
DOUBLE HYBRID INFLATION AND GRAVITY WAVES

1 Introduction

• Recent results of BICEP2 on the B-mode in the polarization of the

CMBR at degree angular scales indicate that inflationary scenarios

may have to face a new challenge.

• They should accommodate appreciable values of the tensor-to-

scalar ratio r, since a B-mode could be due to the production of

gravitational waves during inflation.

• Although r seems to be smaller than initially claimed due to possi-

ble underestimation of the foreground from Galactic polarized-dust

emission, r ∼ 0.01 cannot be excluded.

• The most recent joint analysis of the Planck and BICEP2 data

yields r <∼ 0.12 at 95% c.l.

• SUSY Hybrid Inflation is a promising inflation scenario.

• In its simplest realization, though, it suffers from some problems.

• The GUT gauge symmetry is spontaneously broken only at the end

of inflation and, thus, if magnetic monopoles are predicted, they

are copiously produced, leading to a cosmological catastrophe.

• Also, although accurate measurements imply that the scalar spec-

tral index ns is clearly lower than unity, this scenario gives values

very close to unity or even larger within minimal SUGRA.

• These problems are solved within a two stage Hybrid Inflation with

minimal SUGRA: the standard-smooth hybrid inflation scenario.

• The cosmological scales exit the horizon during the first stage of

inflation, which is of the standard hybrid type.



• It occurs on a ‘trivial’ path on which the gauge group is unbroken.

• Restricting the number of e-foldings during this stage, we can

achieve adequately low ns’s.

• The extra e-foldings for solving the horizon and flatness problems

of big bang are generated by a second inflation along a classically

non-flat valley of minima, where the gauge group is broken.

• Consequently, monopoles are produced only at the end of the first

stage, but are adequately diluted by the second one.

• This scenario was realized within an extended SUSY PS particle

physics GUT model with only renormalizable interactions, which

was constructed for a very differed reason.

• Namely, the simplest SUSY PS model predicts Yukawa unification

and, with universal boundary conditions, yields unacceptablemb’s.

• In the extended model, Yukawa unification is naturally and mod-

erately violated and this problem is solved.

• Here, we will show that a reduced version of this extended model

can also yield a two stage inflationary scenario which can predict

r’s up to about 0.05 together with acceptable ns’s.

• Larger r’s would require unacceptably large running of ns.

• The first stage occur along the trivial path, stabilized by SUGRA,

and our present horizon undergoes a limited number of e-foldings.

• The obtained r’s can be appreciable thanks to strong radiative and

relatively mild SUGRA corrections to the inflationary potential.

• The second stage occurs on the so-called semi-shifted path, where

U(1)B−L is unbroken, and generates the extra e-foldings required.



• This is possible since the SUGRA corrections on the semi-shifted

path are also mild and this path, being orthogonal to the trivial

one, is not affected by the strong radiative corrections on it.

• We take units where mP = 1.

2 The model in global SUSY

• The reduced version of the extended SUSY PS model is based on

the left-right symmetric gauge group GLR = SU(3)c×SU(2)L×
SU(2)R × U(1)B−L, subgroup of the PS group.

• The superfields relevant for inflation are the following:

• A conjugate pair of Higgses H, H̄ in the (1, 1, 2)1 and (1, 1, 2)−1

representations of GLR causing the breaking of GLR to GSM.

• A gauge singlet S triggering this breaking, and a conjugate pair

Φ, Φ̄ ∈ (1, 1, 3)0. The 〈Φ〉 breaks GLR → GSM × U(1)B−L.

• The superpotential relevant for inflation is

W = κS
(

M 2 − Φ2
)

− γSHH̄ +mΦΦ̄− λΦ̄HH̄.

• M ,m are superheavy masses and κ, γ, λ dimensionless constants.

• All these parameters but one can be made real and positive by

rephasing the superfields. For definiteness, we choose the remain-

ing complex parameter to be real and positive too.

• The resulting F–term scalar potential is

V 0
F = |κ(M 2 − Φ2)− γHH̄|2 + |mΦ̄− 2κSΦ|2

+|mΦ− λHH̄|2 + |γS + λΦ̄ |2
(

|H|2 + |H̄|2
)

.



• From V 0
F and the vanishing of the D–terms, implying H̄∗ = eiθH,

one finds two distinct continua of SUSY vacua:

Φ = Φ+, H̄∗ = H, |H| =
√

mΦ+

λ
(θ = 0),

Φ = Φ−, H̄∗ = −H, |H| =
√

−mΦ−
λ

(θ = π)

with Φ̄ = S = 0, where

Φ± ≡ ±M

√

1 +
( γm

2κλM

)2

− γm

2κλ
.

• The model generally possesses three flat directions:

• The usual trivial path at Φ = Φ̄ = H = H̄ = 0 with V 0
F = Vtr ≡

κ2M 4, where GLR is unbroken.

• The new shifted path at

Φ = − γm

2κλ
, Φ̄ = −γ

λ
S, HH̄ =

κγ(M 2 − Φ2) + λmΦ

γ2 + λ2

with V 0
F = Vnsh ≡ κ2M 4

(

λ2

γ2 + λ2

)(

1 +
γ2m2

4κ2λ2M 2

)2

.

This path supports new shifted hybrid inflation with GLR → GSM.

• The semi-shifted path, which exists only for M 2 > m2/2κ2, at

Φ = ±M

√

1− m2

2κ2M 2
, Φ̄ =

2κΦ

m
S, H = H̄ = 0

with V = Vssh ≡ m2M 2

(

1− m2

4κ2M 2

)

.

It yields semi-shifted hybrid inflation with U(1)B−L unbroken.

• We take M 2 > m2/2κ2 and, thus, the semi-shifted path exists

and always lies lower than the trivial and the new shifted one.



• We also take κ ∼ 1, γ ≪ λ ≪ κ, and m ≪ M , so that the new

shifted path (for |S| < 1) essentially coincides with the trivial one

and, thus, plays no independent role in our scheme.

3 The first stage of inflation

• The first stage of inflation takes place along the trivial path, which,

for large |S|’s, is stabilized by SUGRA corrections.

• Although the number of e-foldings is limited, all the cosmological

scales exit the horizon during this stage.

• Strong radiative and relatively mild SUGRA corrections to the

potential then guarantee an appreciable r with an acceptable ns.

• We adopt the Kähler potential

K = − ln
(

1− |S|2
)

− ln
(

1− |Φ̄|2
)

+ |Φ|2 + |H|2 + |H̄|2
−2 ln

(

− ln |Z1|2
)

+ |Z2|2.

• The two extra GLR singlets Z1 and Z2 do not enter W .

• The F–term potential in SUGRA is then

VF =

[

∑

i

|WXi
+KXi

W |2K−1
XiXi

∗ − 3|W |2
]

eK,

where the sum is over all the fields S, Φ̄, Φ, H, H̄, Z1, Z2 and

a subscript Xi denotes derivation w.r.t. to Xi .

• The values of Z1 and Z2 are fixed by anomalous D–terms.

• S, Φ̄, Z1 have no-scale type Kähler potentials which, in view of

|KZ1
|2K−1

Z1Z1
∗ = 2,



guarantee the exact flatness of the potential along the trivial path

and its approximate flatness on the semi-shifted one for Z2 = 0.

• The relation then

|KZ2
|2K−1

Z2Z2
∗ = |Z2|2 ≡ β

implies that the complex inflatons S and Φ̄ for the two paths,

respectively, acquire m2 ∝ β when Z2 becomes non-zero.

• Using the symmetries, we can rotate S and H on the real axis.

The fields Φ̄, Φ, H̄ remain in general complex.

• For simplicity, we restrict Φ̄, Φ, H̄ on the real axis too.

• The canonically normalized real scalar fields σ, φ̄, φ, h, h̄ corre-

sponding to K are given by

S = tanh
σ√
2
, Φ̄ = tanh

φ̄√
2
,

Φ =
φ√
2
, H =

h√
2
, H̄ =

h̄√
2
.

• We evaluate VF with the factor exp
[

−2 ln
(

− ln |Z1|2
)

+ |Z2|2
]

absorbed into redefined parameters κ, γ, m, and λ.

• We find

VF =

[

A2
1 cosh

2 φ̄√
2
− A2

2 sinh
2 φ̄√

2
+ βA2

3 + A2
4 + A2

5

+
1

2

(

h2 + h̄2
)

A2
6 +

1

2

(

φ2 + h2 + h̄2
)

A2
3

+
(√

2φA5 − 2hh̄A6

)

A3

]

e
1

2(φ2+h2+h̄2).



• Here

A1 = κ

(

M 2 − φ2

2

)

− γ

2
hh̄, A2 = m

φ√
2
− λ

2
hh̄,

A3 = A1 sinh
σ√
2
cosh

φ̄√
2
+ A2 cosh

σ√
2
sinh

φ̄√
2
,

A4 = A1 sinh
σ√
2
sinh

φ̄√
2
+ A2 cosh

σ√
2
cosh

φ̄√
2
,

A5 = m cosh
σ√
2
sinh

φ̄√
2
−

√
2κφ sinh

σ√
2
cosh

φ̄√
2
,

A6 = γ sinh
σ√
2
cosh

φ̄√
2
+ λ cosh

σ√
2
sinh

φ̄√
2
.

• On the trivial path (φ̄, φ, h, h̄ = 0), VF becomes

VF = κ2M 4

[

1 + β sinh2
σ√
2

]

.

• The m2 eigenvalues in the directions perpendicular to this path

for sinh2
(

σ/
√
2
)

≫ M 2/2 are

m2
φ ≃ 4κ2 sinh2

σ√
2
, m2

φ̄ ≃ κ2M 4

[

1 + (1 + β) sinh2
σ√
2

]

,

m2
χ1,χ2

= (κM 2 ∓ γ)

[

κM 2 +
(

(1 + β)κM 2 ∓ γ
)

sinh2
σ√
2

]

,

where χ1,2 = (h± h̄)/
√
2 and their m2 formulas hold for any σ.

• Thus, for γ < κM 2, the trivial path is stable for large |σ|’s.
• However, as |σ| decreases, the eigenvalues and eigenstates of the

φ− φ̄ system change.



• When sinh2
(

σ/
√
2
)

≃ M 2/2+m2/2κ2M 2, one of the eigenval-

ues vanishes with φ̄ dominating the corresponding eigenstate.

• As sinh2
(

σ/
√
2
)

→ M 2/2, the eigenvalues become opposite to

each other with φ, φ̄ contributing equally to both the eigenstates.

• A further decrease of sinh2
(

σ/
√
2
)

leads to the domination of

the unstable eigenstate by φ.

• Since φ must become nonzero to cancel the energy density κ2M 4

on the trivial path, we say that this path is destabilized at σc with

sinh2
σc√
2
=

M 2

2
.

• To VF on the trivial path we add the dominant one-loop radiative

corrections from the Nφ-dimensional supermultiplet Φ (Nφ = 3):

V φ
r = κ2M 4

(

Nφκ
2

8π2

)

ln
2 tanh2 σ√

2

M 2
.

• Note that the renormalization scale in these corrections is chosen

such that V φ
r vanishes at |σ| = |σc|.

• The full inflationary potential V and its derivatives w.r.t. σ are:

V

κ2M 4
= 1 + β sinh2

σ√
2
+

δφ
4
ln
2 tanh2 σ√

2

M 2
≡ C(σ),

V ′

κ2M 4
=

1√
2
sinh(

√
2σ)

(

β +
δφ

sinh2(
√
2σ)

)

,

V ′′

κ2M 4
= cosh(

√
2σ)

(

β − δφ

sinh2(
√
2σ)

)

,



V ′′′

κ2M 4
=

√
2 sinh(

√
2σ)

(

β − δφ

sinh2(
√
2σ)

)

+
2
√
2δφ

tanh2(
√
2σ) sinh(

√
2σ)

with δφ =
Nφκ

2

2π2
.

• The usual slow-roll parameters for inflation are then

ǫ =
1

2

(

V ′

κ2M 4

)2
1

C2(σ)
,

η =

(

V ′′

κ2M 4

)

1

C(σ)
,

ξ =

(

V ′

κ2M 4

)(

V ′′′

κ2M 4

)

1

C2(σ)
= 2 tanh(

√
2σ)η

√
ǫ

+
4δφ

√
ǫ

C(σ) tanh2(
√
2σ) sinh(

√
2σ)

.

• From these expressions, we evaluate ns, its running αs, r, and V :

ns = 1 + 2η − 6ǫ, αs = 16ηǫ− 24ǫ2 − 2ξ, r = 16ǫ,

V =
3π2

2
Asr.

• As a numerical example, take σ∗ = 1.45 at horizon exit of the

pivot scale k∗ = 0.05 Mpc−1, κ = 1.7, β = 0.022, and the scalar

power spectrum amplitude As = 2.215× 10−9 at the same k∗.

• We then find M = 3.493× 10−3, C(σ∗) = 2.2941, ǫ = 0.00188,

η = −0.01389, ns = 0.9609, r = 0.0301, and αs = −0.01674.



• So we can not only be consistent with the latest Planck data, but

also accommodate large values of r ∼ few × 10−2.

• Note that large r’s require relatively large ǫ’s, which reduce ns

below unity, but not enough to make it compatible with the data.

• So large negative η’s are needed, which requires that the paren-

thesis in the formula for V ′′ is dominated by the second term.

• A similar parenthesis appears in the formula for V ′ too, but with
the two terms added.

• So both these terms have to be appreciable with the second one

being larger, which is possible only for large κ’s controlling the

radiative corrections on the trivial path.

• Inflation ends before the system reaches σc by violating the slow-

roll conditions and the obtained number of e-foldings is limited

due to the large ǫ’s and the fact that σ∗ ∼ 1.

4 The second inflationary stage

• We choose, for the rest of the parameters, m = 1.827 × 10−5,

λ = 0.1, and γ = 10−6 and include the D–terms from H, H̄.

• Numerically, we find that there are initial conditions for which,

after the first stage of inflation, the energy density approaches

m2M 2, φ2 ≃ 2M 2, h, h̄ ≃ 0, and A5 ≃ 0 with σ2 ≪ 1.

• So the system reaches the semi-shifted path, where VF becomes

VF ≃
M2≪β

m2M 2

[

1 + β sinh2
φ̄√
2

]

.



• Notice the striking similarity with VF on the trivial path. So the

SUGRA corrections remain relatively mild on this path too.

• From A5 ≃ 0, the combination of S, Φ̄ which is the complex

inflaton in the second stage is

mS + 2κ < Φ > Φ̄√
m2 + 4κ2M 2

≃ Φ̄,

since Φ̄ contributes here 2κM/m ≃ 650 times more than S.

• The mass eigenstates for the h−h̄ system during the second stage

of inflation are χ1,2 = (h± h̄)/
√
2 with masses-squared

m2
χ1,χ2

= (λ∓mM)

[

(λ∓ (1 + β)mM) sinh2
φ̄√
2
∓mM

]

.

• χ1 develops an instability terminating the semi-shifted valley.

• The critical value of the real canonically normalized inflaton φ̄:

sinh2
φ̄c√
2
=

mM

λ
.

• During the second stage, the dominant radiative corrections from

the Nh-dimensional superfields H, H̄ (Nh = 2) have to be added

V h
r ≃ m2M 2

(

Nhλ
2

16π2

)

ln
λ tanh2 φ̄√

2

mM
.

• The renormalization scale is chosen so that V h
r = 0 at |φ̄| = |φ̄c|.

• The radiative corrections from Φ are neglected being relatively

very small.



• This is because Φ couples to the complex inflaton only through S

and the contribution of S to this inflaton is severely suppressed.

• This is an important property of the model resulting from the fact

that, for the parameters chosen, the semi-shifted path is almost

orthogonal to the trivial one.

• So the very strong radiative corrections on the trivial path, needed

for accommodating appreciable r’s, do not affect the second stage.

• This is crucial since otherwise the semi-shifted path would be too

steep to generate the extra e-foldings required.

• The number of e-foldings during the second stage between φ̄in

and φ̄f is N(φ̄in)−N(φ̄f), where

N(φ̄) ≃ 1

2β
√

1− (δh/β)
ln
cosh(

√
2φ̄)−

√

1− (δh/β)

cosh(
√
2φ̄) +

√

1− (δh/β)

with δh = Nhλ
2/4π2.

• The termination of inflation is due to the radiative corrections and

occurs at φ̄f (|φ̄f| ≫ |φ̄c|):

cosh(
√
2φ̄f) ≃

δh
2
+

√

1 +
δ2h
4
.

• Numerically, we find that, with the chosen values, the first stage

gives rise to 13 e-foldings.

• So another 38-39 e-foldings must be provided by the second stage,

which requires |φ̄in| ≃ 0.23 at the onset of this stage.

• This requirement can indeed be fulfilled in our numerical example

as we have shown by extensive numerical studies.
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Figure 1: σ and φ̄ for the case with r = 0.0301 versus N . We take the initial conditions

σ = 1.45, φ̄ = 10−3, φ = 10−8, h = 10−4, h̄ = 1.01× 10−4, and dσ/dt = −1.1074× 10−6.

• In Fig. 1, we depict the evolution of σ and φ̄ versus the number

of e-foldings N from the horizon exit k∗.

• We take as initial conditions σ = 1.45, φ̄ = 10−3, φ = 10−8,

h = 10−4, and h̄ = 1.01× 10−4.

• All the fields are given zero initial velocity except for σ which is

given its actual velocity on the trivial path, −1.1074× 10−6.

• σ remains above its critical value for about 13 e-foldings.

• Near the end of the first stage, σ oscillates around zero four times.

• When the amplitude of the oscillations falls below the critical value

of σ, φ moves to the semi-shifted path and φ̄ starts performing

slow oscillations with variable amplitudes of order M .
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Figure 2: σ and φ̄ for the case with r = 0.0502 versus N . We take the initial conditions

σ = 1.35, φ̄ = 10−3, φ = 10−8, h = 9× 10−4, h̄ = 9.01× 10−4, and dσ/dt = −1.8523× 10−6.

• The size of φ̄ remains small for about 1.7 e-foldings before starting

its growth and acquires its largest value ≃ 0.225 at N ≃ 17.7.

• Allow for a stronger running of ns, we may obtain larger r’s.

• For example, taking σ∗ = 1.35, κ = 1.75, and β = 0.037, we find

M = 3.891×10−3, C(σ∗) = 2.3479, ǫ = 0.00314, η = −0.00844,

ns = 0.9643, αs = −0.03007, and r = 0.0502.

• In addition, we choosem = 3.891×10−5, λ = 0.1, and γ = 10−6.

• k∗ suffers about 10 e-foldings during the first stage and, thus,

another 41− 42 e-foldings must be provided by the second stage.

• This implies that |φ̄in| lies in the range 0.38− 0.40.

• We verified that the fulfillment of this requirement is feasible.



• In Fig. 2, we depict the evolution of σ and φ̄ as functions of N

for a particular choice of initial conditions.

5 Monopoles and cosmic strings

• After the first inflation stage, the system reaches the semi-shifted

path, SU(2)R → U(1) by Φ 6= 0 and monopoles are formed.

• The mean monopoles-antimonopoles distance is p (2κM)−1 as

determined by the Higgs boson mass (p ∼ 1 is a geometric factor.)

• In the matter dominated era between the two inflationary stages,

this distance increases by a factor ∼ (κ2M 4/m2M 2)1/3.

• Here κ2M 4 and m2M 2 are the classical potential energy densities

on the trivial and the semi-shifted paths.

• The second inflationary stage stretches this distance by a factor

expN2, where N2 is the number of e-foldings during this stage.

• During damped inflaton oscillations, this distance increases by a

factor ∼ (m2M 2/c(Tr)T
4
r )

1/3.

• Tr ≃ 109 GeV is the reheat temperature and c(T ) = π2g(T )/30

(g(T )=effective number of massless degrees of freedom).

• In the radiation dominated period which follows, the monopole-

antimonopole distance is multiplied by a factor

∼ Tr/T ∼ (4c(T )/3)1/4Tr

√
t.

• So this distance at t in the radiation dominated period is

∼
(

4

3

)
1

4

c(Tr)
−1

3c(T )
1

4p (2κM)−1eN2

(

κ2M 4

T 4
r

)
1

3

Trt
1

2 .



• Equating this distance with the post-inflationary horizon ∼ 2t, we

find the time tH at which the monopoles enter this horizon:

tH ∼ p2

8
√
3
c(Tr)

−2

3c(TH)
1

2e2N2

(

M

κTr

)
2

3

, (1)

where TH is the cosmic temperature at tH.

• After the end of the second inflationary stage, the system settles

in one of the two distinct continua of SUSY vacua.

• A linear combination of U(1)B−L and the unbroken U(1) subgroup

of SU(2)R breaks and local cosmic strings are generated.

• These strings, had they survived after recombination, could give

a small contribution to the CMBR power spectrum.

• This contribution is parametrized by the dimensionless string ten-

sion Gµs where G is Newton’s constant and

µs = 4π|〈H〉|2

is the energy per unit length of the string.

• In our case, however, the strings decay well before recombination

and, thus, do not affect the CMBR.

• The reason is that they are open connecting (anti)monopoles.

• Indeed, the breaking SU(2)R × U(1)B−L → U(1)Y by 〈H〉 and
〈H̄〉 is similar to the breaking of the electroweak gauge group.

• Thus, no topologically stable monopoles or strings can appear.

• We can only have topologically unstable dumbbell configurations

of a monopole and an antimonopole connected by an open string.

• Actually, these strings are like random walks with step ∼ the

particle horizon connecting monopoles to antimonopoles.



• Before the entrance of the monopoles into the horizon, there is

about one string segment per horizon.

• So, the ratio of the energy density ρs(t) of the string network to

the total energy density ρtot(t) remains practically constant.

• At tH, we have about one monopole, antimonopole pair per hori-

zon volume connected by a string of the size of the horizon.

• Thus, at tH, the energy density of the strings ρs(tH) ∼ 3Gµs/2t
2
H.

• After this time, more and more string segments enter the horizon,

but the length of each segment remains constant.

• Consequently, the strings behave like pressureless matter and the

‘relative string energy density’ is (ργ(t)= photon energy density)

ρs(t)

ργ(t)
∼ 2Gµs

(

t

tH

)
1

2

.

• This density increases with t until the final decay of the strings at

td ∼
1

ΓGµs

2tH, Γ ∼ 50.

• The energy density of the emitting gravitational waves is given by

ρgw(td)

ργ(td)
∼ 2

(

2

Γ

)
1

2

(Gµs)
1

2 .

• This formula also gives the maximal relative string energy density.

• Taking the lowest value of N2 and p = 2, we find that, for our

two numerical examples, respectively,

tH ∼ 4.76× 10−7 sec and 1.04× 10−4 sec.



• Here we took g(Tr) = 228.75 from MSSM, and g(TH) = 40.75

and 10.75 in the two examples consistently with the obtained TH.

• So the strings enter the horizon well before nucleosynthesis.

• Their decay time is td ∼ 5.97× 10−2 sec and 5.49 sec, in the two

cases, as found from the dimensionless string tensions

Gµs =
|〈H〉|2

2
≃ mM

2λ
≃ 3.19× 10−7 and 7.57× 10−7.

• So the strings decay around nucleosynthesis and, thus, well before

recombination which takes place at t ∼ 1013 sec.

• As a consequence, they do not affect the CMBR.

• Their maximal relative energy density in the universe is ∼ 2.26×
10−4 and 3.48× 10−4 for our two cases.

• They are always subdominant and do not disturb nucleosynthesis.

• Had the strings survived until now, we would have to assume that

Gµs . 3.2× 10−7,

to keep their imprint on the CMBR at an acceptable level.

• In our first case, Gµs saturates this bound, but violates the recent

more stringent bound from pulsar timing arrays:

Gµs . 3.3× 10−8,

which also holds for strings surviving until now.

• Our second example violates both these bounds and, thus, both

examples are only possible because the strings decay early enough.



• The ratio of the energy density of the gravity waves produced by

the strings to that of the photons at the present time t0 is

ρgw(t0)

ργ(t0)
∼ 2

(

2

Γ

)
1

2

(Gµs)
1

2

(

3.9

10.75

)
4

3

.

• The present abundance of these gravity waves is then

Ωgwh
2(t0) ∼

(

ρgw(t0)

ργ(t0)

)(

ργ(t0)

ρc(t0)

)

h2
0 .

• ρc(t0) is the present critical energy density of the universe and

h0 ≃ 0.7 the Hubble constant in units of 100 km sec−1 Mpc−1.

• For our two examples, Ωgwh
2(t0) ∼ 2.18× 10−9 and 3.35× 10−9.

• The frequency f (td) of these waves at production must be ∼ t−1
H

since the length of the decaying strings is ∼ 2tH.

• The present value of this frequency is then

f (t0) ∼ t−1
H

(

td
teq

)
1

2
(

teq
t0

)
2

3

,

where teq is the equidensity time after which matter dominates.

• For the two examples, f (t0) ∼ 1.06×10−4 Hz and 4.68×10−6 Hz.

• These frequencies are too high to yield any restriction from CMBR.

• They are also well above the range probed by the pulsar timing

arrays and the relevant stringent bound does not apply.

• The frequency in our first example lies marginally within the range

of the future space-based observatories such as eLISA/NGO ex-

pected to be able to detect Ωgwh
2(t0)’s as low as 4× 10−10.



• So the monopole-string net disappears causing no trouble.

• However, the gravity waves generated may be probed by future

space-based laser interferometer observations.

6 Conclusions

• We considered a reduced version of the extended SUSY PS model

which was initially constructed for solving the mb problem of the

simplest SUSY PS model with universal boundary conditions.

• We find that this model can yield a two stage hybrid inflation

scenario predicting r ∼ few × 10−2.

• The model in global SUSY possesses two classically flat directions:

the trivial and the semi-shifted one.

• SUGRA stabilizes the trivial path which can then support a first

stage of inflation with a limited number of e-foldings.

• r can be appreciable as a result of mild SUGRA corrections com-

bined with strong radiative corrections, while ns is acceptable.

• The extra e-foldings required are generated by a second stage of

inflation along the semi-shifted path, where U(1)B−L is unbroken.

• This is possible since the SURGA corrections on the semi-shifted

path remain mild and this path is almost orthogonal to the trivial

one and, thus, is not affected by the strong radiative corrections.

• At the end of the first inflationary stage, monopoles are formed

which after the second stage get connected by open strings.

• Later the monopoles enter the horizon and the string-monopole

system decays into gravity waves with no trace in CMBR.

• These gravity waves, however, may be measurable in the future.


