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- Solutions of CG can be classified according to the ASA
they form - we have classified BH and geon solutions
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- KVs of CG algebra
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vf]) can depend on all the coordinates on the boundary

> we can consider from the simplest constant ones, to
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> symmetric behaviour



Boundary Conditions

1
) >
1. subalgebra of 0(3,2) allows (or not) to find %(;)

2. restriction on %(;)defines subalgebra

Patera et al. classification | > inearly combined KVs

£le = €0+ a16W 4+ 4563 4+ 563 4 g 6@
+ 56 +a6€'® + arg'? + ase'™ + agt®



CG

p=
=

>
15
=
s
>
)
O
IS
Q
s
>
p)
<

Algebra (ASA) o




Asymptotic Symmetry Algebra (ASA) of CG

. (1)
(2) - > Vi
- classification

allowed boundary conditions (realizations of linear term)
can be set in one of the subalgebras

Interesting are the ones with the largest number of KVs
> 5 and 4 dimensional subalgelbras




Asymptotic Symmetry Algebra (ASA) of CG

. (1)
(2) > Vi
- classification

allowed boundary conditions (realizations of linear term)
can be set in one of the subalgebras

. similitude algebra sim(2,1)

. optical algebra opt(2,1)

maximal compact subalgebra o(3) ® o(2)
0(2) ® 0(2,1)

o(2,2)

. Lorentz algebra o(3,1)

irreducible subalgebra o(2,1)
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Asymptotic Symmetry Algebra (ASA) of CG

1. similitude algebra sim(2,1) >

Highest numlber of KVs is 7 however, boundary conditions
allow as largest 5 dimensional ASA
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2. optical algebra opt(2,1) > Highest subalgebra: 7 KVs
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3. 0(3)®0(2),4. 0(2) ®o(2,1), 7.0(2,1)

)

Highest subalgebra: 7 KVs
ASA: <4 KVs

- Allowed ASASs - not straightforwardly extended to global
solution
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—c-b(t—y) 0 c-b(t—y)
v = 0 0 0
c-b(t—y) 0 —c-b(t—y)
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solving for 4th KV, one obtains global solution with the function b
of the form

4th KV b(t-y) 4th KV b(t-y)
b b
F t—y F— Ko (t — y)3/2
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Conclusion and Outline

- Largest subalgebra belongs to sim(2,1) and opt(2,1),
contains 5 KVs and defines pp wave solution

- 0(2,2) and 0(3,1) algebras, define ASAs with maximally 4
KVs

- There are more global solutions, not discussed here

+ Further research - further global solutions: black holes,
black branes, black strings



Thank you for the attention!



Realised subalgebras, sim(2,1)

Patera name generators Realisation Name
a 1
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2 c ¢ 0
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2
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0o 0 -—-<
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