F-theory models and their predictions for new physics phenomena

Symmetries for Neutrino Physics

Exotic states and Resonances

George K. Leontaris

The University of Ioannina

 $I\omega\alpha\nu\nu\iota\nu\alpha$

GREECE

Outline of the Talk

- \blacktriangle \mathcal{F} —Theory: A few basic notions...
- ▲ Model building with F-theory
- $ightharpoonup SU(5) imes PSL_2(p)$ and Neutrinos ...
- ▲ New Physics Implications of 750GeV ... or rather ≥ few TeV resonances
- ▲ Concluding Remarks

 $\mathcal{PART} - \mathcal{I}$

F-Theory

why?

Consistent framework for unification

Calculability

testable predictions

Basic features of F-theory:

- ★ Geometrization of Type II-B String Theory
- ★ Elliptically fibred 8-dimensional compact space
- ★ Fibration described by a simple well known model (Weierstraß model)

 \mathcal{A}

... a short geometric description of the fibration ...

Any cubic equation with a rational point can be written in:

★ Weierstraß form:

$$y^2 = x^3 + fx + g$$

- Two important quantities characterising elliptic curves:
- 1. The Discriminant:

$$\Delta = 4f^3 + 27g^2$$

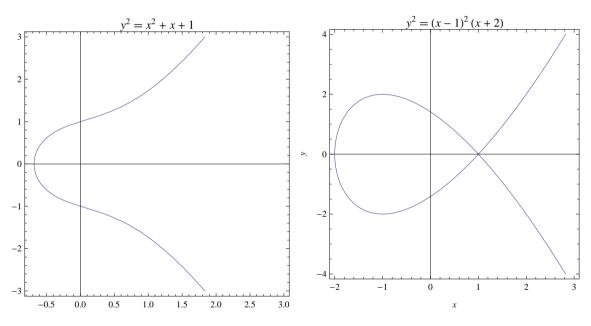
- ... classifies the curves with respect to its singularities
- 2. The j-invariant function:

$$\mathbf{j} = 4 \, \frac{(24\mathbf{f})^3}{4\mathbf{f}^3 + 27\mathbf{g}^2}$$

... takes the same value for equivalent elliptic curves

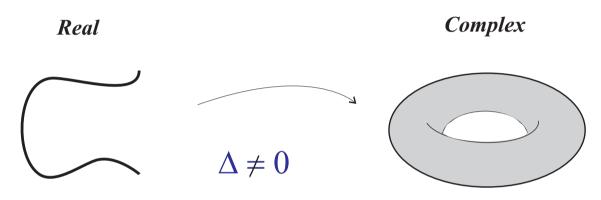
basic ingredients: the elliptic curve equ and its discriminant:

$$y^2 = x^3 + fx + g$$
, $\Delta = 4f^3 + 27g^2$

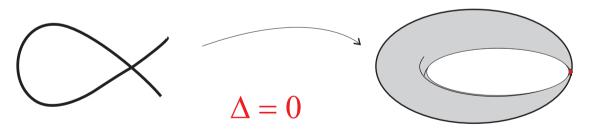


non-singular $\Delta \neq 0 \leftarrow$ Elliptic Curves \rightarrow singular $\Delta = 0$

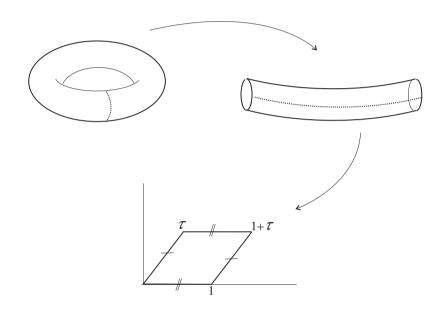
$$y^2 = x^3 + fx + g$$



non-singular elliptic curve



singular elliptic curve



A torus cut along the two circles is topologically equivalent to a parallelogram.

Described by Complex Modulus: $au=\alpha+\beta\,i$.

(Vafa hep-th/9602022)

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and R-boundary conditions:

$$(NS_+, NS_+), (R_-, R_-), (NS_+, R_-), (R_-, NS_+)$$

Bosonic spectrum:

 (NS_+, NS_+) : graviton, dilaton and 2-form Kalb-Ramond-field:

$$g_{\mu\nu}, \ \phi, \ B_{\mu\nu} \to B_2$$

 (R_-,R_-) : scalar, 2- and 4-index fields (p-form potentials)

$$\mathbf{C_0}, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = \mathbf{0}, 2, 4$$

Definitions (F-theory bosonic part)

- 1. String coupling: $g_s = e^{-\phi}$
- 2. Combining the two scalars C_0 , ϕ to one modulus:

$$\tau = C_0 + i e^{\phi} \to C_0 + \frac{i}{g_s}$$

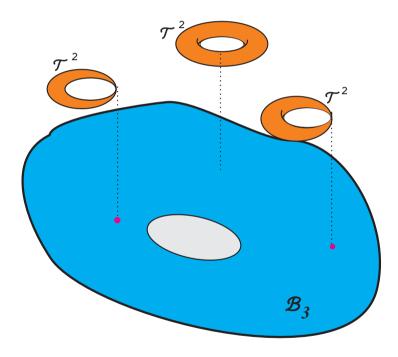
(recall that τ can describe a torus)

- 1. Theory can be described by consistent properly invariant action (see for example arXiv:0803.1194)
- 2. ... gives the correct EoM
- 3. Consistent with N=1 Supersymmetry

FIBRATION

- ightharpoonup 6-d compact space described by 3-complex dim. manifold \mathcal{B}_3
- $\triangle \implies$ At each point on \mathcal{B}_3 assign a torus with modulus:

$$\tau = C_0 + \imath/g_s$$



 \implies F-theory defined on $\mathcal{R}^{3,1} imes \mathcal{X}$

 \mathcal{X} , is called elliptically fibered CY 4-fold over B_3

Elliptic Fibration

described by ${\mathcal W}$ eierstraß ${\mathcal E}$ quation

$$y^2 = x^3 + f(w)xz^4 + g(w)z^6$$

For each point of B_3 , the above equation describes a torus

- 1. x, y, z homogeneous coordinates
- 2. $f(w), g(w) \rightarrow 8^{th}$ and 12^{th} degree polynomials.
- 3. Discriminant

$$\Delta(w) = 4f^3 + 27g^2$$

Fiber singularities at zeros of Discriminant.

$$\Delta(w) = 0 \rightarrow 24 \text{ roots } w_i$$
 $\downarrow \downarrow$

Kodaira classification:

- ullet Type of Manifold **singularity** is specified by the **vanishing order** of $f(w), \, g(w)$ and $\Delta(w)$
- Geometric Singularities classified in terms of $\mathcal{A} \mathcal{D} \mathcal{E}$ Lie groups (Kodaira \sim 1960...).

Interpretation of geometric singularities

$$\Downarrow$$
 $CY_4 ext{-Singularities}
ightharpoonup ext{gauge symmetries}$

$$\begin{array}{ccc} \mathbf{Groups} & \rightarrow & \left\{ \begin{array}{c} SU(n) \\ SO(m) \\ \mathcal{E}_n \end{array} \right. \end{array}$$

Example:

$$f = w^3(b_3 + b_4w + \cdots), \ g = w^4(c_4 + c_5w + \cdots), \ \Delta = w^8(d_8 + d_9w + \cdots) \to \mathcal{E}_6$$

ord(f)	ord(g)	$\operatorname{ord}(\Delta)$	fiber type	Singularity	
0	0	n	I_n	A_{n-1}	
≥ 1	1	2	II	none	
1	≥ 2	3	III	A_1	
≥ 2	2	4	IV	A_2	
2	≥ 3	n+6	I_n^*	D_{n+4}	
≥ 2	3	n+6	I_n^*	D_{n+4}	
≥ 3	4	8	IV^*	E_6	
3	≥ 5	9	III^*	E_7	
≥ 4	5	10	II^*	E_8	

Table 1: Vanishing order of the polynomials f,g and the discriminant $\Delta.$ (The Kodaira classification)

Tate's Algorithm

$$y^2 + \alpha_1 x y z + \alpha_3 y z^3 = x^3 + \alpha_2 x^2 z^2 + \alpha_4 x z^4 + \alpha_6 z^6$$

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate's form coefficients α_i :

Group	α_1	α_2	α_3	$lpha_4$	α_6	Δ
SU(2n)	0	1	n	n	2n	2n
SU(2n+1)	0	1	n	n+1	2n + 1	2n+1
SU(5)	0	1	2	3	5	5
SO(10)	1	1	2	3	5	7
\mathcal{E}_6	1	2	3	3	5	8
\mathcal{E}_7	1	2	3	3	5	9
\mathcal{E}_8	1	2	3	4	5	10

Basic ingredient in F-theory:

D7 - brane

GUTs are associated with 7-branes wrapping certain classes of 'internal' 2-complex dim. surface:

$$\mathbf{S} \subset B_3$$

▲ Gauge symmetry embedded in maximal exceptional group:

$$\mathcal{E}_8 \to \mathbf{G_{GUT}} \times \mathcal{C}$$

 \star C Group can be reduced by \Rightarrow monodromies or some symmetry breaking mechsnism to:

$$U(1)^n$$
, or some discrete symmetry A_4, S_4, \ldots

... these act as family or discrete symmetries

 \mathcal{B}

Models

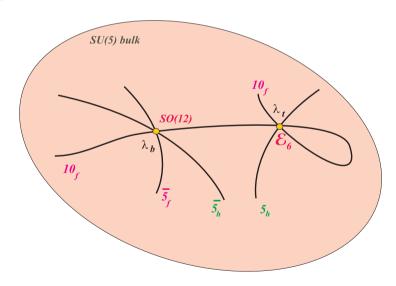
An SU(5) Model (for GUTs see this morning's lecture by G.G. Ross)

$$\mathcal{E}_8 \to SU(5) \times SU(5)_{\perp} \to \mathcal{C} = SU(5)_{\perp}.$$

Spectral Cover description: $SU(5)_{\perp}
ightarrow {
m described}$ by Cartan roots:

$$t_i = SU(5) - \text{roots} \rightarrow \sum_i t_i = 0$$

Matter resides in 10 and $\overline{5}$ along intersections with other 7-branes (*intersecting branes: detailed description in Andoniadis' lecture*)



 $\lambda_{t,b}$ -Yukawas at intersections and gauge symmetry enhancements

Fluxes: \raiset{N} SU(5) Chirality SU(5) Symmetry Breaking \raiset{N} Splitting of SU(5)-reps

Two types of fluxes:

$\Delta M_{10}, M_5$:

associated with flux-restrictions on U(1)'s $\in SU(5)_{\perp}$: determine the chirality of complete $10,5\in SU(5)$.

$\triangle N_Y$:

related to Cartan generators of $SU(5)_{GUT}$.

They are taken along $U(1)_Y \in SU(5)_{GUT}$ and split SU(5)-reps.

 $U(1)_{\perp}$ -Flux on SM reps \in **10**'s:

$$#10 - #\overline{10} = \begin{cases} n_{(3,2)_{\frac{1}{6}}} - n_{(\bar{3},2)_{-\frac{1}{6}}} &= M_{10} \\ n_{(\bar{3},1)_{-\frac{2}{3}}} - n_{(3,1)_{\frac{2}{3}}} &= M_{10} \\ n_{(1,1)_{1}} - n_{(1,1)_{-1}} &= M_{10} \end{cases}$$

 $U(1)_{\perp}$ - Flux on SM reps \in 5's:

$$#5 - #5 = \begin{cases} n_{(3,1)_{-\frac{1}{3}}} - n_{(\bar{3},1)_{\frac{1}{3}}} &= M_5 \\ n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} &= M_5 \end{cases}$$

(... subject to:
$$\sum_i M_{10}^i + \sum_j M_5^j = 0$$
)

$U(1)_Y$ - Flux-splitting of 10's:

$$n_{(3,2)_{\frac{1}{6}}} - n_{(\bar{3},2)_{-\frac{1}{6}}} = M_{10}$$

$$n_{(\bar{3},1)_{-\frac{2}{3}}} - n_{(3,1)_{\frac{2}{3}}} = M_{10} - N_{Y_{10}}$$

$$n_{(1,1)_{1}} - n_{(1,1)_{-1}} = M_{10} + N_{Y_{10}}$$

$U(1)_Y$ - Flux-splitting of 5's:

$$n_{(3,1)_{-\frac{1}{3}}} - n_{(\bar{3},1)_{\frac{1}{3}}} = M_5$$

$$n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} = M_5 + N_{Y_5}$$

(... subject to
$$\sum_i N_{Y_{10}}^i = \sum_j N_{Y_5}^j = 0, \ldots$$
 etc)

```
▲ Spectrum (... in brief)▼
```

- MSSM spectrum + natural doublet-triplet splitting
- ullet vector-like fields $f+ar{f}$ (always present for $G_S \geq SO(10)$)
- singlets + KK-modes ...

Two ways to obtain Fermion Mass Hierarchy in F-theory

ightharpoonup All families on the same curve(s) $(\Sigma_{10}, \Sigma_{\bar{5}})$

non-commutative geometry, ...Flux corrections ⇒ Hierarchy...

Families assigned on different matter curves $(\Sigma_{10}^{1,2,3}, \Sigma_{\bar{5}}^{1,2,3})$

Monodromy → Rank one mass matrices at tree level.

Hierarchy organised by U(1)'s (Froggatt Nielsen mechanism)

from underlying E_8 via Singlet vevs $\langle heta_{ij}
angle$

Choice: $\langle \theta_{14} \rangle \cdot \langle \theta_{43} \rangle \neq 0$

▼ Rank one Quark mass matrices (*GKL and GG Ross*) JHEP02(2011)108

$$M_{d} = \begin{pmatrix} \lambda_{11}^{d} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{12}^{d} \theta_{14} \theta_{43}^{2} & \lambda_{13}^{d} \theta_{14} \theta_{43} \\ \lambda_{21}^{d} \theta_{14}^{2} \theta_{43} & \lambda_{22}^{d} \theta_{14} \theta_{43} & \lambda_{23}^{d} \theta_{14} \\ \lambda_{31}^{d} \theta_{14} \theta_{43} & \lambda_{32}^{d} \theta_{43} & 1 \times \lambda_{33}^{d} \end{pmatrix} v_{b}, \tag{1}$$

$$M^{u} = \begin{pmatrix} \lambda_{11}^{u} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{12}^{u} \theta_{14}^{2} \theta_{43} & \lambda_{13}^{u} \theta_{14} \theta_{43} \\ \lambda_{21}^{u} \theta_{14}^{2} \theta_{43} & \lambda_{22}^{u} \theta_{14}^{2} & \lambda_{23}^{u} \theta_{14} \\ \lambda_{31}^{u} \theta_{14} \theta_{43} & \lambda_{32}^{u} \theta_{14} & 1 \times \lambda_{33}^{u} \end{pmatrix} v_{u}$$
 (2)

- $ightharpoonup Yukawa strengths <math>\lambda_{ij}$ computed from overlapping integrals ... expected of $\mathcal{O}(1)$.
- wo Singlet vevs $heta_{ij}$ fixed by F- and D-flatness.

Particles' Wavefunctions: solving EoM o Gaussian profile: $\psi \sim f(z_i)e^{-M|z_i|^2}$

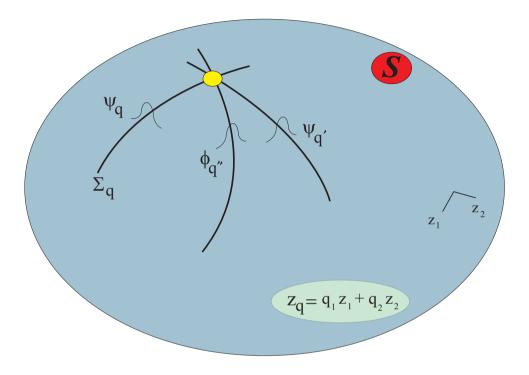


Figure 1: Overlapping of three wavefunctions at triple intersection (Yukawa coupling)

Strength of Yukawa coupling \propto integral of overlapping ψ 's at 3-intersection:

$$\lambda_{ij} \propto \int \psi_i(z_1, z_2) \psi_j(z_1, z_2) \psi_H(z_1, z_2) dz_1 \wedge dz_2 \approx 0.3 - 0.5$$

 $\mathcal{PART} - \mathcal{II}$

Discrete Symmetries and Neutrinos

.

E.G.Floratos, GKL arXiv:1511.01875

Neutrino data: parametrization of mixing angles

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{23}s_{12}s_{13} - c_{12}s_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$
(3)

Experimental data (3σ range) of the angles ($c_{ij} \equiv \cos \theta_{ij}$)

$$\sin^2 \theta_{12} = [0.259 - 0.359]$$

$$\sin^2 \theta_{23} = [0.331 - 0.637]$$

$$\sin^2 \theta_{13} = [0.0169 - 0.0313]$$

$$\delta = 0.77\pi - 1.36\pi$$

(4)

... for theoretical analysis... see yesterday's Lectures by J.W.F. Valle

Working with $M=m_{
u}m_{
u}^{\dagger}$ (assuming Hermitian matrix):

A Hermitian can be written in terms a unitary U (...+ Cayley Hamilton theorem)

$$\mathbf{M} = i\log(\mathbf{U}) = c_1 I + c_2 \mathbf{U} + c_3 \mathbf{U}^2 \qquad (\mathcal{R}_1)$$

Assuming invariance under group generator(s) A_i

$$[M, A_i] = 0 \to [U, A_i] = 0 \tag{\mathcal{R}_2}$$

- lacktriangle $(\mathcal{R}_1) \to$ disentangles mixing from eigenvalues ... $m_{\nu_i} = m_{\nu_i}(c_{0,1,2})$
- \blacktriangle $(\mathcal{R}_2) \to M, U, A_i$ common system of eigenvectors:
- i) search for groups with 3-d irreps A_i and the right eigenvectors o
 u-mixing or ...
- ii)...try to express $M = \sum_i A_i$.

... a unified method to construct discrete group representations... required.

... this is feasible for a wide class of Discrete Groups $PSL_2(p),\ p$ prime

▲ Requirements: ▲

- \blacktriangle Relevant only those with 3-dim. representations
- ightharpoonup GUT and "perpendicular"-group embedded in maximal symmetry E_8 :

$$\begin{array}{c}
E_8 \supset \begin{cases}
E_6 \times SU(3)_{\perp} \\
SO(10) \times SU(4)_{\perp} \\
SU(5) \times SU(5)_{\perp}
\end{cases} \tag{5}$$

ightarrow In the context of F-theory, $PSL_2(p)$ must be subgroups of

$$\mathbf{SU(5)}_{\perp}, \ \mathbf{SU(4)}_{\perp}, \ \mathbf{SU(3)}_{\perp}$$

$$\cdots \rightarrow p < 11$$

Definition of $SL_2(p)$ $p \in \mathbb{Z}/p\mathbb{Z}$

 $SL_2(p)$: group of 2×2 matrices with integer entries

$$\mathfrak{A} = \left(egin{array}{c} a & b \ c & d \end{array}
ight), \ ad - bc = 1 \mathrm{mod}(p), p \in \mathbb{Z}/p\mathbb{Z}$$

Group generated by two 2×2 matrices (**Artin's** representation):

$$\mathbf{a} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$

$$\mathfrak{a}^2 = \mathfrak{b}^3 = -\mathcal{I} \equiv -\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

... additional conditions depend on p.

Definition of $PSL_2(p), \ p \in \mathbb{Z}/p\mathbb{Z}$

Observing that $Z_2 = \{I, -I\}$ is normal subgroup $\in SL_2(p)$...

...Quotient defines the projective linear group

$$SL_2(p)/\{I, -I\} = PSL_2(p)$$

AIM: construction of 3-dim. representations of $PSL_2(p)$. (3 × 3 matrices)

Method: use of Weil's Metaplectic Representation

(based on work of Balian & Itzykson Acad. Dc. Paris 303 (1986).)

...this method provides the p-dimensional *reducible* representation of $SL_2(p)$...

... p-dim. splits to two lower dimensional **irreducible** representations:

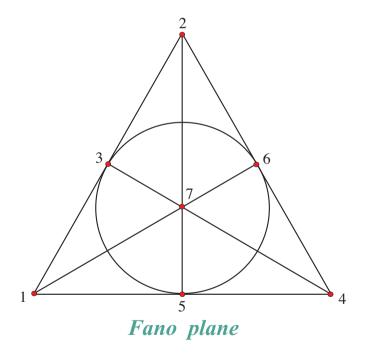
$$p = \frac{p+1}{2} + \frac{p-1}{2}$$

of discrete groups $\in SU(rac{p+1}{2})$ and $SU(rac{p-1}{2})$

Cases of Physical Interest: p = 3, 5, 7

- \bullet $PSL_2(3) \sim A_4$, (and $SL_2(3)$ its double covering)
- \bullet $PSL_2(5) \sim A_5$ (smallest non-abelian simple group)
- ullet $SL_2(7)$ and its projective $PSL_2(7)\subset SU(3)$ with 168 elements...

...isomorphic to the group preserving the discrete projective geometry of Fano plane.



BACKGROUND

Consider the *GF*=*Galois field* of discrete circle GF[p] and position eigenfunctions $|q\rangle$

$$GF[p] = \{0, 1, 2, \dots, p-1\}, |q\rangle_i = \delta_{ij}, (i, j) = 1, 2, \dots, p-1$$

Define **Translation** and **Momentum** operators :

$$P|q\rangle = |q+1\rangle \tag{6}$$

$$Q|q\rangle = \omega|q\rangle \tag{7}$$

with

$$\omega = e^{2\pi i/p}, \ P_{kl} = \delta_{k-1,l}, \ Q_{kl} = \omega^k \delta_{kl}$$

Properties

Commutation Relation

$$QP = \omega PQ$$

Associated to each-other through the Discrete Fourier Transform (DFT) $F_{kl}=\frac{1}{\sqrt{p}}\omega^{kl}$:

$$P = F^{-1}QF$$

Heisenberg Group ${\cal H}$

P and Q generate \mathcal{H} with elements of the form:

$$J_{n_1, n_2, t} = \omega^t P^{n_1} Q^{n_2},$$

with $t \in \mathbb{Z}/p\mathbb{Z}, n_1, n_2 \in (\mathbb{Z}/p\mathbb{Z})^2$. Isomorphic to the group of matrices:

$$J_{n_1,n_2,t} \leftrightarrow \left(egin{array}{cccc} 1 & 0 & 0 \ n_1 & 1 & 0 \ t & n_2 & 1 \end{array}
ight)$$

Working with a subset of it $(t \to \frac{n_1 n_2}{2})$:

$$J_{\vec{n}} \equiv J_{n_1,n_2} = \omega^{\frac{n_1 n_2}{2}} P^{n_1} Q^{n_2}, \quad \vec{n} = (n_1, n_2)$$

which obeys the 'multiplication' law

$$J_{ec{m}}J_{ec{n}}=\omega^{rac{ec{n} imesec{m}}{2}}J_{ec{m}+ec{n}}$$

Metaplectic Representation

... the action of an $SL_2(p)$ element $A=\left(egin{array}{cc}a&b\\c&d\end{array}\right)$ on coordinates (r,s) of periodic lattice $\mathbb{Z}_p\times\mathbb{Z}_p$ induces unitary automorphism U(A):

$$U(A)J_{r,s}U^{\dagger}(A)=J_{r',s'}, \quad ext{where } (r',s')=(r,s)\left(egin{array}{cc} a & b \ c & d \end{array}
ight)$$

Formula of U(A) has been given by Balian and Itzykson (1986):

$$U(A) = rac{\sigma(1)\sigma(\delta)}{p} \sum_{r,s} \omega^{[br^2+(d-a)rs-cs^2]/(2\delta)} J_{r,s}$$

for $\delta = 2 - a - d \neq 0$, and:

$$\delta = 0, \ b \neq 0:$$
 $U(A) = \frac{\sigma(-2b)}{\sqrt{p}} \sum_{s} \omega^{s^2/(2b)} J_{s(a-1)/b,s}$ $\delta = b = 0, \ c \neq 0:$ $U(A) = \frac{\sigma(2c)}{\sqrt{p}} \sum_{r} \omega^{-r^2/(2c)} P^r$ $\delta = b = 0 = c = 0:$ $U(1) = I$

(8)

A few clarifications on notation

 $\sigma(a)$ is the Quadratic Gauss Sum,

$$\sigma(a) = \frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} \omega^{ak^2} = (a|p) \times \begin{cases} 1 & \text{for } p = 4k+1 \\ i & \text{for } p = 4k-1 \end{cases}$$

and (a|p) the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \text{ devides } p \\ +1 & \text{if } a = QR p \\ -1 & \text{if } a \neq QR p \end{cases}$$

(9)

(integer q is $\mathcal{QR} \to \mathsf{Quadratic}$ Residue iff $\exists x: x^2 = q \bmod p$.)

for
$$x = 0, 1, 2, 3, \dots$$
, $x^2 \mod 5 = 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, \dots$

The construction of the $SL_2(p)$ representations

... it suffices to construct only the two generators $\mathfrak{a}=\left(\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\right),\mathfrak{b}=\left(\begin{smallmatrix}0&-1\\1&1\end{smallmatrix}\right)$. Observe that

$$U(\mathfrak{a}) = (-1)^{k+1} i^{n} F, \quad \begin{cases} n = 0 & \text{for } p = 2k+1 \\ n = 1 & \text{for } p = 2k-1 \end{cases}$$

Observe also that DFT generates an Abelian group with four elements

$$F, S = F^2, F^3 = F^*, S^2 \equiv F^4 = I$$

and... since $S^2 = I \Rightarrow S$: can be used to define projection operators

$$P_{\pm} = \frac{1 \pm S}{2}$$

... split $SL_2(p)$ reducible representations to $\frac{p+1}{2}$ & $\frac{p-1}{2}$ dim. irreps:

$$U(A)_{\pm} = U(A)P_{\pm}$$

... $U(A)_{\pm}$ block diagonal form achieved by orthogonal matrix \mathcal{O} of S eigenvectors:

$$(e_0)_k = \delta_{k0},$$

$$(e_j^+)_k = \frac{1}{\sqrt{2}}(\delta_{k,j} + \delta_{k,-j}), \ j = 1, \dots, \frac{p-1}{2}$$

$$(e_j^-)_k = \frac{1}{\sqrt{2}}(\delta_{k,j} - \delta_{k,-j}), \ j = \frac{p+1}{2}, \dots, p$$

Example. $SL_2(7)$ case:

$$\mathcal{O} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Final block-diagonal form:

$$V_{\pm}(A) = \mathcal{O}U(A)_{\pm}\mathcal{O}$$

- $A SL_2(7)$ has $(p^2-1)p=336$ elements
- Arr $PSL_2(7)$ has 168 elements ($= 7 \times 24$ hours in week!)

Construction of 3-d. irreducible representation of $PSL_2(7)$ satisfying:

$$\mathfrak{a}^2 = \mathfrak{b}^3 = (\mathfrak{a}\mathfrak{b})^7 = ([\mathfrak{a},\mathfrak{b}])^4 = I$$

from 7-d. reducible rep. of $SL_2(7)$.

Defining $\eta = e^{2\pi i/7}$, (7th root of unity)

$$\mathfrak{a} o A^{[3]} = rac{i}{\sqrt{7}} \left(egin{array}{cccc} rac{\eta^2 - \eta^5}{\eta^6 - \eta} & rac{\eta^6 - \eta}{\eta^4 - \eta^3} & rac{\eta^3 - \eta^4}{\eta^2 - \eta^5} \ rac{\eta^3 - \eta^4}{\eta^3 - \eta^4} & rac{\eta^2 - \eta^5}{\eta^2 - \eta^6} \end{array}
ight)$$

and

$$\mathfrak{b} o B^{[3]} = rac{i}{\sqrt{7}} \left(egin{array}{cccc} rac{\eta - \eta^4}{5} & rac{\eta^4 - \eta^6}{7} & rac{\eta^6 - 1}{7} \ rac{\eta^5 - 1}{\eta^2 - \eta^3} & rac{\eta^5 - \eta}{1 - \eta^3} & rac{\eta^4 - \eta^2}{7} \end{array}
ight)$$

APPLICATION

... assuming invariance of neutrino mass matrix

$$[m_{\nu}, A^{[3]}] = 0 \rightarrow m_{\nu} = \begin{pmatrix} z_5 + x & z_4 - y & z_4 \\ z_4 - y & z_5 - y & z_6 \\ z_4 & z_6 & z_5 \end{pmatrix}, \begin{cases} x = \alpha (z_4 + z_6) & y = \beta (z_4 + z_6) \\ \alpha = 32 \sin^3 \left(\frac{\pi}{14}\right) \sin^2 \left(\frac{3\pi}{14}\right) & \alpha + \beta = 1 \end{cases}$$

The neutrino mixing matrix is found analytically.

$$\mathbf{U}_{PMNS} = V_{\ell}^{T} V_{\nu} = \begin{pmatrix} -0.814857 & 0.57735 & 0.051711 \\ 0.452212 & 0.57735 & 0.679832 \\ -0.362646 & -0.57735 & 0.731543 \end{pmatrix}$$

Comparison with experimental data:

- \triangle θ_{12}, θ_{23} in perfect agreement with experimental values.
- θ_{13} automatically non-zero, although smaller that experimental value.

A systematic study required ...

... work in progress with N.D. Vlachos

 ${\mathcal C}$ oncluding ${\mathcal R}$ emarks

F-theory models:

Geometric interpretation of GUTs

Calculability, form handful of topological properties, natural Doublet-Triplet splitting...

Prediction of Vector-like pairs and singlets ...

hints for New Physics

such as ... resonances, diphoton events at a few TeV...

Discrete Symmetries interpreting the Neutrino data naturally incorporated in E_8 singularity

The analytic form of $V_{
u}$

The analytic form of the neutrino mixing matrix

$$V_{\nu} = \begin{pmatrix} \frac{1 + \frac{2\cos\left(\frac{\pi}{14}\right)}{\sqrt{7}} - \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}} & -\frac{1}{\sqrt{3}} & \frac{1 - \frac{2\cos\left(\frac{\pi}{14}\right)}{\sqrt{7}} + \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}} \\ \sqrt{6\left(1 - \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}}\right)} & -\frac{1}{\sqrt{3}} & \frac{1 - \frac{2\cos\left(\frac{\pi}{14}\right)}{\sqrt{7}} + \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}} \\ \frac{1 - \frac{2\sin\left(\frac{\pi}{7}\right)}{\sqrt{7}} - \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}}}{\sqrt{6\left(1 - \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}}\right)}} & \frac{1}{\sqrt{3}} & \frac{1 + \frac{2\sin\left(\frac{\pi}{7}\right)}{\sqrt{7}} + \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}}}{\sqrt{2}\left(1 + \frac{6\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}}\right)} \\ \frac{2\sin\left(\frac{\pi}{7}\right)}{\sqrt{7}} + \frac{2\cos\left(\frac{\pi}{14}\right)}{\sqrt{7}} & \frac{1}{\sqrt{3}} & \frac{-2\sin\left(\frac{\pi}{7}\right)}{\sqrt{7}} - \frac{2\cos\left(\frac{\pi}{14}\right)}{\sqrt{7}} \\ \sqrt{6\left(1 - \frac{2\cos\left(\frac{3\pi}{14}\right)}{\sqrt{7}}\right)} & \frac{1}{\sqrt{3}} & \frac{-2\sin\left(\frac{\pi}{7}\right)}{\sqrt{7}} - \frac{2\cos\left(\frac{\pi}{14}\right)}{\sqrt{7}} \end{pmatrix}$$