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3.                    , 4.                     ,  7. o(2,1) 

Highest subalgebra: 7 KVs 
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• Allowed ASAs - not straightforwardly extended to global 
solution
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Conclusion and Outline

• Largest subalgebra belongs to sim(2,1) and opt(2,1), 
contains 5 KVs and defines pp wave solution 

• o(2,2) and o(3,1) algebras, define ASAs with maximally 4 
KVs 

• There are more global solutions, not discussed here 

• Further research - further global solutions: black holes, 
black branes, black strings 



Thank you for the attention!
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