DOUBLE HYBRID INFLATION AND GRAVITY WAVES
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Introduction

Recent results of BICEP2 on the B-mode in the polarization of the
CMBR at degree angular scales indicate that inflationary scenarios
may have to face a new challenge.

They should accommodate appreciable values of the tensor-to-
scalar ratio r, since a B-mode could be due to the production of
gravitational waves during inflation.

Although 7 seems to be smaller than initially claimed due to possi-
ble underestimation of the foreground from Galactic polarized-dust
emission, 7 ~ 0.01 cannot be excluded.

The most recent joint analysis of the Planck and BICEP2 data
yields < 0.12 at 95% c.l.

SUSY Hybrid Inflation is a promising inflation scenario.
In its simplest realization, though, it suffers from some problems.

The GUT gauge symmetry is spontaneously broken only at the end
of inflation and, thus, if magnetic monopoles are predicted, they
are copiously produced, leading to a cosmological catastrophe.

Also, although accurate measurements imply that the scalar spec-
tral index ng is clearly lower than unity, this scenario gives values
very close to unity or even larger within minimal SUGRA.

These problems are solved within a two stage Hybrid Inflation with
minimal SUGRA: the standard-smooth hybrid inflation scenario.

The cosmological scales exit the horizon during the first stage of
inflation, which is of the standard hybrid type.



e |t occurs on a ‘trivial’ path on which the gauge group is unbroken.

e Restricting the number of e-foldings during this stage, we can
achieve adequately low ny's.

e The extra e-foldings for solving the horizon and flatness problems
of big bang are generated by a second inflation along a classically
non-flat valley of minima, where the gauge group is broken.

e Consequently, monopoles are produced only at the end of the first
stage, but are adequately diluted by the second one.

e This scenario was realized within an extended SUSY PS particle
physics GUT model with only renormalizable interactions, which
was constructed for a very differed reason.

e Namely, the simplest SUSY PS model predicts Yukawa unification
and, with universal boundary conditions, yields unacceptable m;’s.

e In the extended model, Yukawa unification is naturally and mod-
erately violated and this problem is solved.

e Here, we will show that a reduced version of this extended model
can also yield a two stage inflationary scenario which can predict
r's up to about 0.05 together with acceptable ny's.

e Larger r's would require unacceptably large running of ns.

e The first stage occur along the trivial path, stabilized by SUGRA,
and our present horizon undergoes a limited number of e-foldings.

e The obtained r's can be appreciable thanks to strong radiative and
relatively mild SUGRA corrections to the inflationary potential.

e The second stage occurs on the so-called semi-shifted path, where
U(1)p_r is unbroken, and generates the extra e-foldings required.



e This is possible since the SUGRA corrections on the semi-shifted
path are also mild and this path, being orthogonal to the trivial
one, is not affected by the strong radiative corrections on it.

e We take units where mp = 1.

2 The model in global SUSY

e The reduced version of the extended SUSY PS model is based on
the left-right symmetric gauge group Grg = SU(3). x SU(2)1, X
SU(2)r x U(1)p_r, subgroup of the PS group.

e The superfields relevant for inflation are the following:

e A conjugate pair of Higgses H, H in the (1,1,2); and (1,1,2)_;
representations of GGrr causing the breaking of G r to Ggy.

e A gauge singlet S triggering this breaking, and a conjugate pair
®, ® € (1,1,3)g. The () breaks G1r — Gsm x U(1)p_1.

e The superpotential relevant for inflation is

W = kS (M* — ®°) —vSHH +m®d — \OHH.

e V[, m are superheavy masses and k, 7y, A dimensionless constants.

e All these parameters but one can be made real and positive by
rephasing the superfields. For definiteness, we choose the remain-
ing complex parameter to be real and positive too.

e The resulting F—term scalar potential is

V2 = |k(M? = ®?) — yHH> + |md — 265D
+Hm® — NHH|* + |[vS+ X0 |* (|H|* + |H[?) .



e From V2 and the vanishing of the D-terms, implying H* = e H,
one finds two distinct continua of SUSY vacua:
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e The model generally possesses three flat directions:

e The usual trivial path at ® = ® = H = H = 0 with VPQ = Vi =
k>M*, where G is unbroken.

e The new shifted path at
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This path supports new shifted hybrid inflation with G1r — Ggwm.

e The semi-shifted path, which exists only for M?* > m?/2x?, at

- 2rD
\/ HJQM?’ m 5,

2
: _ 2272 m
with V =V, =m*M (1_4I§J2M2).

It yields semi-shifted hybrid inflation with U(1)5_ unbroken.

e We take M? > 77”L2/2/<;2 and, thus, the semi-shifted path exists
and always lies lower than the trivial and the new shifted one.



e We also take k ~ 1, v < A < K, and m < M, so that the new
shifted path (for |S| < 1) essentially coincides with the trivial one
and, thus, plays no independent role in our scheme.

3 The first stage of inflation

e The first stage of inflation takes place along the trivial path, which,
for large |S|'s, is stabilized by SUGRA corrections.

e Although the number of e-foldings is limited, all the cosmological
scales exit the horizon during this stage.

e Strong radiative and relatively mild SUGRA corrections to the
potential then guarantee an appreciable r with an acceptable n.

e We adopt the Kahler potential

K = —In(1— S —In(1—[®f) + [B + [H| + |H|
—21In (—In|Z1 %) +| 2|

e The two extra G singlets Z; and Z, do not enter IV,

e The F—term potential in SUGRA is then
Ve = [ > [Wx, + Kx WK = 3[W[| e,

where the sum is over all the fields S, &, &, H, H, Z,, Z and
a subscript X; denotes derivation w.r.t. to X; .

e The values of Z; and Z, are fixed by anomalous D—terms.
e S, ®, Z; have no-scale type Kihler potentials which, in view of
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guarantee the exact flatness of the potential along the trivial path
and its approximate flatness on the semi-shifted one for Z, = 0.

e [ he relation then
’K22’2 Z Z * = ’Z2‘2 =

implies that the complex inflatons S and ® for the two paths,
respectively, acquire m? oc 3 when Z, becomes non-zero.

e Using the symmetries, we can rotate S and H on the real axis.
The fields @, ®, H remain in general complex.

e For simplicity, we restrict &, ®, H on the real axis too.

e The canonically normalized real scalar fields o, ¢, ¢, h, h corre-
sponding to K are given by

o ¢
S =tanh—, & = tanh —,
V2 V2
h _
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e We evaluate V with the factor exp [—2In (—In|Z1|?) + | Z]?]
absorbed into redefined parameters x, v, m, and \.

e We find
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e Here
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e On the trivial path (¢, ¢, h, h = 0), Vi becomes

Vi = k2M* [1 + Bsinh? i] .

e The m? eigenvalues in the directions perpendicular to this path
for sinh” (o/v/2) > M?/2 are
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m? = (kM*F7) [/-eMQ + ((1+ B)M* F 7) sinh? —%] ,

where y12 = (h & h)/+/2 and their m? formulas hold for any o.
e Thus, for v < kM?, the trivial path is stable for large |o|'s.

e However, as |o| decreases, the eigenvalues and eigenstates of the
® — ¢ system change.



e When sinh? (0/v/2) =~ M?/2+m?/2k>M?, one of the eigenval-
ues vanishes with ¢ dominating the corresponding eigenstate.

e As sinh? (J/\/E) — M?/2, the eigenvalues become opposite to
each other with ¢, ¢ contributing equally to both the eigenstates.

e A further decrease of sinh’ (0/\/5) leads to the domination of
the unstable eigenstate by ¢.

e Since ¢ must become nonzero to cancel the energy density kM

on the trivial path, we say that this path is destabilized at o. with
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e To Vp on the trivial path we add the dominant one-loop radiative
corrections from the Ny-dimensional supermultiplet ® (N, = 3):

2 o
o _ o (Na#) 2l

872 M?

e Note that the renormalization scale in these corrections is chosen
such that V¢ vanishes at |o| = |o|.

e The full inflationary potential V' and its derivatives w.r.t. o are:
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e The usual slow-roll parameters for inflation are then
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e From these expressions, we evaluate ng, its running ag, 7, and V':
ns =14 2n —6e, as= 16ne —24e*> —2¢, r = 16e,
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e As a numerical example, take o, = 1.45 at horizon exit of the
pivot scale k£, = 0.05 Mpc_l, k= 1.7, 8 =0.022, and the scalar
power spectrum amplitude A, = 2.215 x 107 at the same k..

e We then find M = 3.493 x 107?, C(0,) = 2.2941, € = 0.00188,
n = —0.01389, ny = 0.9609, r = 0.0301, and ay = —0.01674.



e So we can not only be consistent with the latest Planck data, but
also accommodate large values of r ~ few x 1072.

e Note that large r's require relatively large €'s, which reduce nq
below unity, but not enough to make it compatible with the data.

e So large negative n's are needed, which requires that the paren-
thesis in the formula for V" is dominated by the second term.

e A similar parenthesis appears in the formula for V' too, but with
the two terms added.

e So both these terms have to be appreciable with the second one
being larger, which is possible only for large k's controlling the
radiative corrections on the trivial path.

e Inflation ends before the system reaches o. by violating the slow-
roll conditions and the obtained number of e-foldings is limited
due to the large €¢'s and the fact that o, ~ 1.

4 The second inflationary stage

e We choose, for the rest of the parameters, m = 1.827 x 107?,
A=0.1, and v = 1075 and include the D—terms from H, H.

e Numerically, we find that there are initial conditions for which,

after the first stage of inflation, the energy density approaches
m2M?, ¢* ~2M?, h, h ~0, and A5 ~ 0 with 0% < 1.

e So the system reaches the semi-shifted path, where Vi becomes

Vi ~ m’M? [1+ sinh? i] .
FM2<<6 g \/§



e Notice the striking similarity with Vz on the trivial path. So the
SUGRA corrections remain relatively mild on this path too.

e From A; ~ 0, the combination of S, ® which is the complex
inflaton in the second stage is

mS+2k<d >

~ P,
vVm?2 + 4k2M?

since ® contributes here 2kM /m ~ 650 times more than S.

e The mass eigenstates for the h — h system during the second stage
of inflation are x12 = (h £ h)/+/2 with masses-squared

o @
my ., =AFmM)|(AF (1+ B)mM) sinh? 7 FmM| .
e 1 develops an instability terminating the semi-shifted valley.

e The critical value of the real canonically normalized inflaton ¢:
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e During the second stage, the dominant radiative corrections from
the Nj,-dimensional superfields H, H (N}, = 2) have to be added

[t

2

r

Ny \2 A\ tanh?
In
1672 ) mM

VI~ m?M>? (

e The renormalization scale is chosen so that V" = 0 at |¢| = |¢.|.

e The radiative corrections from ® are neglected being relatively
very small.



e This is because ¢ couples to the complex inflaton only through S
and the contribution of S to this inflaton is severely suppressed.

e This is an important property of the model resulting from the fact
that, for the parameters chosen, the semi-shifted path is almost
orthogonal to the trivial one.

e So the very strong radiative corrections on the trivial path, needed
for accommodating appreciable r's, do not affect the second stage.

e This is crucial since otherwise the semi-shifted path would be too
steep to generate the extra e-foldings required.

e The number of e-foldings during the second stage between ¢y,
and ¢y is N(¢p) — N(¢r), where

1 n cosh(v/2¢) — \/1
28+/1— (61/B)  cosh(v/2¢) + /1 —
with 9, = Nh)\2/471' :

N(¢) ~

e [ he termination of inflation is due to the radiative corrections and
occurs at r (6] > |d.]):

5h o7
cosh(vV/2¢y) ~ 5 1+ 1

e Numerically, we find that, with the chosen values, the first stage
gives rise to 13 e-foldings.

e So another 38-39 e-foldings must be provided by the second stage,
which requires |¢,| ~ 0.23 at the onset of this stage.

e This requirement can indeed be fulfilled in our numerical example
as we have shown by extensive numerical studies.
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Figure 1: o and ¢ for the case with r = 0.0301 versus N. We take the initial conditions
0=145 =103 ¢=10"% h=10"% h=1.01 x 1074, and do/dt = —1.1074 x 1075.

e In Fig. 1, we depict the evolution of ¢ and ¢ versus the number
of e-foldings N from the horizon exit k.

e We take as initial conditions 0 = 1.45, ¢ = 1073, ¢ = 1078,
h=10"% and h = 1.01 x 10~*.

e All the fields are given zero initial velocity except for o which is
given its actual velocity on the trivial path, —1.1074 x 1079,

e o remains above its critical value for about 13 e-foldings.
e Near the end of the first stage, o oscillates around zero four times.

e When the amplitude of the oscillations falls below the critical value
of o, ¢ moves to the semi-shifted path and ¢ starts performing
slow oscillations with variable amplitudes of order M.
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Figure 2: o and ¢ for the case with r = 0.0502 versus N. We take the initial conditions
0=1350=103 =108 h=9x10"% h =9.01 x 107%, and do/dt = —1.8523 x 107S.

e The size of ¢ remains small for about 1.7 e-foldings before starting
its growth and acquires its largest value ~ 0.225 at N ~ 17.7.

e Allow for a stronger running of ng, we may obtain larger r's.

e For example, taking o, = 1.35, k = 1.75, and 3 = 0.037, we find
M = 3.891x1073, C(o,) = 2.3479, e = 0.00314, n = —0.00844,
ne = 0.9643, as = —0.03007, and r = 0.0502.

e In addition, we choose m = 3.891x107°, A = 0.1, and v = 1079,

o L, suffers about 10 e-foldings during the first stage and, thus,
another 41 — 42 e-foldings must be provided by the second stage.

e This implies that |¢;,| lies in the range 0.38 — 0.40.

e We verified that the fulfillment of this requirement is feasible.



e In Fig. 2, we depict the evolution of o and ¢ as functions of N
for a particular choice of initial conditions.

5 Monopoles and cosmic strings

e After the first inflation stage, the system reaches the semi-shifted
path, SU(2)r — U(1) by ® # 0 and monopoles are formed.

e The mean monopoles-antimonopoles distance is p (2xM)~! as
determined by the Higgs boson mass (p ~ 1 is a geometric factor.)

e In the matter dominated era between the two inflationary stages,
this distance increases by a factor ~ (k2M*/m?M?)1/3.

o Here k2 M* and m?M? are the classical potential energy densities
on the trivial and the semi-shifted paths.

e The second inflationary stage stretches this distance by a factor
exp Ny, where N5 is the number of e-foldings during this stage.

e During damped inflaton oscillations, this distance increases by a
factor ~ (m2M?/c(T,)TH)'/3.

o T, ~ 10” GeV is the reheat temperature and ¢(T') = 72g(T) /30
(g(T)=effective number of massless degrees of freedom).

e In the radiation dominated period which follows, the monopole-
antimonopole distance is multiplied by a factor

~ T )T ~ (4¢(T)/3)* T/t

e So this distance at ¢ in the radiation dominated period is

1
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e Equating this distance with the post-inflationary horizon ~ 2t, we
find the time ty at which the monopoles enter this horizon:

2 Mo\ 3
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where Ty is the cosmic temperature at ty.

e After the end of the second inflationary stage, the system settles
in one of the two distinct continua of SUSY vacua.

e A linear combination of U(1)5_1 and the unbroken U(1) subgroup
of SU(2)R breaks and local cosmic strings are generated.

e These strings, had they survived after recombination, could give
a small contribution to the CMBR power spectrum.

e This contribution is parametrized by the dimensionless string ten-
sion G s where GG is Newton's constant and

ps = 4| (H) |
is the energy per unit length of the string.

e In our case, however, the strings decay well before recombination

and, thus, do not affect the CMBR.
e The reason is that they are open connecting (anti)monopoles.

e Indeed, the breaking SU(2)g x U(1)p_, — U(1)y by (H) and
(H) is similar to the breaking of the electroweak gauge group.

e Thus, no topologically stable monopoles or strings can appear.

e We can only have topologically unstable dumbbell configurations
of a monopole and an antimonopole connected by an open string.

e Actually, these strings are like random walks with step ~ the
particle horizon connecting monopoles to antimonopoles.



e Before the entrance of the monopoles into the horizon, there is
about one string segment per horizon.

e So, the ratio of the energy density ps(t) of the string network to
the total energy density pi.(t) remains practically constant.

e At ty, we have about one monopole, antimonopole pair per hori-
zon volume connected by a string of the size of the horizon.

e Thus, at ty, the energy density of the strings ps(tn) ~ 3G us/2t%.

e After this time, more and more string segments enter the horizon,
but the length of each segment remains constant.

e Consequently, the strings behave like pressureless matter and the
‘relative string energy density’ is (p,(t)= photon energy density)

1
2

p(t) tn

e This density increases with ¢ until the final decay of the strings at

tg ~ oy, T ~ 50.

['G s

e The energy density of the emitting gravitational waves is given by

DO| =

e This formula also gives the maximal relative string energy density.

e Taking the lowest value of Ny and p = 2, we find that, for our
two numerical examples, respectively,

ty ~ 4.76 x 107" sec and 1.04 x 107% sec.



e Here we took ¢(7}) = 228.75 from MSSM, and ¢(Ty) = 40.75
and 10.75 in the two examples consistently with the obtained T§;.

e So the strings enter the horizon well before nucleosynthesis.

e Their decay time is tq ~ 5.97 x 1072 sec and 5.49 sec, in the two
cases, as found from the dimensionless string tensions
H)? mM

Gls = < S o 3.19 x 1077 and 7.57 x 107",

e So the strings decay around nucleosynthesis and, thus, well before
recombination which takes place at t ~ 10" sec.

e As a consequence, they do not affect the CMBR.

e Their maximal relative energy density in the universe is ~ 2.26 x
10~* and 3.48 x 10~ for our two cases.

e They are always subdominant and do not disturb nucleosynthesis.
e Had the strings survived until now, we would have to assume that

Gus <3.2x 1077,

%

to keep their imprint on the CMBR at an acceptable level.

e In our first case, G saturates this bound, but violates the recent
more stringent bound from pulsar timing arrays:

Gus <3.3x10°°,
which also holds for strings surviving until now.

e Our second example violates both these bounds and, thus, both
examples are only possible because the strings decay early enough.



e The ratio of the energy density of the gravity waves produced by
the strings to that of the photons at the present time ¢ is

p~(to) I
e The present abundance of these gravity waves is then

Qurh?(ty) ~ <pg‘”—(t°)) (p”(t())) h2.

p+(to) ) \ pe(to)

D=

e p.(to) is the present critical energy density of the universe and
ho ~ 0.7 the Hubble constant in units of 100 km sec™t Mpc~!.

e For our two examples, Q1% (t)) ~ 2.18 x 107" and 3.35 x 1077,

e The frequency f(t4) of these waves at production must be ~ ;'
since the length of the decaying strings is ~ 2ty;.

e The present value of this frequency is then

1 2
ta \2 [(teq\?
to) ~tyt [ =) (2
where ., is the equidensity time after which matter dominates.
e For the two examples, f(tg) ~ 1.06x10~% Hz and 4.68 x 107° Hz.

e These frequencies are too high to yield any restriction from CMBR.

e They are also well above the range probed by the pulsar timing
arrays and the relevant stringent bound does not apply.

e The frequency in our first example lies marginally within the range
of the future space-based observatories such as eLISA/NGO ex-
pected to be able to detect (., h?(ty)'s as low as 4 x 10717,



e So the monopole-string net disappears causing no trouble.

e However, the gravity waves generated may be probed by future
space-based laser interferometer observations.

Conclusions

e We considered a reduced version of the extended SUSY PS model
which was initially constructed for solving the m; problem of the
simplest SUSY PS model with universal boundary conditions.

e We find that this model can yield a two stage hybrid inflation
scenario predicting r ~ few x 1072.

e The model in global SUSY possesses two classically flat directions:
the trivial and the semi-shifted one.

e SUGRA stabilizes the trivial path which can then support a first
stage of inflation with a limited number of e-foldings.

e 1 can be appreciable as a result of mild SUGRA corrections com-
bined with strong radiative corrections, while ng is acceptable.

e The extra e-foldings required are generated by a second stage of
inflation along the semi-shifted path, where U(1)p_ is unbroken.

e This is possible since the SURGA corrections on the semi-shifted
path remain mild and this path is almost orthogonal to the trivial
one and, thus, is not affected by the strong radiative corrections.

e At the end of the first inflationary stage, monopoles are formed
which after the second stage get connected by open strings.

e Later the monopoles enter the horizon and the string-monopole
system decays into gravity waves with no trace in CMBR.

e These gravity waves, however, may be measurable in the future.



