BSM, Corfu, 2.09.2016

The Inert Doublet Model and not only

Maria Krawczyk University of Warsaw

In coll. with I. Ginzburg, K. Kanishev, D.Sokołowska, B. Świeżewska, G. Gil, P.Chankowski, M. Matej, N. Darvishi, A. Ilnicka, T. Robens, L. Diaz-Cruz, C. Bonilla, S. Najjari M. Krawczyk, Corfu 2016

Plan

- Inert Doublet Model (IDM):Higgs & Dark Matter
- Constraints from LHC, WMAP/PLANCK&LUX
- Future tests at LHC and ILC

 Towards baryogenesis (Sacharow conditions):

 IDM provides
 a strong 1st order PT

 but no CP violation

- Extensions of IDM: IDMS = IDM+Singlet
 SM+Singlet
- M. Krawczyk, Corfu 2016

Higgs particle at LHC -summer 2016 ATLAS+CMS Run 1 arXiv:1606.02266v1 [hep-ex] 7 Jun SM-like scenario observed

- Mass 125.09 \pm 0.24 GeV ZZ \rightarrow 4 I, $\gamma \gamma$
- Total width < 23 MeV (95%CL); SM ~4 MeV</p>
- Signal strengths $\mu = R = \sigma \times Br/(\sigma \times Br)|_{SM}$; SM = 1 global 1.09 ± 0.11/0.10 $\gamma\gamma$ 1.14 ± 0.19/0.18 $\rightarrow R_{\gamma\gamma}$
- Invisible decay
 BR < 0.34 (95% CL)
- Spin/CP J^{CP} 0 +

But what it is ?

SM - like scenario in many models

focus on models with Higgs Portal to the Dark Matter

T.D. Lee 1973 CP violation in scalar sector

Potential

2HDM's

Vacuum

Branco, Rebelo, Ferreira Silva, Lavoura, Sher, Ma Haber, Gunion, Grimus Ginzburg, MK, Osland, Grzadkowski, Ivanov Nachtmann, Maniatis, Pilaftsis,... Pich

Yukawa

Two Higgs Doublet Models
Two doublets of SU(2) (Y=1, ρ=1) - Φ₁, Φ₂
Masses for W^{+/-}, Z, no mass for photon?
Fermion masses via Yukawa interaction – various models: Model I, II, III, IV,X,Y,...
5 scalars: 3 neutral and 2 charged

Z₂ symmetric Lagrangian of 2HDM

<u>Potential V =</u>

Branco, Rebelo ,85 (CP conserved)

 $\frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} - \frac{1}{2}m^{2}_{11}(\Phi_{1}^{\dagger}\Phi_{1}) - \frac{1}{2}m^{2}_{22}(\Phi^{\dagger}\Phi_{2})$ $+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}[\lambda_{5}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c]$ $\lambda_{345} = \lambda_{3} + \lambda_{4} + \lambda_{5}$

Z₂ symmetry transf.:
$$\Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow - \quad \Phi_2$$

Yukawa interaction

Model I – one doublet Φ_1 couples to all fermions

Vacuum state ? various possible M. Krawczyk, Corfu 2016 positivity (stability) constraints

 $\lambda_1 > 0 \,, \quad \lambda_2 > 0, \quad R+1 > 0, \quad R_3+1 > 0$

 $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \lambda_{345} / \sqrt{\lambda_1 \lambda_2}, \quad R_3 = \lambda_3 / \sqrt{\lambda_1 \lambda_2}.$

Extrema (->vacua) Ma78, Velhinho, Santos, Barroso...94 **Z**₂ symmetry $\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow - \Phi_2$ new notation: $\Phi_1 \rightarrow \Phi_s \& \Phi_2 \rightarrow \Phi_D$ (D symmetry) $\langle \phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}_{\mathsf{V}^2 = \mathsf{V}_S^2 + \mathsf{V}_D^2 + \mathsf{u}^2}^{\mathsf{V}_S, \mathsf{V}_D, \mathsf{u} - \mathsf{real}}$ ------EWs $v_{D} = v_{S} = 0$ $v_{D} = 0$ EWs Inert Inert-like $V_{s} = 0$ $\frac{12}{M}$ Mixed (Normal, MSSM like) V_D,V_S ≠0 -----U≠0 **Charge Breaking** CB $V_{\Box} = 0$ 9 M. Krawczyk, Corfu 2016

Phase diagrams for D-sym. V

$$\mu_1 = \frac{m_{11}^2}{\sqrt{\lambda_1}}, \quad \mu_2 = \frac{m_{22}^2}{\sqrt{\lambda_2}}$$

$$\mathcal{E}_{I_1} - \mathcal{E}_M = \frac{\left(m_{11}^2 \lambda_{345} - m_{22}^2 \lambda_1\right)^2}{8\lambda_1^2 \lambda_2 (1 - R^2)}$$

coexistence of I_1 and I_2 minima

$$R = \lambda_{345} / \sqrt{\lambda_1 \lambda_2},$$

Inert (I₁) vacuum for M_h=125 GeV → fixed μ₁ ^{M. Krawczyk, Corfu 2016}

here $\lambda_{345} < 0$!

Inert Doublet Model

 Φ_s as in SM (BEH)

Higgs boson h (SM-like)

 $\Phi_{\rm D}$ – no vev

$$\Phi_{\rm D} = \begin{pmatrix} {\rm H}^+ \\ {\rm H}^+ {\rm i} {\rm A} \end{pmatrix}$$
 (no Higgses!)

4 scalars H+,H-,H, A no interaction with fermions

D symmetry
$$\Phi_{s} \rightarrow \Phi_{s} \quad \Phi_{D} \rightarrow \Phi_{D}$$
 exact
▷ D parity
▷ only Φ_{D} has odd D-parity
▷ the lightest scalar stable - DM candidate (H)
▷ the lightest scalar stable - DM candidate (H)
▷ $(\Phi_{D} \text{ dark doublet with dark scalars})$

IDM: An Archetype for Dark Matter, Lopez Honorez,...Tytgat..07 LHC phenomenology (Barbieri., Ma.. 2006,...)

Inert case - masses SM-like Higgs scalar h $M_{h}^{2} = m_{11}^{2} = \lambda_{1} v^{2} = (125 \text{ GeV})^{2}$

Dark particles D

$$M_{H+}^2 = -\frac{m_{22}^2}{2} + \frac{\lambda_3}{2}v^2$$

so if large negative \rightarrow H,H+,A heavy, degenerate - dark matter M. Krawczyk, Corfu 20165 <0 and λ_{45} <0

$$\begin{split} \lambda_{345} \\ M_H^2 &= -\frac{m_{22}^2}{2} + \frac{\lambda_3 + \lambda_4 + \lambda_5}{2} v^2 \\ M_A^2 &= -\frac{m_{22}^2}{2} + \frac{\lambda_3 + \lambda_4 - \lambda_5}{2} v^2 \end{split}$$

★ Theoretical constraints vacuum stability, perturbative unitarity
★ Condition for Inert vacuum* Ma'2006, Barbieri 2006, Dolle, Su,Gorczyca(Świeżewska), MSc T2011,1112.4356, ...5086, ..1305. Posch 2011,Arhrib..2012, Chang, Stal ..2013
Swiezewska

Detailed study of - the SM-like h Study of dark scalars D = (H, A, H+, H-)- the dark scalars D in pairs! D couple to V = W/Z (eg. AZH, $H^{-}W^{+}H$), not DVV! Quartic selfcouplings D^4 proportional to λ_2 Couplings with Higgs: $hHH \sim \lambda_{345}$ $hH+H- \sim \lambda_{345}$

LHC – Higgs H_{125} data \rightarrow h (IDM) Direct couplings to W/Z and fermions - as in SM

- Loop coupling to gg as in SM
- Loop coupling to $\gamma\gamma$, $Z\gamma$ extra H+ contribution
- Total width extra contributions $h \rightarrow HH, AA, H+H-$
- Invisible decay $h \rightarrow HH$

 $R_{\gamma\gamma} = \left[\Gamma_{\gamma\gamma} / \Gamma_{\gamma\gamma}^{SM}\right] \times \left[\Gamma_{tot}^{SM} / \Gamma_{tot}\right] > 1$ possible if DM mass above 62.5 GeV
M. Krawczyk, Corfu 2016

$R_{\gamma\gamma}$ as a function of mass H, H +

Invisible decays makes enhancement impossible

Light H+ with proper sign of <u>hH+H- coupling</u> (20) makes

yy versus Zy in IDM

Invisible h decay →coupling hHH

- *h* → *HH* invisible decay (*H* is stable)
- augmented total width of the Higgs boson, $\Gamma(h \rightarrow HH) \sim \lambda_{345}^2$

- $\operatorname{Br}(h \to \operatorname{inv}) < 37\%$,
- $\Gamma(h)/\Gamma(h)^{SM} < 4.2$

global fit:

• $Br(h \rightarrow inv) \lesssim 20\%$

[G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, S. Kraml, PLB 723 (2013) 340; ATLAS-CONF-2014-010; 2014; CMS-PAS-HIG-14-002]

Signal strength $R_{\gamma\gamma}$ if below 1 sensitive to hHH coupling

Constraining Inert Dark Matter by $R_{\gamma\gamma}$ and WMAP data

WMAP window for light H (DM)

using MicrOmega

Relic density for DM with mass > 64 GeV

$$M_{A,H^{\pm}} = M_H + \delta_{A,\pm}$$

D. Sokołowska, 2013

above 76 GeV asymmetry due to annihilation to gauge bosons

allowed regions

- low DM mass $M_H \lesssim 10 \text{ GeV}, g_{HHh} \sim \mathcal{O}(0.5)$
- medium DM mass $M_H \approx (40 160)$ GeV, $g_{HHh} \sim \mathcal{O}(0.05)$
- high DM mass $M_H \gtrsim 500 \text{ GeV}, g_{HHh} \sim \mathcal{O}(0.1)$

ow mass H – excluded by LHC! $R_{\gamma\gamma}$ constraints on $\lambda_{345} \sim hHH$

[M. Krawczyk, D. Sokołowska, P. Swaczyna, BŚ, arXiv:1305.6266 [hep-ph], JHEP 2013]

 $M_H \lesssim 10 \,\mathrm{GeV}, \quad M_A \approx M_{H^{\pm}} \approx 100 \,\mathrm{GeV}$ $h \to AA$ channel closed, $h \to HH$ channel open

Proper relic density

 $0.1018 < \Omega_{DM} h^2 < 0.1234 \Rightarrow |\lambda_{345}| \sim \mathcal{O}(0.5)$

• CDMS-II reported event:

 $M_H = 8.6 \text{ GeV} \Rightarrow |\lambda_{345}| \approx (0.35 - 0.41)$

• $R_{\gamma\gamma} > 0.7 \Rightarrow |\lambda_{345}| \lesssim 0.02 \Rightarrow$

 $\Omega_{\rm DM} h^2$

0.5

1.0

WMA WMA

4 GeV

5 GeV 6 GeV

7 GeV

8 GeV

 λ_{345}

0.13

0.12

M. Krawczyk, Corfu 2016

0.04

R_{γγ} >0.7

Using PLANCK data

[Planck update: D. Sokołowska, P. Swaczyna, 2014]

$h \rightarrow HH$ open

- light DM $(M_H < 10 \text{ GeV})$ \Rightarrow excluded
- intermediate DM 1 (50 GeV $< M_H < M_H/2$) $\Rightarrow M_H > 53$ GeV
- intermediate DM 2 $(M_h/2 < M_H \lesssim 82 \,\text{GeV})$ $\Rightarrow R_{\gamma\gamma} < 1$

• heavy DM $(M_H > 500 \text{ GeV})$ $\Rightarrow R_{\gamma\gamma} \approx 1$

Full scan for IDM (2015) A. Ilnicka, T. Robens, MK Phys.Rev. D93 (2016) Theor. constraints – stability of the potential (positivity), pert.unitarity, condition for the Inert vacuum +LEP constraints STU (from 2014) h total width W/Z total width Higgssignal/Higgs bounds Lifetime of H+ (< 10⁻⁷ s to decay inside detector) Relic density Planck $\Omega < 0.1241$ (95% CL) **Direct detection LUX** --> scan over M_H up to 1 TeV 24

M. Krawczyk, Corfu 2016

other analyses Stahl.., BlinovCline

Low mass H (DM)

0.3 excluded from collider data excluded from LUX excluded from relic density 0.2 surviving points exact exact relic density relic 0.1 density 0 -0.1 -0.2 -0.3 20 40 60 80 100 $M_H [GeV]$

Limit on mass of DM: M_H> 45 GeV !

1505.04734,1508.01671

dark particles masses

Benchmarks for LHC II

HA

$$\begin{split} pp &\rightarrow HA \colon \leq 0.03 \text{ pb}, \\ pp &\rightarrow H^{\pm}H \colon \leq 0.03 \text{ pb}, \\ pp &\rightarrow H^{\pm}A \colon \leq 0.015 \text{ pb}, \\ pp &\rightarrow H^{+}H^{-} \colon \leq 0.01 \text{ pb}, \\ pp &\rightarrow AA \colon \leq 0.0015 \text{ pb}. \end{split}$$

H+H-

$A \rightarrow Z H = 100\%$

MH+- MH > 100 MeV M. Krawczyk, Corfu 2016

M_H Cross section in pb, mass in GeV

27

IDM at ILC/CLIC

S.Najjari, M.Hashemi, M.Krawczyk AF. Zarnecki JHEP 1602 (2016) 187, arXiv:1512.01175

▶ $e^+e^- \rightarrow H^+H^-$ ▶ $e^+e^- \rightarrow H A$

0.5 and 1 TeV for 500 fb⁻¹

Taking low mass benchmarks from our scan (difficult for LHC)

BP	m _H	m _A	m _{H±}
BP1	57.5	113	123
BP2	85.5	111	140
BP3	128	134	176

Main decays

 $H+\rightarrow W^*+H$

 $A \rightarrow Z H$

reconstruction of dark particle masses with accuracy 100 MeV possible

	theo.	123	140	176
$m_{H^{\pm}}$	0.5	117.1 ± 7.2	136.8 ± 10.0	167.4 ± 14.6
	1	112.7 ± 4.5	131.4 ± 5.0	172.2 ± 5.5
	theo.	57.5	85.5	128
m_H	0.5	58.5 ± 3.6	88.9 ± 6.5	127.2 ± 9.5
	1	53.0 ± 2.1	81.5 ± 3.1	$129.1{\pm}1.2$
	theo.	113	111	134
m_A	0.5	113.9 ± 3.7	114.3 ± 6.6	133.1 ± 9.6
	1	104.6 ± 2.2	105.0 ± 3.2	134.8 ± 1.3

Also ... M. Aoki ... PL B725 (2013) 302 M. Krawczyk, Corfu 2016

Dracass	Signal			Background			
FICESS	BP1	BP2	BP3	WW	ZZ	Z+jets	tī
σ [fb] @ 500 GeV	82.2	70.9	44.6	7807	583	16790	595
σ [fb] @ 1 TeV	28.1	27.3	25.3	3180	233	4304	212

Sum of energies of two jets and their invariant mass for semileptonic events -> cuts on sum of energies

salerate kground WW dominated by 10/14-3 a ciliado

H+H-

after aplying cuts on sum of energies

Sum of the energies (up) and invariant mass (down) of two jets in

semileptonic final state at $\sqrt{s} = 0.5$ TeV (left) and 1 TeV (right).

	\sqrt{s}	= 0.5	TeV	$\sqrt{s} = 1 \text{ TeV}$			
Process	$e^+e^- \rightarrow AH$			$e^+e^- \rightarrow AH$			
Benchmark point	BP1	BP2	BP3	BP1	BP2	BP3	
Cross section [fb]	45	42.9	34.2	12.5	12.4	11.8	

Sum of the energies (up) and invariant mass (down) of two lepton in

Saereh Najjari

IDMS Bonilla, DiazCruz, Darvishi, Sokolowska, MK – J.Phys. G43 (2016) 065001

- IDM + extra neutral complex singlet χ with complex vev
- SM-like doublet singlet interaction →
 CP violation in the scalar sector contaning
 3 neutral Higgses: h1 (SM-like), h2, h3
- Dark doublet as before → H good DM candidate
- Small modifications of h1 couplings to SM particles

Potential IDMS

$$\Phi_{S} = \Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} (v + \phi_{1} + i\phi_{6}) \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}} (\phi_{4} + i\phi_{5}) \end{pmatrix}, \quad \Phi_{D} \\ \chi = \frac{1}{\sqrt{2}} (we^{i\xi} + \phi_{2} + i\phi_{3}). \\ Z_{2} : \Phi_{1} \to \Phi_{1}, \Phi_{2} \to -\Phi_{2}, \text{ SM fields} \to \text{SM fields}, \chi \to \chi. \\ V = -\frac{1}{2} \left[m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} \right] + \frac{1}{2} \left[\lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} \right] \\ + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] \\ - \frac{m_{5}^{2}}{2} \chi^{*} \chi + \lambda_{s1} (\chi^{*} \chi)^{2} + \Lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1}) (\chi^{*} \chi) \\ - \frac{m_{4}^{2}}{2} (\chi^{*2} + \chi^{2}) + \kappa_{2} (\chi^{3} + \chi^{*3}) + \kappa_{3} [\chi(\chi^{*} \chi) + \chi^{*} (\chi^{*} \chi)]. \\ \text{M. Krawczyk, Corfu 2016} \text{With softly broken U(1)} U(1): \Phi_{1} \to \Phi_{1}, \Phi_{2} \to \Phi_{2}, \chi \to e^{i\alpha} \chi.$$

Higgs sector – $h_1(125 \text{ GeV})$, h_2 , h_3

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}$$

$$R = R_1 R_2 R_3 = \begin{pmatrix} c_1 c_2 & c_3 s_1 - c_1 s_2 s_3 & c_1 c_3 s_2 + s_1 s_3 \\ -c_2 s_1 & c_1 c_3 + s_1 s_2 s_3 & -c_3 s_1 s_2 + c_1 s_3 \\ -s_2 & -c_2 s_3 & c_2 c_3 \end{pmatrix}$$

 $h_1 = c_1 c_2 \phi_1 + (c_3 s_1 - c_1 s_2 s_3) \phi_2 + (c_1 c_3 s_2 + s_1 s_3) \phi_3,$

$$R_{11} = R_{11}^{-1} = c_1 c_2.$$

$$M_{h_3} > M_{h_2} > 150$$
 GeV.

 $\kappa_{2,3} = w \rho_{2,3},$

$$1 < \Lambda_1 < 1, \quad 0 < \lambda_{s1} < 1, \quad -1 < \rho_{2,3} < 1, \quad 0 < \xi < 0$$

DMS vs LFC data $\Gamma(h_1 \rightarrow XX) = R_{11}^2 \Gamma(\phi_{SM} \rightarrow XX)$

Dark sector – Higgs portals via h_1 , h_2 , h_3 possible ! We proposed benchmarks – eg. A1: $M_{h_1} = 124.83 \text{GeV}, M_{h_2} = 194.46 \text{GeV}, M_{h_3} = 239.99 \text{GeV},$ A4: $M_{h_1} = 125.36 \text{GeV}, M_{h_2} = 149.89 \text{GeV}, M_{h_3} = 473.95 \text{GeV}.$

If one of extra Higgs is lighter than 2 M_W as for A4 – difference with IDM! Higgs portal via h_2

CP violation in the Higgs sector changes the annihilation channels; for example, channels like $HH \rightarrow h_i \rightarrow Zh_j$ can appear and significantly change the relic density value if DM particle is heavy enough.

IDMS

M. Krawczyk, Corfu 2016

37

Evolution of Universe to the Inert Phase

Evolution of the Universe in 2HDMthrough different vacua in the past

Ginzburg, Ivanov, Kanishev 2009 Ginzburg, Kanishev,MK, Sokołowska PRD 2010, Sokołowska 2011

We consider 2HDM with an explicit D symmetry assuming that today the Inert Doublet Model describes reality. In the simplest approximation only *mass terms* in V vary with temperature like T², while λ 's are fixed

Various evolution from EWs to Inert phase possible in one, two or three steps, with 1st or 2nd order phase transitions...

Evolution of vacua

$EWs \to I_2 \to I_1$

T² corrections

→ rays from EWs phase to Inert phase one, two or three stages of Universe (II order phase transitions, one I order)

Nonrestoration of EW symmetry for $\lambda_{345} < 0$

Charged breaking phase

Only one ray with EW restoration in the past (in one step)

Beyond T² corrections >> strong 1st order phase transition in IDM EW baryogenesis? G. Gil MsThesis'2011, G.Gil, P.

G. Gli MsTnesis 2011, G.Gli, P. Chankowski, MK 1207.0084 [hep-ph] PLB 2012

We applied one-loop effective potential at T=0 (Coleman-Wienberg term) and temperature dependent effective potential at T≠0 (with sum of ring diagrams)

$$V_T^{(1L)}(v_1, v_2) = V_{\text{eff}}^{(1L)}(v_1, v_2) + \Delta^{(1L)} V_{T \neq 0}(v_1, v_2).$$

The one-loop effective potential $V_{\text{eff}}(v_1, v_2)$ is given in the Landau gauge by standard formula $1 \qquad (\qquad \sqrt{M^2 + 2} \qquad 2 \qquad))$

$$V_{\text{eff}}^{(1L)} = V_{\text{tree}} + \frac{1}{64\pi^2} \sum_{\text{fields}} C_s \left\{ \mathcal{M}_s^4 \left(\ln \frac{\mathcal{M}_s^2}{4\pi\mu^2} - \frac{3}{2} + \frac{2}{d-2} - \gamma_{\text{E}} \right) \right\} + \text{CT},$$

number of states

M. Krawczyk, Corfu 2016

42

counter

terms \rightarrow

Effective T=0 potential

Critical temperature T_{EW} : V at new minimum = V at $(v_{1(s)} = v_{2(D)} = 0)_{43}$ M. Krawczyk, Corfu 2016

Results for v(T_{EW})/T_{EW} >1 Mh=125 GeV, MH=65 GeV, λ2=0.2

M. Krawczyk, Corfu 2016

strong 1st order phase transition if ratio > 1

 \rightarrow 12 \rightarrow 11

Allowed MH+=MA between 275 and 380 GeV (one step)

 λ_{345}

44

Summary

 SM-like scenario – still valid (Sept. 2016)
 IDM is a very natural extension of the SM SM doublet → one Higgs SM-like h Dark doublet → 4 scalars (two charged) one stable (H=DM)

- IDM in agreement with LHC data and relic density + direct detection LUX data, M_H > 45 GeV
- Tests at LHC II , ILC/CLIC ?
- IDMS better ?

Higgs is a sensitive probe of DM ! M. Krawczyk, Corfu 2016