conjugate

» The 10 independent components are captured in 5 complex
functions ¥,, a=0,..., 4 projections of W onto a null tetrad

The existence of 4 principal null directions, potentially degenerate
with higher multiplicity, translates into special algebraic relationships
among the Ys: Petrov type 1, I1, I1I, D, N, O
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Fluids dynamics: a primer



Vector field u with u,u" = —1 and spacetime variation V  u,

1
VHUV = —u},av + 0"1”/ + ﬁ@h‘uv + (,L)‘l“/

v

hyy = uyuy, + guy: projector/metric on the orthogonal space
» a, = u"Vyuy: acceleration

> 0yy: symmetric traceless part — shear

» © = V,u: trace — expansion

> wyy: antisymmetric part — vorticity

In 2 + 1 dimensions

visc

The = = (200" + CH"0 + e up0, ") + 0 (V2u)

Conformal fluids (tracelessness): e = 2p,{ =0, ...



On conformal perfect fluids with some time-like velocity field u
» TP = p <3u2 + dsgry_)

2u(p) +3p® =0
u(p)u+dp+3pa=20
> Integrability criterion: dA = 0 with A = a — %u

» Euler equations {

= geodesic and expansionless u solve them with constant p

On the actual stress tensor T = Re T+
» Not expected to be perfect: T = TP 4+ I1

» The fluid congruence u is read off from the perfect piece

» TPef and I are not separately conserved
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Fluids and gravity



Fluid/gravity correspondence

Profound relationship

» Originally in a classical framework: relationship between two
sets of non-linear equations, Einstein’s and Navier—Stokes (panou
1979; also Eling, Lysov, Oz, Strominger, . .. since 2009]

» More recently within the holographic correspondence with a
qual’ltum pel’spectlve [Bhattacharyya, Hubeny, Loganayagam, Minwalla, Rangamani, . . . since 2007]

Connected via renormalization-group flow from the boundary (UV)
to the horizon (IR) where the former correspondence takes place

[Kuperstein, Mukhopadhyay, .. . since 2012]



Fluids and gravity
Originally: black-hole horizon responds to perturbations as a viscous
ﬂuld [Damour 1979]

» damped shear waves
> viscosity 7 = /167G
» Bekenstein—-Hawking entropy s = 1/4G6 = 11/s = 1/an

Origin? Deeper and more general relationship between Einstein’s
EqS. and ﬂuld dynamiCS [Eling, Lysov, Oz, Strominger, ... since 2009]

Gravity in 4 dim: 10 Einstein’s Egs. involving Gag (VAGAB = 0)

> 6 evolution: Gy, (2nd order)
> 4 constraint: Gy, G, (1st order)



Initial-value formulation (Cauchy problem): ¥, gy (6), Ky (6) with
» Hamiltonian constraint (1): R3) —2A + K2 — K K" =0
» momentum constraint (3): V, (K" — gt K) =0
constraints in 4-dim M < dynamics for K}, on 3-dim X
Imposing algebraic Petrov in 4 dim: Ky, (6) — (4) as for a fluid on %y
> KMV <> €,p,u
» RG) —2A + K2 — Kuw K" = 0: Eq. of state
» V, (KM — gl’K) = 0: energy-momentum conservation

incompressible Navier—Stokes appear e.g. on black-hole horizons

and conformal fluids appear on the conformal boundary X/, _,
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Gravity, holography and the Fefferman—Graham expansion



Gravityind = 4

Pﬂlatiniformulation and 3 + 1 Spllt [Leigh, Petkou '07; Mansi, Petkou, Tagliabue "'08]
ey = —L EABCD RAB—I—EGA/\QB AOC A BP
321G Jm 2

64 an orthonormal frame ds? = 5740708 (7 : +e+ +)
gauge: no lapse, no shift

» Coframe: 6" = 9 and 9#

kr
dr?
ds” = K2r2 + 1706"0"
» Connection: w™ = KF and w"” = —e!"PB, or (a)sd

combination 1/2(KH + BH) for e = +



Hamiltonian evolution of 6%, KCF, B, from boundary data — what are
the independent boundary data? Answer in asymptotically AdS:
Fefferman—Graham expansion for large r ireferman, Graham ss; subtieies: de Haro,

Skenderis, Solodukhin, ‘00]

01 (r,x) = krEM(x )+krFf]( x) + k2r2 ](x)
Kt(r,x) = —krEF(x)+; [2]()+2F[§]()+"'
Bt (r,x) = B#(X)Jrkzilrzsf‘}( X))+

Independent 2 + 1 boundary data: E¥* and F[];]



The holographic fluid

Interpretation of the boundary data

» E': boundary orthonormal coframe — allows to determine
2 _ _
dsbry_ = NuwE"EY = guydxtdx”

> F[P2‘] = —1/2k25"¢,: Schouten
. Bfﬁ] = 1/2k2CMe;: Cotton
> ..

> F[’;]: stress current one-form — allows to construct the vev of
the boundary stress tensor
_ 3k M _ TH v
T= WFB]GH =T E"®ey
Macroscopic object carrying microscopic data from the bulk



Bulk Weyl self-duality and its boundary manifestation

Expanding W* = 0 leads to By = (i) 3 Fp3) i.e.
871Gk Ty + (i) Gy = 0

[Leigh, Petkou '07; de Haro '08; Mansi, Petkou, Tagliabue '08; Miskovic, Olea '09]
Key property: C and T are

> traceless

» conserved

Away from the self-dual point, so is

Trefi — T]JV :t (I) C]ﬂ/
m 871 Gk?2

reflecting va = 8x¢ Tﬁfi +---#£0

k2r3



The reference tensors T'9*

Integrability in Einstein spaces is tight to Petrov special types
= W= are remarkably simple and so must be T
simpler to scan for T than for Cand T
Boundary geometries expected to lead to resummable series should
have canonical T'Y= ie.
» cither possess complex-conjugate time-like geodesic congruences
associated with perfect-fluid-form T™*
> or admit null congruences associated with pure-radiation T
» or a combination of both

= T follow the Segre classification of the 3-dim Cotton
the right integrability recipe



Highlights

The Robinson—Trautman spacetimes



Boundary metric

A simple boundary metric without isometries

dsfy, = —dt* + P2dgdg

with a unique shearless congruence u = —dt

» P(t,{,{) real & a priori arbitrary — K = 2P28§8§ log P

» Cotton-tensor components C:

K2 2
0 Lok KoK

92
_; 23K at( > 0
22p
29:K 0 at(§,>

(nv)



Reference tensors and integrability conditions

The perfect-fluid form — Petrov—-Segre type Dy

+ _ Mik? 2
TE = Mok (3( +) —l—dslfry')
ut = —dt + 4% dé & cc.

M., a* and c.c. functions of t,, {
Conserved iff AT = a® — u=0-/2 is exact
> My (t)
» M. and a* obey

k2P

— 0 —|—38t|nl\/li—k2zx IP+09:P & cc

(h1)



The matter—radiation form — Petrov—Segre type III & N

T = kedz (Bt + )
B, 7y and c.c. functions of t, , {

Conserved iff

> B(t.0) & B(t.0)
> f3 and 1y obey

0tf — BotIn P2 — 2P28§-’y =0 & cc.

(h2)



Integrability conditions for T+ = T;j} + T,

» Requiring C = 871Gk?> ImT ™" sets 3 constraints:

2 p4

2P +32
0t <§D>+3Mk4(’x ) +v=0 & cc

and

at

52 & c.c

IK + p = 3MK?

(C1)

(C2)

» (C2) combined with (h1) gives the Robinson—Trautman Egq.

| AK — 12Md, log P + 40:M = 0|

(E)



Energy—momentum tensor and resummation

The energy—momentum tensor T

» Using T = ReT " one finds the non-perfect 87G/x2T

2M(t) — 529K — 520K
a2p
_ 1K _1a L M _ .
22 A P K2p2 with K = 2P28§8€ log P
1 M 1 a%P
“a2%K e | e

» The perfect-fluid part is TP = QkaG <3 2+ dsbry>

» I1 =T — TP’ contains hydrodynamic non-transverse modes
(IT(u) # 0, I1(u,u) = 0) up to V3u — rich information on
transport in the non-Landau—Lifshitz frame



Resummation: using dsbzry., C, Tand uin Eq. (R)

2
ds?, = 2dtdr — 2Hdt? + 2%@15 (RT)

with o
2H = k®r> + K +2rd;log P — -

This is Robinson—Trautman space—time with t retarded time
» Einstein thanks to Robinson—Trautman Eq. (E) = (h1) & (C2)

» Petrov type determined by Eq. (C1)

» generically type Il

» M =0: type lll (Y2 =0)

» M=pB=0: type N (Y2 =%3=0)
» B=79=0:type D



Robinson-Trautman physics

The bulk: generically time-dependent and singular at r = 0 (sources)

» Type Il (M # 0): black hole with horizon radiating away
gravitational waves - Schwarzschild AdS,

» Type lll & N (M = 0): pure gravitational waves I AdSy
» Type D: Schwarzschild AdS4 and C-metric (stationary)

The boundary: generically non-global-equilibrium

» Type Il: claim for hydrodynamic regime at late times
» Type lll & N: “pure radiation” at late times

» Type D: genuine stationary hydrodynamics at any time

Probing correlations and transport: under investigation (e rreias, Real 14

Bakas, Skenderis '14 & '15; Mukhopadhyay et al work in progress]



Highlights

The Plebariski—Demiatiski type D class



The Plebaniski—-Demiariski type D class

2 -
dsp, = —Q*(dt —b)* + T paitdl (nv)

P, Q real fcts and b = bgdé + bg-dé_ a real form — a priori arbitrary

»

>

Impose 3 1 Killing = 2nd one [mukhopadhyay et 21 13)

Impose 3 2 c.c. accelerating non-expanding congruences
us = perfect-fluid conserved T* (non-constant pressure)

Impose C = 871Gk ImT+ = solve for P, @ and b = dsgry_

Extract T = ReTT = TP 4 11

TPef generally non-conserved — aligned with u = —dt + b
shearless, expanding accelerating congruence with vorticity

Resum — Eq. (R): exact Petrov type D Plebanski-Demianski
familly (mass, rotation, nut, “twist”, acceleration)



Note: a suggestive expression

Generic comoving boundary frame adapted to a shearless congurence

dsbry _Qz(dt_ ) +k2P2dgd€
u=—Q(dt—Db)

Resummed bulk derivative expansion (R) in null tetrad

ds2, = —2lk + 2mm

2 a r
l=dr+rA+4 r2k2+%+%—ﬁ( £+6k5)}—ﬁ*(u/\dq)
k=u m=58d] ¢ =2w,pw* c=Cuutut &= Tyu'u!
The null congruence k is a principal null direction of multiplicity > 2



Highlights

More on probing transport



Summary of the reconstruction

Using dsfry_ with shear-free u and C, T based on arbitrary exactly
conserved canonical T* the partly resummed derivative expansion

» is exactly Einstein — all Petrov-algebraic Einstein spaces:
Kundt, Robinson—Trautman, Plebariski—Demiarniski, . ..

» gives access to transport properties beyond the derivative
expansion <— the stress—energy tensor is not perfect-fluid or even
fluid: T = TP + 11

» allows for scanning new solutions by acting with Uy :

T — 2T, T~ — 2T~



Output:
» Integration achieved: limited derivative expansion is exact
Einstein (Plebaniski—Demiariski, Robinson—Trautman, Kundt...)
> Remarkable form of T/ = special form of W=: algebraic
Petrov type (Kerr, Taub—NUT, C-metric, pp-waves. .. )

Consequence for holographic fluids: transport properties
» Status: exact solutions provide rich information on transport
coefficients (in particular when T is non-perfect) iuknopadnyay et al ‘13; de
Freitas, Reall "14; Bakas, Skenderis '14]
» Next: perturbation of exact Einstein spaces as a deeper probe for
transport can be made more systematic — captured in the known
h.d. terms of the ds? ;. expansion




Boundary geometry and reference tensor

Boundary geometry:

2 _
dsg, = — (dt —b)* + 2 padedl

> P(g,{) real fct and b = byd{ + bzd{ a real form
» u = J; Killing (geodesic, shear-, expansion-free, with vorticity)

Boundary reference tensor: special request

1 _
T xT=¢ <(dt—b)2+ dedg) «C

(in Euclidean: C = +87GK2T is the (a)sd condition)
conserved with constant ¢ = Mk*/ancG



Full classification

Four Killings
» Boundary: homogeneous spaces (Bianchi XI, Il, VII) solving
R 1
Rpw - Eg;w + )\gyv = prv

» No probe on fluid transport properties (too much symmetry)
» Bulk: AdS4 Taub—NUT black holes

Two commuting Killings

» Boundary: “monopole plus dipole”

» Infinite sequence of non-vanishing tensors coupled to transport
coefficients

» Bulk: AdS; Kerr—Taub—-NUT black holes with regular horizons



Highlights

Higher dimensions



Higher dimensions

Playground for duality: 8 Euclidean dimensions — octonions
» R € 280f SO(8) reducible wrt to Spin(7) C SO(8)
» Duality map: RAB = YABOR p with28 — 2107

Sar = W'Bgpo + slgppy + W10x7
Ar = W¥x7+s'x7 4+ 5%¢n

1" M s 7
» “Quaternionic” spaces:

$3% 0 Einstein
W2" - 0 Weyl self-dual



7-dimensional boundary
» R € 210f SO(7) reducible wrt to Gy C SO(7)
» Duality map: using octonions 21 — 14 G 7

Sia = W77¢14 + 51¢14 + W64X7
A7 = W¥x7+ s+ 5 ¢1a

» 7-dim boundary: energy—momentum T € 27

» W2, 1/ (KT—|— W%) — generalized filling-in problem,

Lorentzian extension and integrability
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