Introduction to SUSY and MSSM

CORFU SUMMER INSTITUTE

School and Workshop on Standard Model and Beyond

Corfu, September 1 - 11, 2016

MAX-PLANCK-INSTITUT FÜR PHYSIK, MÜNCHEN

W. HOLLIK

Standard Model input is now completely determined

Why physics beyond the Standard Model?

many open issues

- hierarchy problem $v \ll M_{\rm Pl}$, $M_H \ll M_{\rm Pl}$
- Iarge number of free parameters $g_1, g_2, v, m_f, V_{CKM}$
- no further unification of forces
- missing link to gravity

- nature of dark matter?
- baryon asymmetry of the universe?

Supersymmetry

- gauge coupling unification
- dark matter candidate (lightest SUSY particle, LSP)
- physical Higgs bosons: h^0, H^0, A^0, H^{\pm} lightest Higgs boson $h^0 < 130 \,\text{GeV}$

Outline

- 1. SUSY algebra and representations
- 2. SUSY fields and Lagrangians
- 3. MSSM, formulation and content
- 4. Tests of the MSSM

1. SUSY algebra and representations

1.1. Space - time symmetry
Poincaré transformations
- translations
$$a^{\mu}$$
, p^{μ}
- votations $x \pi$, \overline{x}
- boosts $p \pi$, \overline{x}
- veflexions generators
Generators: P^{μ} , $\overline{y}^{\mu\nu}$
 $\overline{y}^{n2} = \overline{y}^{3}$, $\overline{y}^{23} = \overline{y}^{n}$, $\overline{y}^{3n} = \overline{y}^{2}$
 $\overline{y}^{0k} = K^{k}$
 $\left[\overline{y}^{\mu\nu}, \overline{y}^{95}\right] = i\left(g^{\mu\sigma}\overline{y}^{9} - g^{\mu\sigma}\overline{y}^{5} + g^{95}\overline{y}^{\mu\sigma} - g^{\nu\sigma}\overline{y}^{n}\right)$
 $\left[P^{\mu}, \overline{y}^{\gamma S}\right] = i\left(g^{\mu\sigma}\overline{y}^{9} - g^{\mu\sigma}\overline{p}^{S}\right)$
 $\left[P^{\mu}, \overline{p}^{\nu S}\right] = i\left(g^{\mu\sigma}\overline{p}^{5} - g^{\mu\sigma}\overline{p}^{S}\right)$

Can be circumvented if the
extra symmetry contains
$$\{\cdot, \cdot, \cdot\}$$
 instead of $[\cdot, \cdot, \cdot]$
anti- commutators
 $\{F_{n}, F_{2}\} = F_{n}F_{2} + F_{2}F_{n}$
 \rightarrow graded Lie Algebra:
 $[B, B'] = B''$ $\{F, F'\} = B$
Lie - Algebra $F \in L_{n}$
lin. space Lo
 $[,] \in L_{0}$ $\{, \} \in L_{0}$
 $[B, F] = F' \in L_{1}$

1.2. Spinors
Generators of Lorentz Group

$$J^{e}, K^{e} \rightarrow$$

 $A^{e} = \frac{1}{2} (J^{e} + iK^{e})$
 $B^{e} = \frac{1}{2} (J^{e} - iK^{e})$
Lie Algebra:
 $[A^{A}, A^{e}] = i \epsilon^{Aem} A^{m}$
 $[B^{k}, B^{A}] = i \epsilon^{Aem} B^{m}$
 $[A^{e}, B^{A}] = 0$
 $SU(2) \times SU(2)$
irreducible representiations:
 $(j_{e}, j_{2}), j = 0, \frac{1}{2}, \cdots$
spinor representations

$$\underline{j_{4}} = \frac{1}{2}, \ j_{2} = 0; \qquad \overrightarrow{A} = \frac{1}{2} \overrightarrow{\sigma}, \qquad \overrightarrow{B} = 0$$

$$\overline{J} = \frac{4}{2} \overrightarrow{\sigma}, \qquad \overrightarrow{K} = -\frac{1}{2} \overrightarrow{\sigma}$$

$$2 \times 2 - \text{ matrices}, \qquad \text{act on } 2 - \text{ comp. Spinor}$$

$$4 = \begin{pmatrix} \Psi_{n} \\ \Psi_{2} \end{pmatrix} \qquad \text{Weyl spinor}$$

$$\text{Lovente transformation } A:$$

$$\Psi \xrightarrow{A} \Psi' = D(A) \Psi$$

$$D(A) = \begin{cases} e^{-\frac{1}{2}} \alpha \overrightarrow{n} \cdot \overrightarrow{\sigma} & \text{rotation} \\ e^{-\frac{1}{2}} \phi \overrightarrow{n} \cdot \overrightarrow{\sigma} & \text{boost} \end{cases}$$

$$j_{a}=0, j_{2}=\frac{1}{2}: \vec{A}=0, \vec{B}=\frac{1}{2}\vec{c}$$

$$\vec{J}=\frac{1}{2}\vec{c}, \vec{K}=\frac{1}{2}\vec{c}$$
operate on 2-dim. space,
spimor $\vec{\chi} = (\vec{\chi}^{1})$
components: $\vec{\chi}^{a}$ (after $\vec{\chi}^{a}$)
Lorentz transf. Λ :
$$\vec{\chi} \stackrel{\Lambda}{\rightarrow} \vec{\chi}' = \vec{D}(\Lambda)\vec{\chi}$$

$$\vec{D}(\Lambda) = \begin{cases} e^{-\frac{1}{2}\vec{\alpha}\vec{n}\vec{c}} & \text{rotation} \\ e^{+\frac{1}{2}\vec{\alpha}\vec{n}\vec{c}} & \text{boost} \end{cases}$$

$$\vec{D} \text{ and } \vec{D} \text{ are inequivalent:} \\ \vec{D} = T \vec{D}^{*} T^{-n}, \quad T=i\vec{c}^{2}$$

$$\vec{D}^{+} = \vec{D}^{-n}, \quad \psi \rightarrow \vec{\psi} = -i\vec{c}^{2}\psi^{*}$$

Pauli matrices:
$$\vec{\sigma} = (\sigma^{\dagger}, \sigma^{2}, \sigma^{3})$$

with $\sigma^{\circ} := 1 \Rightarrow \sigma^{+} = (\sigma^{\circ}, \vec{\sigma})$
 $\vec{\sigma} = (\sigma^{\circ}, -\vec{\sigma})$
4- vectors:
 $\chi^{+} = \vec{\chi}^{+} \sigma^{-} \vec{\chi} = (\vec{\chi}^{+}, \vec{\chi}^{2}) \sigma^{+} (\vec{\chi}^{4})$
 $\vec{\chi}^{+} = \psi^{+} \vec{\sigma}^{+} \psi = (\psi^{+}_{a_{1}}\psi^{+}_{a_{2}}) \vec{\sigma}^{+} (\psi^{+}_{a_{2}})$
Scalars:
 $\vec{\chi}^{+} \psi \stackrel{\Lambda}{\rightarrow} (\vec{D}\vec{\chi})^{+} (\vec{D}\psi)$
 $\psi^{+}\vec{\chi} = \vec{\chi}^{+} \vec{D}^{+} \vec{D} \psi$
 $= \vec{\chi}^{+} \vec{D}^{+} \vec{D} \psi$

more spinor notations and conventions

definition:

$$\psi^1 = -\psi_2, \quad \psi^2 = \psi_1$$

$$\bar{\psi}_1 = \bar{\psi}^2, \qquad \bar{\psi}_2 = -\bar{\psi}^1$$

$$\Rightarrow \quad \bar{\psi}_a = \psi_a^*, \quad \bar{\psi}^a = \psi^{a*}$$

 \Rightarrow compact notations for Lorentz covariants

$$\bar{\chi}^{+}\psi = \chi^{a}\psi_{a} \equiv \chi\psi$$
$$\psi^{+}\bar{\chi} = \bar{\psi}_{a}\bar{\chi}^{a} \equiv \bar{\psi}\bar{\chi}$$
$$\bar{\psi}^{+}\sigma^{\mu}\bar{\psi} = \psi\sigma^{\mu}\bar{\psi}$$
$$\psi^{+}\bar{\sigma}^{\mu}\psi = \bar{\psi}\bar{\sigma}^{\mu}\psi$$

$$\frac{4-component spinors}{\Psi} = \begin{pmatrix} \Psi \\ \overline{X} \end{pmatrix} \xrightarrow{\Lambda} \begin{pmatrix} D(\Lambda) & 0 \\ 0 & D(\Lambda) \end{pmatrix} \begin{pmatrix} \Psi \\ \overline{X} \end{pmatrix}$$

$$\begin{bmatrix} Weyl & representation \end{bmatrix}$$

$$\frac{\chi}{\Psi} = \begin{pmatrix} 0 & \xi \\ \overline{\xi} \\ \overline{\xi} \end{pmatrix}, \quad \frac{\chi}{\Psi} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\frac{\chi}{\Psi} = \overline{\chi} : \quad Dirac \quad spinor$$

$$\overline{\Psi} = \overline{\chi} : \quad Majorana \quad spinor$$

$$R_{L} = \frac{1}{2} \begin{pmatrix} 1-\chi_{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad projects \quad on \quad \chi$$

$$R_{R} = \frac{1}{2} \begin{pmatrix} 1+\chi_{r} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad projects \quad on \quad \overline{\chi}$$

$$\begin{pmatrix} \Psi \\ 0 \end{pmatrix} : \text{ eigenstate of } R_{L}, \quad left - chime$$

$$\begin{pmatrix} 0 \\ \overline{\chi} \end{pmatrix} : \text{ eigenstate of } R_{R}, \quad right - chival$$

1.3. Poincaré Algebra
$$\rightarrow$$
 Sksy P.A.
introduce additional
spinor charges Q, Q
 $Q = \begin{pmatrix} Q_A \\ Q_2 \end{pmatrix}, \quad \overline{Q} = \begin{pmatrix} \overline{Q}^1 \\ \overline{Q}^2 \end{pmatrix}$
transform like Weyl spinors 4, $\overline{\varphi}$
under Lorentz transform.
 $Q \leftrightarrow D(\Lambda), \quad \overline{Q} \leftrightarrow \overline{D}(\Lambda)$
 $\overline{Q} = -i\sigma^2 Q^+$
 $\begin{pmatrix} \overline{Q}^1 \\ \overline{Q}^2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ A & 0 \end{pmatrix} \begin{pmatrix} Q_1^+ \\ Q_2^+ \end{pmatrix}$
 $\overline{Q}_a = Q_a^+ \quad (a = 1, 2)$
[generalization: Q^L , $L = 1, N$]

SUSY Poincare' Algebra
Poincare' Algebra (N=1)

$$\begin{bmatrix} Q, \mathcal{F}^{\mu\nu} \end{bmatrix} = \mathcal{F}^{\mu\nu} Q$$

$$\begin{bmatrix} \overline{Q}, \mathcal{F}^{\mu\nu} \end{bmatrix} = \mathcal{F}^{\mu\nu} \overline{Q}$$

$$\begin{bmatrix} \overline{Q}, \mathcal{F}^{\mu\nu} \end{bmatrix} = \overline{\mathcal{F}}^{\mu\nu} \overline{Q}$$

$$\begin{bmatrix} Q, \mathcal{F}^{\mu\nu} \end{bmatrix} = \begin{bmatrix} \overline{Q}, \mathcal{F}^{\mu} \end{bmatrix} = 0$$

$$\{ Q_{a}, Q_{b} \} = \{ \overline{Q}_{a}, \overline{Q}_{b} \} = 0$$

$$\{ Q_{a}, \overline{Q}_{b} \} = 2 (\mathcal{F}^{\mu\nu})_{ab} \mathcal{F}_{\mu\nu}$$

$$= \frac{i}{4} (\mathcal{F}^{\mu\nu} - \mathcal{F}^{\nu} - \mathcal{F}^{\nu} \mathcal{F}^{\mu\nu})$$

$$= \mathcal{F}^{\mu\nu} - \frac{i}{4} (\mathcal{F}^{\mu\nu} - \mathcal{F}^{\nu} - \mathcal{F}^{\nu\nu} \mathcal{F}^{\mu\nu})$$

commutator:

$$\begin{bmatrix} Y^{\mu}, Y^{\nu} \end{bmatrix} = i \in {}^{\mu\nu\rho\sigma} P Y_{\sigma}$$
rest system: $P_{\sigma} = m$, $\overline{P}^{2} = 0$

$$\begin{bmatrix} Y^{4}, Y^{\ell} \end{bmatrix} = i m \in {}^{4\ell j} Y^{j}$$

$$\overrightarrow{Y}^{2} \text{ has eigenvalues}$$

$$m^{2} y(y+1), y = 0, \frac{1}{2}, 1 \cdots$$
Casimir operator: $C^{2} = C_{\mu\nu} C^{\mu\nu}$

$$C^{\mu\nu} = Y^{\mu} P^{\nu} - Y^{\nu} P^{\mu}$$
check: $\begin{bmatrix} C^{\mu\nu}, P^{\ell} \end{bmatrix} = 0$

$$\begin{bmatrix} C^{\ell}, \overline{\mathcal{F}} P^{\nu} \end{bmatrix} = 0$$

$$c^{2} \text{ invortiant} \rightarrow \text{vest frame}$$

$$c^{2} = 2m^{2}Y^{2} - 2(Y PM)$$

$$\rightarrow 2m^{2}Y^{2} - 2m^{2}(Y_{0})^{2}$$

$$= 2m^{2}(Y^{2} - Y_{0}^{2}) = 2m^{2}(-Y^{2})$$
eigenvalues: $-2m^{4} \cdot y(Y+4)$

$$[Y=0, \frac{1}{2}, 1, ...]$$
ivreducible representations
are classified by m, y
states: $Im, y; \vec{p}, y_{3}, ... >$
Spin?
action of Q, \overline{Q} ?

continue in rest frame,
$$P_{\pm}^{\mu}(m, \vec{o})$$

 $\{Q_{a}, \overline{Q}_{b}\} = 2(6^{\circ})_{ab} m = 2m \delta_{ab}$
define $f_{a}^{-} = \frac{1}{\sqrt{2m}} Q_{a}$ $(a=1,2)$
 $f_{a}^{+} = \frac{1}{\sqrt{2m}} \overline{Q}_{a}$
 $\{f_{a}^{-}, f_{b}^{+}\} = \delta_{ab}$
 $\{f_{a}^{-}, f_{b}^{+}\} = \{f_{a}^{+}, f_{b}^{+}\} = 0$
anti- commutators for creation (f_{a}^{+})
and annihilation (f_{a}^{-}) operators
of fermions

• Vacuum (0-fermion state) 1.2)

$$f_a^- |\Omega\rangle = 0$$

• $f_a^+ |\Omega\rangle$ are 1-fermion states
• $f_a^+ f_2^+ |\Omega\rangle$ 2-fermion states
4 linearly independent states:
 $|\Omega\rangle$, $f_a^+ |\Omega\rangle$, $f_a^+ f_2^+ |\Omega\rangle$
for the same value y_3
[based on $[Q, Y^3] = [\bar{Q}, Y] = 0$]
 $Y^3 |\Omega\rangle = Y_3 |\Omega\rangle$
 $Y^3 f_a^+ |\Omega\rangle = f_a^+ Y^3 |\Omega\rangle = Y_3 f_a^+ |\Omega\rangle$
 $Y^3 f_a^+ f_2^+ |\Omega\rangle = f_a^+ f_2^+ Y^3 |\Omega\rangle$
 $= y_3 f_a^+ f_2^+ |\Omega\rangle$

=> each
$$y_3$$
 occurs as
4-fold degenerate
dimension of irred. rep.
= 4. (2y+4)
Values of S^3 :
rest frame: $W^3 = mS^3$
 $x^h = -\overline{R} \, \overline{G}^h \, \mathbb{R} \Rightarrow x^h | \Omega > = 0$
1) state $|\Omega >$:
 $Y^3 | \Omega > = m y_3 | \Omega >$
 $= (W^3 - \frac{1}{4} x^3) | \Omega > = mS^3 | \Omega >$
 $\int S_3 = Y_3$

2) states
$$f_{a}^{+} | \Omega >$$
:
 $W^{3} f_{a}^{+} | \Omega > = m (y_{3} + \frac{1}{2}) f_{a}^{+} | \Omega >$
 $W^{3} f_{2}^{+} | \Omega > = m (y_{3} - \frac{1}{2}) f_{2}^{+} | -\Omega >$
 $\boxed{S_{3} = y_{3} \pm \frac{1}{2}}$
3) state $f_{a}^{+} f_{2}^{+} | \Omega >$:
 $W^{3} | ... > = m y_{3} | ... >$
 $\boxed{S_{3} = y_{3}}$

=> different spins in an irred. rep.

Appendix to Section1

Useful formulae for spinors

Weyl-spinors with components ψ_a (a = 1, 2)

$$\psi = \left(\begin{array}{c} \psi_1\\ \psi_2 \end{array}\right)$$

form a 2-dimensional representation of the Lorentz Group. They transform under Lorentz transformations Λ according to

$$\Lambda: \qquad \psi \to D(\Lambda) \psi$$

with the matrix

$$D(\Lambda) = \begin{cases} e^{-\frac{i}{2}\alpha \vec{n}\vec{\sigma}} & \text{rotation} \\ e^{-\frac{1}{2}\phi \vec{n}\vec{\sigma}} & \text{boost.} \end{cases}$$

 $\vec{\sigma} = (\sigma^1, \sigma^2, \sigma^3)$ denote the Pauli matrices.

Weyl-spinors with components
$$\bar{\chi}^a$$
 $(a = 1, 2)$

$$\bar{\chi} = \left(\begin{array}{c} \bar{\chi}^1\\ \bar{\chi}^2 \end{array}\right)$$

belong to another, not equivalent, 2-dimensional representation of the Lorentz Group. Under the same Lorentz transformation Λ as above they transform according to

$$\Lambda: \qquad \bar{\chi} \to \bar{D}(\Lambda) \, \bar{\chi}$$

with the matrix

$$D(\Lambda) = \begin{cases} e^{-\frac{i}{2}\alpha \vec{n}\vec{\sigma}} & \text{rotation} \\ e^{+\frac{1}{2}\phi \vec{n}\vec{\sigma}} & \text{boost.} \end{cases}$$

The representation matrices are connected via

$$\bar{D} = T D^{\star} T^{-1}, \quad T = i\sigma^2$$

and fulfill the relation

$$D^{-1} = \bar{D}^+ \,.$$

For each ψ transforming with D, a $\bar{\psi}$ can be found transforming with \bar{D} , namely

$$\bar{\psi} = -i\,\sigma^2\,\psi^\star\,,$$

or explicitly,

$$\left(\begin{array}{c} \bar{\psi}^1\\ \bar{\psi}^2 \end{array}\right) \,=\, \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right)\, \left(\begin{array}{c} \psi_1^\star\\ \psi_2^\star \end{array}\right)$$

The Pauli matrices, together with

$$\sigma^0 := \mathbf{1} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$$

can be summarized in terms of a 4-component quantity,

$$\sigma^{\mu} = (\sigma^0, \vec{\sigma}) \,.$$

In addition, one defines

$$\bar{\sigma}^{\mu} = (\sigma^0, -\vec{\sigma}) \,.$$

Lorentz covariants:

scalars:

$$\begin{split} \bar{\chi}^+ \psi & \text{mit} \quad \bar{\chi}^+ = (\bar{\chi}^{1\star}, \bar{\chi}^{2\star}) \\ \psi^+ \bar{\chi} & \text{mit} \quad \psi^+ = (\psi_1^\star, \psi_2^\star) \,. \end{split}$$

4-vectors:

$$\begin{aligned} X^{\mu} &= \bar{\chi}^{+} \, \sigma^{\mu} \, \bar{\chi} \,, \\ \bar{X}^{\mu} &= \psi^{+} \, \bar{\sigma}^{\mu} \, \psi \,. \end{aligned}$$

Spinor notations:

In addition to the components ψ_a , $\bar{\psi}^a$ one defines:

$$\begin{split} \psi^1 &= -\psi_2 & \psi^2 = \psi_1 \\ \bar{\psi}_1 &= \bar{\psi}^2 & \bar{\psi}_2 = -\bar{\psi}^1 \,. \end{split}$$

This yields

$$\bar{\psi}_a = \psi_a^\star, \quad \bar{\psi}^a = \psi^{a\,\star}$$

and a compact notations for the Lorentz covariants:

$$\bar{\chi}^{+}\psi = \chi^{1}\psi_{1} + \chi^{2}\psi_{2} \equiv \chi^{a}\psi_{a} \equiv \chi\psi$$
$$\psi^{+}\bar{\chi} = \bar{\psi}_{1}\bar{\chi}^{1} + \bar{\psi}_{2}\bar{\chi}^{2} \equiv \bar{\psi}_{a}\bar{\chi}^{a} \equiv \bar{\psi}\bar{\chi}$$
$$\bar{\psi}^{+}\sigma^{\mu}\bar{\psi} = \psi^{a} (\sigma^{\mu})_{ab} \bar{\psi}^{b} \equiv \psi\sigma^{\mu}\bar{\psi}$$
$$\psi^{+}\bar{\sigma}^{\mu}\psi = \bar{\psi}_{a}(\bar{\sigma}^{\mu})^{ab}\psi_{b} \equiv \bar{\psi}\bar{\sigma}^{\mu}\psi$$

The spinor products, expressed in terms of the original components, read

$$\begin{aligned} \chi \psi &= \chi_1 \psi_2 - \chi_2 \psi_1 \\ \bar{\psi} \bar{\chi} &= \bar{\psi}^2 \bar{\chi}^1 - \bar{\psi}^1 \bar{\chi}^2 \,. \end{aligned}$$

4-component spinors:

A Dirac spinor is composed of 2 Weyl spinors according to (Weyl representation)

$$\Psi = \left(\begin{array}{c} \psi \\ \bar{\chi} \end{array}\right)$$

Under a Lorentz transformation Λ , it transforms as follows,

$$\Lambda: \qquad \Psi \to \left(\begin{array}{cc} D(\Lambda) & \mathbf{0} \\ \mathbf{0} & \bar{D}(\Lambda) \end{array}\right) \Psi$$

Dirac-Matrices in Weyl representation:

$$\gamma^{\mu} = \begin{pmatrix} \mathbf{0} & \sigma^{\mu} \\ ar{\sigma}^{\mu} & \mathbf{0} \end{pmatrix}, \quad \gamma_5 = \mathrm{i}\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

Chirale projektors:

$$\mathbf{P}_{L} = \frac{1-\gamma_{5}}{2} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
$$\mathbf{P}_{R} = \frac{1+\gamma_{5}}{2} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

The spinors

$$\left(\begin{array}{c}\psi\\0\end{array}\right),\quad \left(\begin{array}{c}0\\\bar{\chi}\end{array}\right)$$

are eigenspinors of \mathbf{P}_L (left-chiral) and \mathbf{P}_R (right-chiral). The representations D and \overline{D} are thus left- and right-chiral representations

A Majorana spinor is a 4-component spinor with $\bar{\chi} = \bar{\psi}$:

$$\Psi_M = \left(\begin{array}{c} \psi\\ \bar{\psi} \end{array}\right)$$

It obeys

$$\Psi_M = \mathbf{C} \, \overline{\Psi}_M^T$$

with

$$\overline{\Psi} = \Psi^+ \gamma^0, \quad \mathbf{C} = \begin{pmatrix} \mathrm{i}\sigma^2 & \mathbf{0} \\ \mathbf{0} & -\mathrm{i}\sigma^2 \end{pmatrix}$$

2. SUSY fields and Lagrangians

2.1. Superspace
representation of Poincare' transf.

$$e^{-i\omega_{\mu\nu}} \exists^{\mu\nu} - ia_{\mu} P^{\mu}$$

translation:
 $\phi(x) \rightarrow \phi(x+a) = \phi(x) + a^{\mu} \frac{2\phi}{\partial x^{\mu}} + \cdots$
 $= (1 - iah P_{\mu}) \phi(x)$
 $P_{\mu} = i \frac{2}{\partial x_{\mu}} \equiv i \partial_{\mu}$
Lie Algebra $\rightarrow Group$
 $[T_{k}, T_{k}] = \cdots$
 $e^{A} e^{B} =$
 $\Sigma [... L T_{k}, T_{k}] \cdot ..]$

SUSY algebra contains
$$\{...,.\}$$

 \rightarrow group? group elements?
Strategy: multiply Q. Q. by
anti-commuting variables
 $\{...\} \rightarrow [...]$
New spinorial variables
 $e = (e_x), e = (e^x), \theta = (\theta_a)$...
with $\{e_a, e_b\} = \{e_a, e_b\} = 0$
Grassmann variables
and $[e, P_{\mu}] = [e, P_{\mu}] = 0$
 $\{Q_a, e_b\} = \{\bar{Q}_a, \bar{e}_b\} = ... = 0$
then: $\{Q, \bar{Q}\} \rightarrow [e Q, \bar{e}Q]$

group element:

$$e^{-i\xi^{h}}P_{h} + i \in \mathbb{Q} + i \in \overline{\mathbb{Q}}$$

 $= g(\xi, \epsilon, \overline{\epsilon})$
operates on a space with
"coordinates" $\{x, t, \theta, \overline{\theta}\}$
Superspace
 $= group$ multiplication:
 $g(0, \epsilon, \overline{\epsilon}) g(x, \theta, \overline{\theta}) = \overline{g(x + a, \theta, \theta, \overline{\theta})} = \overline{g(x + a, \theta, \theta, \overline{\theta})}$
 $= g(x + a, \theta, \theta, \overline{\epsilon}) = \overline{g(x + a, \theta, \theta, \overline{\epsilon})}$
with $a_{i}^{h} = i(\theta \in f^{h} \overline{\epsilon} - \epsilon \in f^{h} \overline{\theta})$

= shift in parameter space

function in superspace:

$$F(x^r, \Theta, \overline{\Theta})$$

differentiation:
 $\frac{\partial}{\partial x_r} = \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial \Theta^a} = \frac{\partial}{\partial a}, \quad \frac{\partial}{\partial \overline{\Theta}^a} = \frac{\partial}{\partial a}$
basic rules:
 $\frac{\partial}{\partial \Theta^a} \Theta^b = \delta_a^b, \quad \frac{\partial}{\partial \overline{\Theta}^a} \overline{\Theta^b} = \delta_a^b$
 $\frac{\partial}{\partial \overline{\Theta}^a} \overline{\Theta^b} = 0, \quad \frac{\partial}{\partial \overline{\Theta}^a} \overline{\Theta^b} = 0$
note: $F(x, \Theta, \overline{\Theta})$ is a
polynomial $\overline{m} \Theta, \overline{\Theta}$:
 $\Theta, \overline{\Theta}, \Theta\Theta, \overline{\Theta}\overline{\Theta}, (\Theta\overline{\Theta})\overline{\Theta}$
 $(\Theta\overline{\Theta})\Theta, (\overline{\Theta}\overline{\Theta})$
pure SKSY transformation:

$$g(0, \varepsilon, \overline{\varepsilon}) = e^{i(\varepsilon Q + \overline{\varepsilon} \overline{Q})}$$

generates translations
 $F(x, 0, \overline{0}) \rightarrow g(0, \varepsilon, \overline{\varepsilon}) F(x, 0, \overline{0})$
 $= F(x + a, 0 + \varepsilon, \overline{0} + \overline{\varepsilon})$
 $a^{\mu} = i(\overline{0} \overline{c}^{\mu} \overline{\varepsilon} - \varepsilon \overline{c}^{\mu} \overline{0})$
infinitesimal parameters:
 $F(x + a, 0 + \varepsilon, \overline{0} + \overline{\varepsilon})$
 $= a^{\mu} \frac{\partial F}{\partial x^{\mu}} + \varepsilon^{a} \frac{\partial F}{\partial 0^{a}} + \overline{\varepsilon}^{a} \frac{\partial F}{\partial \overline{0}^{a}}$
 $= (1 + i\varepsilon^{a} Q_{a} + i\overline{\varepsilon}_{a} \overline{0}^{a}) F$
 $\Rightarrow Q_{a}, \overline{Q}_{a}$ as diff - operators

$$iQ_{a} = \frac{\partial}{\partial Q_{a}} - i \epsilon \stackrel{M}{ab} \overline{\Theta} \stackrel{D}{\partial \rho}_{\mu}$$
$$i\overline{Q}_{a} = -\frac{\partial}{\partial \overline{\Theta}}_{a} + i \Theta \stackrel{b}{\delta} \epsilon \stackrel{\mu}{\rho}_{ba} \stackrel{\partial}{\rho}_{\mu}$$

define covariant derivative

$$D_{a} = \frac{\partial}{\partial \theta^{a}} + i \sigma^{m}_{ab} \overline{\theta}^{b} \partial_{m}$$
$$\overline{D}_{a} = -\frac{\partial}{\partial \overline{\theta}^{a}} - i \overline{\theta}^{b} \sigma^{m}_{ba} \partial_{m}$$

•
$$D_a$$
, \overline{D}_a invariant under susy
 $[(\epsilon \circ + \overline{\epsilon} \overline{\circ}), D_a] = 0$
 $[\epsilon \circ + \overline{\epsilon} \overline{\circ}, \overline{D}_a] = 0$

2.2. Superfields
superfield = Lorente scalar
on superspace

$$\oint (x, \theta, \overline{\theta})$$
 polynomial in
 $\Theta, \overline{\theta}$
general form:
 $\oint = \varphi(x) + \Theta^a \psi(x) + \overline{\Theta} \overline{\chi}^a(x)$
 $+ (\Theta\Theta) F(x) + (\overline{\Theta}\overline{\Theta}) H(x)$
 $+ (\Theta - \overline{\Theta}) A_\mu(x)$
 $+ (\Theta - \overline{\Theta}) A_\mu(x)$
 $+ (\Theta - \overline{\Theta}) \overline{\Lambda}^a(x) + (\overline{\Theta}\overline{\Theta}) \Theta^a \xi_a(x)$
 $+ (\Theta - \overline{\Theta}) (\overline{\Theta}\overline{\Theta}) D(x)$
 $(\varphi, F, H, D): scalars

 $A_\mu: vector$ of $\overline{\Phi}$
 $\psi, \overline{\chi}, \overline{\chi}, \overline{\chi}; \xi: spinors$$

general & is reducible Irreducible superfields by snitable conditions (have to be in variant under susy transf.) Conditions: $\overline{D}_{\alpha} \overline{\Phi} = 0$: (left-)chiral SF Da It = 0: (right-) chiral SF $\phi = \phi^{\dagger}$: vector SF

$$\overline{D}_{a} \ \overline{\Psi} = 0$$
left-chiral SF

$$\overline{\Phi} \Big|_{B_{a}} = \phi(\overline{z}, \theta)$$

$$= \phi(\overline{z}, \theta)$$

$$= \phi(\overline{z}) + \sqrt{2} \theta \psi(\overline{z}) + \theta \theta F(\overline{z})$$
with $\overline{z}^{\mu} = x^{\mu} + i \theta \sigma^{\mu} \overline{\theta}$

$$\varphi_{1} F: \text{ scalars}$$

$$\psi: \text{ Weyl spinor (left)}$$
inf. SUSY transf. $1 + i \in \mathbb{R} + i \overline{e} \overline{\mathbb{A}}$

$$\Rightarrow \text{ transformation of components}$$

$$S\varphi = \sqrt{2} \in \psi$$

$$S\varphi = i \sqrt{2} \ \sigma^{\mu} \overline{e} \ 2\mu (\overline{e} \overline{e} \overline{e} \psi)$$

$$4 - \text{divergence}$$

 $D_a \phi^+ = 0$ right-chiral SF $\Phi|_{D_a\bar{\Phi}^+=0} = \Phi^+(\bar{z}^\mu,\bar{\theta})$ = $\varphi^*(\overline{z}) + \sqrt{2} \overline{\Theta} \overline{\psi}(\overline{z}) + \overline{\Theta} \overline{\Theta} \overline{F}(\overline{z})$ with $\overline{z} = x^{\mu} - i \Theta \sigma^{\mu} \overline{\Theta}$ 7: Weyl spinor (right-chival)

$$V = V^{\dagger}$$
 vector SF
 $\Phi = V(xr, \Theta, \Theta)$, $V = V^{\dagger}$
has full expansion in Θ, Θ
with constraints on components
 q, D : real scalar fields
 $F = H^{\dagger}$: scalar field
 A_{μ} : vector field
 $\mu = \chi, \xi = \chi$: Weyl spinors
number of components can be
reduced by
SUSY gauge transformations

SUSY gauge transformation

$$V \rightarrow V' = V + (\phi + \phi^{\dagger})$$

$$\phi = a + \sqrt{2} \Theta \xi + \Theta G$$
chival SF

$$V = V^{\dagger} \rightarrow V' = (V')^{\dagger}$$
components of V':

$$\phi' = \phi + 2 \operatorname{Re} a$$

$$\psi' = \psi + \sqrt{2} \xi$$

$$F' = F + G$$

$$A'_{\mu} = A_{\mu} - \partial_{\mu} (2 \operatorname{Im} a)$$

$$\lambda' = \lambda + \frac{i}{\sqrt{2}} \sigma^{\mu} \partial_{\mu} \xi$$

$$D' = D - \frac{1}{2} \Box (2 \operatorname{Re} a)$$
eliminate $\phi', \psi', F' \leftrightarrow \operatorname{Re} o, \xi, G$

in the gauge without the
q 4, F components

$$V' = (\Theta \in r \in I) A'_{\mu}(x)$$

 $+ (\Theta \in I) \in \overline{\lambda}'(x)$
 $+ (\Theta \in I) \in \overline{\lambda}'(x)$
 $+ (\Theta \in I) (\in \overline{O}) D'(x)$
Wess-Zumino gauge
in the following to be used

$$(drop')$$

 $susy-transf. \delta_{e}V, \delta_{e} = ieQ + ieQ$
 $\Rightarrow \delta A_{\mu} = ..., \delta \lambda = ...,$
 $\delta D = \frac{i}{2} \partial_{\mu} (e \sigma h \overline{\lambda} - \lambda \sigma h \overline{e})$

SUSY field strength
use covariant derivative
$$\mathfrak{I}, \mathfrak{I}$$

 $W_a := -\frac{1}{4}(\mathfrak{I}\mathfrak{I}\mathfrak{I}) \mathfrak{I}_a V(x, \theta, \theta)$
 $\mathfrak{I}_a W_a = 0$
 $\mathfrak{I}_a W_a = 0$
 $\mathfrak{I}_a W_a = 0$
 $\mathfrak{I}_a W_a = \mathfrak{I}_a$
 $\mathfrak{I}_a (x) - \mathfrak{I}_a \mathfrak{I}_a (x)$
 $-(\mathfrak{I} \mathfrak{I}^* \theta)_a \mathcal{I}_a \mathcal{I}_a$
 $-(\mathfrak{I} \mathfrak{I}^* \theta)_a \mathcal{I}_a \mathcal{I}_a$
 $\mathfrak{I}_a = \mathfrak{I} \mathfrak{I}_a (x) - \mathfrak{I}_a \mathfrak{I}_a$
 $\mathfrak{I}_a = \mathfrak{I} \mathfrak{I}_a (x) - \mathfrak{I}_a \mathfrak{I}_a$
 $\mathfrak{I}_a = \mathfrak{I} \mathfrak{I}_a (x) - \mathfrak{I}_a \mathfrak{I}_a$

2.3. ShSY Lagrangians Lagrangian &: scelar, hermitean action: $S = \int d^4x \, \mathcal{L}$ SUSY: 2 resp. S invariant under susy-transf. I Susy 2+ of Kr -> 0 in S products of SF = SF highest component in $\Theta, \overline{\Theta}$ $\overline{susy} + \partial_{\mu} (...)$

under
$$\delta_{\epsilon} = i \left(\epsilon Q + \overline{\epsilon} \overline{Q} \right) :$$

 $(\theta \theta) F \rightarrow \delta \overline{F} = \partial_{\mu} (\dots)$
 $(\theta \theta) (\theta \overline{\theta}) D \rightarrow \delta D = \partial_{\mu} (\dots)$
 $examples:$
 $\phi = \phi + \sqrt{2} \Theta \psi + (\theta \theta) \overline{F}$
 $\phi^{2} = \phi^{2} + 2\sqrt{2} \phi \theta \psi + (\theta \theta) (2\overline{F}\phi - \psi\psi)$
 $\phi^{3} = \phi^{3} + \dots + (\theta \theta) \cdot 3(\phi^{2}F - \psi\psi\psi)$
 $\phi^{\dagger}\phi = \dots + (\theta \theta) (\overline{\theta}\overline{\theta}) \cdot [\dots]$
 $[\dots] = (\partial_{\mu} \phi)^{*} (\partial^{\mu} \phi)$
 $-\frac{1}{2} (\overline{\psi}\overline{\epsilon}^{T} \partial_{\mu} \psi + \psi \epsilon^{\mu} \partial_{\mu} \overline{\psi})$
 $+ \overline{F}^{*}F$

Lagrangian:

$$\begin{aligned}
\mathcal{Y} &= \left. \phi^{+} \phi \right|_{Q_{0},\overline{O}\overline{O}} - \frac{m}{2} \phi^{2} \right|_{G_{0}} - \frac{g}{3} \phi^{3} \Big|_{G_{0}} \\
&= \left. \left| \partial_{\mu} \phi \right|^{2} - \frac{i}{2} \left(\overline{\psi} \overline{\varepsilon}^{\mu} \partial_{\mu} \psi + \psi \varepsilon^{\mu} \partial_{\mu} \overline{\psi} \right) + \overline{\varepsilon}^{\mu} \overline{\varepsilon} \right. \\
&= \left. \left| \partial_{\mu} \phi \right|^{2} - \frac{i}{2} \left(\overline{\psi} \overline{\varepsilon}^{\mu} \partial_{\mu} \psi + \psi \varepsilon^{\mu} \partial_{\mu} \overline{\psi} \right) + \overline{\varepsilon}^{\mu} \overline{\varepsilon} \right. \\
&= \left. \left. \left(\psi \psi + \overline{\psi} \overline{\psi} \right) - m \left(\psi \overline{\varepsilon} + \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \psi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right. \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \varphi^{\mu} \overline{\varepsilon} - \psi^{\mu} \overline{\varepsilon}^{\mu} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \psi^{\mu} \overline{\varepsilon} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \psi^{\mu} \overline{\varepsilon} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \psi^{\mu} \overline{\varepsilon} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \psi^{\mu} \overline{\varepsilon} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi + \psi^{\mu} \overline{\psi} \overline{\psi} - \psi^{\mu} \overline{\varepsilon} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi - \psi^{\mu} \overline{\psi} \right) \right] \\
&+ \left. g \left(\psi \psi - \psi^{\mu} \overline{\psi} \right] \\
&+ \left. g \left(\psi \psi - \psi^{\mu} \overline{\psi}$$

$$\begin{aligned} \mathcal{L} &= \left| \partial_{\mu} \varphi \right|^{2} - m^{2} \varphi^{*} \varphi \\ &- \frac{i}{2} \left(\overline{\psi} \overline{c} \gamma_{\mu} \psi + \psi \overline{c} \gamma_{\mu} \overline{\psi} \right) + \frac{m}{2} \left(\psi \psi + \overline{\psi} \overline{\psi} \right) \\ &+ g \left(\varphi \psi \psi + \varphi^{*} \overline{\psi} \overline{\psi} \right) \\ &- mg \left(\varphi^{*} \varphi \right) \left(\psi + \varphi^{*} \right) - g \left(\varphi^{*} \varphi \right)^{2} \end{aligned}$$

("Wess Zumino model")

$$\frac{4-\operatorname{component} \operatorname{notation}:}{\Psi = \begin{pmatrix} \Psi \\ \overline{\Psi} \end{pmatrix}, \quad \Psi \Psi = \overline{\Psi} \operatorname{R}_{L} \Psi \\ \overline{\Psi} \overline{\Psi} = \overline{\Psi} \operatorname{R}_{R} \Psi \\ \Psi \overline{\Psi} \overline{\Psi} = \overline{\Psi} \operatorname{R}_{R} \Psi \\ \Psi \overline{\Psi} \overline{\Psi} \overline{\Psi} + \overline{\Psi} \overline{\overline{\Psi}} \overline{\Psi} = \overline{\Psi} \partial^{\mu} \partial^{\mu} \overline{\Psi} \\ \psi \overline{\Psi} \overline{\Psi} \partial^{\mu} - m^{2} |\Psi|^{2} \\ -\frac{1}{2} \overline{\Psi} (i \partial^{\mu} \partial_{\mu} - m) \Psi \\ + \Im (\Psi \overline{\Psi} \operatorname{R}_{L} \Psi + \Psi^{*} \overline{\Psi} \operatorname{R}_{R} \Psi) \\ -mg (\Psi^{*} \Psi) (\Psi + \Psi^{*}) - \Im |\Psi|^{4} \\ - \mathcal{A} \operatorname{SR}_{L} \qquad - \mathcal{A} \operatorname{SR}_{R} \\ - \mathcal{A} \qquad = \mathcal{A}$$

$$\frac{\text{example for vector field}}{\text{components }} A_{\mu, \lambda} D$$

$$\mathcal{L} = \frac{1}{4} W^{a} W_{a} \Big|_{00} + h.c.$$

$$= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$-\frac{1}{2} \Big(\lambda = r \partial_{\mu} \overline{\lambda} + \overline{\lambda} \in r \partial_{\mu} \lambda \Big)$$

$$+ 2 D^{2}, \quad D: \text{ auxiliary,}$$

$$e/\text{iminate}$$

$$(D=0)$$

$$A_{\mu}: \text{ photon } \lambda: \text{ photino}$$

$$\overline{\Psi} = \Big(\frac{\lambda}{\overline{\lambda}} \Big): \quad \widehat{\Xi} \overline{\Psi} i S^{\mu} \partial_{\mu} \overline{\Psi}$$

$$\text{mass = 0}$$

2.4. Susy gauge theories
2.4.1. Abelian case
chiral SF
$$\phi$$
, $\overline{D}a\phi = 0$
susy gauge transf. $\phi \rightarrow \phi' = e^{-i\Lambda(\phi)}\phi$
 $\overline{D}a\phi' = 0 \iff \overline{D}A = 0$
 Λ chiral SF
with $\phi^{+\prime} = \phi^{+}e^{i\Lambda^{+}}$
the kinetic term of \mathcal{L} changes:
 $\mathcal{L}_{kin} = \phi^{+}\phi|_{\phi \in \partial \delta} \phi^{+}e^{i(\Lambda^{+}-\Lambda)}\phi|_{\phi \in \partial \delta}$
get invariance by introducing
vector field V in \mathcal{L}_{kin} :
 $\rightarrow \mathcal{L}_{kin} = \phi^{+}e^{2gV}\phi|_{\phi \in \partial \delta}$
with $V \rightarrow V' = V + \frac{i}{2g}(\Lambda - \Lambda^{+})$

* add kinetic term for V
photon A_µ, photino
$$\lambda$$

* 4- component notation
 $\Psi = \left(\frac{\Psi}{\Psi}\right), \quad \chi = \left(\frac{\lambda}{\lambda}\right)$
 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \overline{\chi} i \vartheta^{\mu} \partial_{\mu} \chi$
 $+ |D_{\mu} \varphi|^{2} - \frac{1}{2} \overline{\Psi} i \vartheta^{\mu} D_{\mu} \Psi$
 $+ ig \sqrt{2} \left(\overline{\Psi} R_{L} \chi \varphi^{*} - \overline{\Psi} R_{R} \chi \varphi\right)$
 $+ F F^{*} + 2g (\varphi^{*} \varphi) D + 2 D^{2}$
* eliminate F, D
 $\frac{2\Psi}{\partial F^{*}} = 0 \Rightarrow F = 0$
 $\frac{3\Psi}{\partial \Phi} = 0 \Rightarrow D = -\frac{9}{2} (\varphi^{*} \varphi)$

in 4-component notation:

$$\begin{aligned}
\mathcal{L}_{SRED} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \overline{\chi} i \delta^{\mu} \partial_{\mu} \chi \\
&+ |D_{\mu} \varphi_{\mu}|^{2} - m^{2} |\varphi_{\mu}|^{2} - \overline{\Psi} (i \delta^{\mu} - m) \overline{\Psi} \\
&+ (D_{\mu} \varphi_{\mu}|^{2} - m^{2} |\varphi_{\mu}|^{2} - \overline{\Psi} (i \delta^{\mu} - m) \overline{\Psi} \\
&+ (D_{\mu} \varphi_{\mu}|^{2} - m^{2} |\varphi_{\mu}|^{2} \\
&- \frac{e^{2}}{2} (1 \varphi_{\mu} i^{2} - 1 \varphi_{\mu} - i^{\mu})^{2} \\
&- e \sqrt{e} (\overline{\chi} R_{\mu} \overline{\Psi} \varphi_{\mu}^{*} + \overline{\Psi} R_{\mu} \chi \varphi_{\mu}) \\
&+ e \sqrt{z} (\overline{\chi} R_{\mu} \overline{\Psi} \varphi_{\mu}^{*} + \overline{\chi} R_{\mu} \overline{\Psi} \varphi_{\mu}) \\
&+ e \sqrt{z} (\overline{\Psi} R_{\mu} \chi \varphi_{\mu}^{*} + \overline{\chi} R_{\mu} \overline{\Psi} \varphi_{\mu}) \\
&\text{In: mass of } e^{-}_{\mu} e^{+} \\
&- \frac{\varphi_{\mu}^{*}}{\varphi_{\mu}} & - \frac{\varphi_{\mu}^{*}}{\varphi_{\mu}^{*}}
\end{aligned}$$

fermion-scalar interactions

$$\rightarrow e^{\pm} - x$$

 $\rightarrow -x - 4, 4$
Vertices:
 $4 - e^{-1} - ie \sqrt{2} R_{L}$
 $4 - e^{-1} - ie \sqrt{2} R_{R}$
 $4 - e^{-1} - ie \sqrt{2} R_{R}$

2.4.2. Non-Abelian case
gauge group G, generators
$$T_{A}, ..., T_{N}$$

 $[T_{a}, T_{b}] = if_{abc} T_{c}$
matter: $\Psi = \begin{pmatrix} \Psi_{A} \\ \vdots \\ \Psi_{N} \end{pmatrix}$ n-dim.
rep. of G
gauge fields: W_{μ}^{α} , $\alpha = 1, ..., N$
field strength: $W_{\mu\nu}^{\alpha} = \partial_{\mu} W_{\nu}^{\alpha} - \partial_{\nu} W_{\mu}^{\alpha}$
 $+ gf_{abc} W_{\mu\nu}^{b} W_{\nu}^{c}$
cov. derivative: $D_{\mu} = \partial_{\mu} - igT_{a} W^{a}$
 $\mathcal{L} = -\frac{1}{4} (W_{\mu\nu}^{\alpha})^{2} + \overline{\Psi} igr D_{\mu} \Psi + |D_{\mu} \varphi|^{2}$
 $- m \overline{\Psi} \overline{\Psi} - m^{2} \varphi^{\dagger} \varphi$

•
$$\mathcal{L}_{gauge}$$

 $W_{a} = -\frac{1}{4} (\overline{D} \overline{D}) e^{2gV} D_{a} e^{2gV}$
 $field strength$
 $\mathcal{L}_{gauge} = \frac{1}{4} W_{a} W^{a}|_{\Theta} + h.c.$
 $= -\frac{1}{4} W_{\mu\nu} W^{\mu\nu,\alpha}$
 $-\frac{1}{2} (\overline{\lambda}^{\alpha} \overline{e} r D_{\mu} \lambda^{\alpha} + \lambda^{\alpha} \overline{e} r D_{\mu} \overline{\lambda}^{\alpha})$
 $+ 2 (D^{\alpha})^{2}$
choose $G = SU(3)$:
 $SUSY-QCD$

$$\frac{SUSY \text{ formulation}}{Soft terms = part of SUSY}$$
interaction terms
introduce external chiral SF
"spunion field"
$$\eta(z,\theta) = a(z) + \sqrt{2} \Theta \chi(z) + \Theta \Theta \hat{f}(z)$$

$$\hat{f}(z) = f_0 + f(z), \quad f_0 \text{ const}$$

$$\tilde{M}_{ij}^2 \eta^{+} \eta \Phi_i^+ e^{2gV} \Phi_j |_{\Theta \Theta \Theta \Theta}$$

$$\rightarrow \tilde{M}_{ij}^* f_0^2 \phi_i^+ \phi_j \quad \text{for } a = \chi = f = 0$$

$$\tilde{B}_{ij} \eta \Phi_i \Phi_j + \tilde{A}_{ijk} \eta \Phi_i \Phi_j \Phi_k$$

$$\tilde{B}_{ij} f_0 \phi_i \phi_j + \tilde{A}_{ijk} f_0 \phi_i \phi_j \phi_k$$

$$\frac{1}{2} \tilde{M}_{\lambda} \eta W_{\alpha} W^{\alpha}|_{\Theta \Theta} + h.c.$$

$$\tilde{M}_{\lambda} f_0 (\lambda \alpha \lambda \alpha + \bar{\lambda}_{\lambda} \bar{\lambda}_{\lambda})$$

$$\dim[\eta] = 0$$

interaction terms are supersymmetric and (power-counting) renormalizable

useful for quantization and proof of renormalizability 3. MSSM: formulation and content

gauge boson content

 $SU(2)_I$: generators $T_I^1, T_I^2, T_I^3, T_I^a = \frac{1}{2}\sigma_a$ gauge fields $W^1_{\mu}, W^2_{\mu}, W^3_{\mu}$ also: $W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^{1}_{\mu} \mp i W^{2}_{\mu} \right), W^{3}_{\mu}$ $U(1)_Y$: generator Y gauge field B_{μ} $SU(3)_C$: generators $T^a = \frac{1}{2}\lambda_a$ $(a = 1, \dots, 8)$ gauge fields G^a_{μ} , $(a = 1, \dots 8)$

matter fields and quantum numbers

 $SU(2)_I$: weak isospin, generators $T_I^a = \frac{1}{2} \sigma^a$ for L, = 0 for R $U(1)_Y$: weak hypercharge, generator Y $T_I^3 + Y/2 = Q$

fermion content (ignoring possibe right-handed neutrinos)

$$T_{I}^{3} \qquad Y$$

$$leptons: \qquad \Psi_{L}^{L} = \begin{pmatrix} \nu_{e}^{L} \\ e^{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu}^{L} \\ \mu^{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu}^{L} \\ \mu^{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau}^{L} \\ \tau^{L} \end{pmatrix} + \frac{1}{2} \qquad -1$$

$$\psi_{l}^{R} = e^{R} \qquad \mu^{R} \qquad \tau^{R} \qquad 0 \qquad -2$$

$$quarks: \qquad \Psi_{Q}^{L} = \begin{pmatrix} u^{L} \\ d^{L} \end{pmatrix} \begin{pmatrix} c^{L} \\ s^{L} \end{pmatrix} \begin{pmatrix} t^{L} \\ b^{L} \end{pmatrix} + \frac{1}{2} \qquad +\frac{1}{3}$$

$$\psi_{u}^{R} = u^{R} \qquad c^{R} \qquad t^{R} \qquad 0 \qquad +\frac{4}{3}$$

$$\psi_{d}^{R} = d^{R} \qquad s^{R} \qquad b^{R} \qquad 0 \qquad -\frac{2}{3}$$

Particle Content of the MSSM

Superfield	Bosons	Fermions	$SU_c(3)$,	$SU_L(2)$	$U_Y(1)$
Gauge					
$\mathbf{G}^{\mathbf{a}}$	gluon g^a	gluino $ ilde{g}^a$	8	1	0
$\mathbf{V}^{\mathbf{k}}$	Weak W^k (W^{\pm}, Z)	wino, zino \tilde{w}^k $(\tilde{w}^{\pm}, \tilde{z})$	1	3	0
\mathbf{V}'	Hypercharge $B(\gamma)$	$ ext{bino} \qquad ilde{b}(ilde{\gamma})$	1	1	0
Matter					
$\mathbf{L_{i}}$	sleptons $\int \tilde{L}_i = (\tilde{\nu}, \tilde{e})_L$	leptons $\int L_i = (\nu, e)_L$	1	2	-1
$\mathbf{E_i}$	$\tilde{E}_i = \tilde{e}_R$	$E_i = e_R$	1	1	2
$\mathbf{Q_i}$	$\int \tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$\int Q_i = (u, d)_L$	3	2	1/3
$\mathbf{U_i}$	squarks $\langle \tilde{U}_i = \tilde{u}_R$	quarks $\langle U_i = u_R^c \rangle$	3^*	1	-4/3
D _i	$\int \tilde{D}_i = \tilde{d}_R$	$D_i = d_R^c$	3^*	1	2/3
Higgs					
$\mathbf{H_1}$	$H_{iagreen} \int H_1$	higgsings $\int \tilde{H}_1$	1	2	-1
H_2	H_2	\tilde{H}_2	1	2	1

superfields for matter

 $\mathbf{Q} = \begin{pmatrix} \mathbf{Q}^1 \\ \mathbf{Q}^2 \end{pmatrix}, \mathbf{U}, \mathbf{D}$ (quarks) $\mathbf{L} = \begin{pmatrix} \mathbf{L}^1 \\ \mathbf{L}^2 \end{pmatrix}, \mathbf{E}$ (leptons) $\mathbf{Q}^{\mathbf{i}} = \tilde{Q}^{\mathbf{i}} + \sqrt{2} \left(\theta q_{L}^{\mathbf{i}}\right) + (\theta \theta) F_{L}^{\mathbf{i}}$ $\mathbf{U} = \tilde{\boldsymbol{U}} + \sqrt{2} \left(\theta \boldsymbol{u}_{\boldsymbol{R}} \right) + \left(\theta \theta \right) F_{\boldsymbol{R}}^{\boldsymbol{u}}$ $\mathbf{U}^{\dagger} = \tilde{U^{*}} + \sqrt{2} \left(\bar{\theta} \bar{\boldsymbol{u}}_{\boldsymbol{R}} \right) + \left(\bar{\theta} \bar{\theta} \right) F_{\boldsymbol{R}}^{u *}$ scalar spinor auxiliary $Q^i = \widetilde{q}_L^i$: u- and d-squarks, "left-handed" $ilde{U}^* = ilde{u}_R, \quad u$ -squark, "right-handed"

4-component quark spinors: Ψ_u

$$\Psi_{u}=\left(egin{array}{c} u_L\ ar{u}_R\end{array}
ight), \quad \Psi_{u}^c=\left(egin{array}{c} u_R\ ar{u}_L\end{array}
ight)$$

(analogous for d-quarks and leptons)

superfields for Higgs $\mathbf{H}_1 = \begin{pmatrix} \mathbf{H}_1^1 \\ \mathbf{H}_1^2 \end{pmatrix}$ with Y = -1, $\mathbf{H}_2 = \begin{pmatrix} \mathbf{H}_2^1 \\ \mathbf{H}_2^2 \end{pmatrix}$ with Y = +1

$$\begin{split} \mathbf{H}_{i}^{k} &= H_{i}^{k} + \sqrt{2} \left(\theta \psi_{H_{i}^{k}} \right) + (\theta \theta) F_{i}^{k} \\ & \text{scalar} \qquad \text{spinor} \qquad \text{auxiliary} \\ & \text{(Higgs)} \qquad \text{(Higgsino)} \end{split}$$

$$\begin{aligned} \mathbf{superfields for Higgs} \\ \mathbf{H}_{1} &= \begin{pmatrix} \mathbf{H}_{1}^{1} \\ \mathbf{H}_{1}^{2} \end{pmatrix} \text{ with } Y = -1, \qquad \mathbf{H}_{2} = \begin{pmatrix} \mathbf{H}_{2}^{1} \\ \mathbf{H}_{2}^{2} \end{pmatrix} \text{ with } Y = +1 \\ \mathbf{H}_{i}^{k} &= \mathbf{H}_{i}^{k} + \sqrt{2} \left(\theta \psi_{\mathbf{H}_{i}^{k}} \right) + \left(\theta \theta \right) F_{i}^{k} \\ \text{scalar spinor auxiliary} \\ (\text{Higgs) (Higgsino)} \end{aligned}$$

$$\mathbf{e} | \mathbf{e} \mathsf{ctric charge:} \quad \mathbf{Q}_{H_{1}} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \mathbf{Q}_{H_{2}} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\ \Rightarrow \qquad \mathbf{H}_{1} = \begin{pmatrix} \mathbf{H}_{1}^{0} \\ \mathbf{H}_{1}^{-} \end{pmatrix}, \qquad \mathbf{H}_{2} = \begin{pmatrix} \mathbf{H}_{2}^{+} \\ \mathbf{H}_{2}^{0} \end{pmatrix} \end{aligned}$$
constructing the MSSM Lagrangian

[notation:
$$\mathbf{V}_i = T_{\alpha} \mathbf{V}_i^{\alpha}, \quad \mathbf{W}_a = T_{\alpha} \mathbf{W}_a^{\alpha}$$
]

$$\sum_{SU(3),SU(2),U(1)} \frac{1}{4} \operatorname{Tr}(\mathbf{W}_a \mathbf{W}^a) + h.c.$$

+
$$\sum_{\text{matter}} \Phi_i^{\dagger} e^{2(g_3 \mathbf{V}_3 + g_2 \mathbf{V}_2 + g_1 \mathbf{V}_1)} \Phi_i$$

+
$$\sum_{\text{Higgs}} \mathbf{H}_{i}^{\dagger} e^{2(g_{2}\mathbf{V}_{2}+g_{1}\mathbf{V}_{1})} \mathbf{H}_{i}$$

$$+ \mathcal{W}$$
 superpotential

$$\begin{split} \mathcal{W} &= \varepsilon_{ij} \, \mu \, \mathbf{H}_1^i \mathbf{H}_2^j \\ &+ \varepsilon_{ij} \left(\mathbf{Y}_U \, \mathbf{Q}^j \mathbf{U} \, \mathbf{H}_2^i + \, \mathbf{Y}_D \, \mathbf{Q}^j \mathbf{D} \, \mathbf{H}_1^i + \, \mathbf{Y}_E \, \mathbf{L}^j \mathbf{E} \, \mathbf{H}_1^i \right) \end{split}$$

- \mathcal{W} conserves R-parity: $P_R = (-1)^{3(B-L)+2s}$
- \blacksquare P_R -violating interactions
 - induce baryon- or lepton-number violating processes
 - interactions must be suppressed
 - interactions are absent if P_R -conservation is postulated
- phenomenologically, P_R -violating terms can be present, with couplings (small) as free parameters
- minimal choice (MSSM) contains only R-parity conserving terms
- all SM particles have even, all SUSY particles have odd $P_R \Rightarrow$
 - SUSY-particles can only be produced in pairs
 - lightest SUSY particle ("LSP") is stable

soft breaking terms

$$\begin{split} \mathcal{L}_{\text{soft}} &= \sum_{i} m_{i}^{2} |\varphi_{i}|^{2} \\ &+ \sum_{SU(3),SU(2),U(1)} \frac{1}{2} M_{\lambda} \lambda_{\alpha} \lambda_{\alpha} \\ &+ B \varepsilon_{ij} H_{1}^{i} H_{2}^{j} + h.c. \\ &+ \varepsilon_{ij} \left(A_{U} \tilde{Q}^{j} \tilde{U} H_{2}^{i} + A_{D} \tilde{Q}^{j} \tilde{D} H_{1}^{i} + A_{E} \tilde{L}^{j} \tilde{E} H_{1}^{i} \right) \end{split}$$

- φ_i : all scalar fields
- λ_{α} : all gaugino fields
- $\tilde{U}, \tilde{D}, \tilde{E}$: scalar quark/lepton fields
- $\tilde{Q}, \tilde{E}:$ doublets of scalar quarks/leptons

general: coeffcients A are 3×3 -matrices in generation space

- essentially all masses and mixings of superpartners are free parameters
- soft parameters can be treated as independent free parameters
- or: fixed by some (ad-hoc) assumptions
- or: derived from specific models of SUSY breaking

- essentially all masses and mixings of superpartners are free parameters
- soft parameters can be treated as independent free parameters
- or: fixed by some ad-hoc/ well motivated assumptions
- or: derived from specific models of SUSY breaking

- **•** parameters M_{λ}, A_f can be complex
- new sources of CP-violation
- phenomenological constraints from electric dipole moments and from flavor physics

Higgs fields

two scalar doublets from $\mathbf{H}_1, \mathbf{H}_2$ superfields:

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} H_1^0 \\ \phi_1^- \end{pmatrix}, \qquad \langle H_1 \rangle_0 = \begin{pmatrix} v_1 \\ 0 \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ H_2^0 \end{pmatrix}, \qquad \langle H_2 \rangle_0 = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

$$\begin{split} V_{H}^{\text{susy}} &= \mu^{2} H_{1}^{\dagger} H_{1} + \mu^{2} H_{2}^{\dagger} H_{2} \\ &+ \frac{g_{1}^{2} + g_{2}^{2}}{8} \left(H_{1}^{\dagger} H_{1} - H_{2}^{\dagger} H_{2} \right)^{2} + \frac{g_{2}^{2}}{2} |H_{1}^{\dagger} H_{2}|^{2} , \\ V_{H}^{\text{soft}} &= m_{1}^{2} H_{1}^{\dagger} H_{1} + m_{1}^{2} H_{2}^{\dagger} H_{2} - m_{3}^{2} \varepsilon_{ij} \left(H_{1}^{i} H_{2}^{j} + h.c. \right) \end{split}$$

Higgs potential: $V_H = V_H^{\text{susy}} + V_H^{\text{soft}}$ = $(\mu^2 + m_1^2) H_1^{\dagger} H_1 + (\mu^2 + m_2^2) H_2^{\dagger} H_2 - m_3^2 \varepsilon_{ij} (H_1^i H_2^j + h.c.)$ $+ \frac{g_1^2 + g_2^2}{8} (H_1^{\dagger} H_1 - H_2^{\dagger} H_2)^2 + \frac{g_2^2}{2} |H_1^{\dagger} H_2|^2$

EW symmetry breaking: minimum of V_H at

$$H_1^0 = v_1 \neq 0, \ H_2^0 = v_2 \neq 0, \ \Phi_1^- = 0, \ \Phi_2^+ = 0$$

necessary condition: $m_3^4 > (\mu^2 + m_1^2) (\mu^2 + m_2^2)$ requires $m_3^2 \neq 0$

SUSY breaking required for EW symmetry breaking

Higgs potential: $V_H = V_H^{\text{susy}} + V_H^{\text{soft}}$ = $(\mu^2 + m_1^2) H_1^{\dagger} H_1 + (\mu^2 + m_2^2) H_2^{\dagger} H_2 - m_3^2 \varepsilon_{ij} (H_1^i H_2^j + h.c.)$ $+ \frac{g_1^2 + g_2^2}{8} (H_1^{\dagger} H_1 - H_2^{\dagger} H_2)^2 + \frac{g_2^2}{2} |H_1^{\dagger} H_2|^2$

EW symmetry breaking: minimum of V_H at

$$H_1^0 = v_1 \neq 0, \ H_2^0 = v_2 \neq 0, \ \Phi_1^- = 0, \ \Phi_2^+ = 0$$

necessary condition: $m_3^4 > (\mu^2 + m_1^2) (\mu^2 + m_2^2)$ requires $m_3^2 \neq 0$

SUSY breaking required for EW symmetry breaking

SM particle masses:

$$M_{W,Z}^2 \sim v_1^2 + v_2^2, \quad m_d, m_e \sim v_1, \quad m_u \sim v_2$$
new parameter: $\tan \beta = rac{v_2}{v_1}$

mass spectrum: 3 unphysical + 5 physical degrees of freedom

- **9** 3 Goldstone bosons G^0, G^{\pm}
- **2** neutral *CP*-even Higgs bosons h^0, H^0
- I neutral CP-odd Higgs boson $A^{0} \quad "pseudoscalar"'$ $M^{2}_{A} = m^{2}_{3} \left(\cot \beta + \tan \beta \right)$

conventional input parameters: M_A , $\tan \beta = \frac{v_2}{v_1}$

other masses $m_h, m_H, m_{H^{\pm}}$ predicted, not independent

mass eigenstates are linear combinations of the doublet components, with $\phi_1^+ = (\phi_1^-)^\dagger, \ \phi_2^- = (\phi_2^+)^\dagger$

$$H_1^0 = v_1 + \frac{1}{\sqrt{2}} \left(\phi_1 + i\chi_1\right)$$
$$H_2^0 = v_2 + \frac{1}{\sqrt{2}} \left(\phi_2 + i\chi_1\right)$$

$$\left(\begin{array}{c} H^{0} \\ h^{0} \end{array}\right) = \left(\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right) \left(\begin{array}{c} \phi_{1} \\ \phi_{2} \end{array}\right)$$

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix}$$

$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

$$\tan 2\alpha = \tan 2\beta \; \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2}, \quad -\frac{\pi}{2} < \alpha < 0$$

• predictions for dependent masses (tree-level):

$$m_{H^{\pm}}^{2} = M_{A}^{2} + M_{W}^{2}$$

$$m_{H,h}^{2} = \frac{1}{2} \left(M_{A}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{A}^{2}M_{Z}^{2} \cos^{2}2\beta} \right)$$

$$m_{h} < M_{Z} |\cos(2\beta)| < M_{Z} \quad (!)$$

• substantial higher-order corrections:

dominant one-loop term
$$\Delta m_h^2 \sim G_{\rm F} \, m_t^4 \, \log(m_{\tilde{t}}^2/m_t^2)$$
 from the Yukawa sector

all other sectors also contribute

 m_h = observable sensitive to (still) unknown SUSY particles

Higgs bosons in the MSSM: h^0, H^0, A^0, H^{\pm}

- light Higgs boson h^0 $m_h \le m_Z |\cos(2\beta)| + \Delta m_{h^0}$
- for heavy A^0, H^0, H^{\pm} :
 - h^0 like Standard Model Higgs boson

 m_h^0 strongly influenced by quantum effects, e.g. t, \tilde{t}

gauginos and Higgsinos

mass terms = bilinear terms in gaugino and Higgsino fields notation: gluino \tilde{g}_a , winos $\tilde{W}^{\pm}, \tilde{W}^3$, bino \tilde{B}^0 , Higgsinos $\tilde{H}_{1,2}^{\pm,0}$

$$\mathcal{L}_{\text{gaugino,Higgsino}} = \frac{1}{2} M_3 \tilde{g}_a \tilde{g}_a + \frac{1}{2} \chi^{\mathrm{T}} \mathbf{M}^{(\mathbf{0})} \chi + \psi_-^{\mathrm{T}} \mathbf{M}^{(\mathbf{c})} \psi_+ + \text{h.c.}$$

 $\mathbf{M^{(c)}, M^{(0)}}$ non diagonal in the components

$$\psi_{+} = \begin{pmatrix} \tilde{W}^{+} \\ \tilde{H}_{2}^{+} \end{pmatrix}, \quad \psi_{-} = \begin{pmatrix} \tilde{W}^{-} \\ \tilde{H}_{1}^{-} \end{pmatrix}, \quad \chi = \begin{pmatrix} \tilde{B}^{0} \\ \tilde{W}^{3} \\ \tilde{H}_{1}^{0} \\ \tilde{H}_{2}^{0} \end{pmatrix}$$

diagonalization \rightarrow mass eigenstates:

• charginos $\chi_{1,2}^{\pm}$, neutralinos $\chi_{1,2,3,4}^{0}$

• chargino masses: $m_{\tilde{\chi}_{1,2}^{\pm}}$ from M_2, μ

$$\begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$

• neutralino masses: $m_{\tilde{\chi}^0_{1,2,3,4}}$ from M_1, M_2, μ

 $\begin{pmatrix} M_1 & 0 & -M_Z s_W \cos\beta & M_Z s_W \sin\beta \\ 0 & M_2 & M_Z c_W \cos\beta & -M_Z c_W \sin\beta \\ -M_Z s_W \cos\beta & M_Z c_W \cos\beta & 0 & -\mu \\ M_Z s_W \sin\beta & -M_Z c_W \sin\beta & -\mu & 0 \end{pmatrix}$

• sfermion masses: $m_{\tilde{f}_{1,2}}$ from $M_L, M_{\tilde{f}_R}, A_f$

$$\begin{pmatrix} m_f^2 + M_L^2 + M_Z^2 c_{2\beta} (I_f^3 - Q_f s_W^2) & m_f (A_f - \mu \kappa) \\ m_f (A_f - \mu \kappa) & m_f^2 + M_{\tilde{f}_R}^2 + M_Z^2 c_{2\beta} Q_f s_W^2 \end{pmatrix}$$

with

$$\kappa = \{ \cot \beta; \tan \beta \} \text{ for } f = \{u, d\}$$

note: M_{L} equal for both \tilde{u} and \tilde{d} of a doublet $M_{L}, M_{\tilde{u}_{R}}, A_{u} \rightarrow m_{\tilde{u}_{1,2}}, \theta_{u}$ $M_{L}, M_{\tilde{d}_{R}}, A_{d} \rightarrow m_{\tilde{d}_{1,2}}, \theta_{d}$ $\Rightarrow m_{\tilde{u}_{1,2}}, m_{\tilde{d}_{1,2}}$ not independent

Quantization and renormalization

conventional gauge theories

gauge group *G*, generators T_a , structure constants f_{abc} for quantization: $\mathcal{L} = \mathcal{L}_{sym} + \mathcal{L}_{fix} + \mathcal{L}_{ghost}$ $\mathcal{L}_{fix} = \frac{1}{2} F_a^2$, $F_a = \partial_{\mu} W^{a,\mu}$ requires ghost fields c_a and anti-ghosts \bar{c}_a

$$\mathcal{L}_{\text{ghost}} = (\partial^{\mu} \bar{c}_{a}) (D^{\text{adj}}_{\mu})_{ab} c_{b}, \quad D^{\text{adj}}_{\mu} = \partial_{\mu} - ig W^{r}_{\mu} T^{\text{adj}}_{r}$$

 \mathcal{L} is symmetric under BRS transformations

$$sW^a_{\mu} = (D^{adj}_{\mu})_{ab} c_b \qquad [sW^a_{\mu} \equiv \delta W^a_{\mu} \quad \text{etc.}]$$
$$sc_a = -\partial^{\nu} W^a_{\nu}, \quad s\bar{c}_a = -\frac{1}{2}g f_{abc} c_b c_c$$

BRS [Becchi, Rouet, Stora] symmetry guarantees

- renormalizability
- gauge invariant and unitary S matrix
 - important: ST identities = symmetry relations between Green functions, valid to all orders
 - basic quantity: effective action $\Gamma(\mathcal{L})$ generating functional of vertex functions

$$\frac{\delta\Gamma}{\delta\varphi_i\delta\varphi_j\ldots}=\Gamma_{\varphi_i\varphi_j\ldots}$$

classical action:

$$\Gamma_{cl}(\mathcal{L}) = \int d^4 x \, \mathcal{L}$$

$$\Rightarrow \quad \text{tree level vertices}$$

general:

vertex functions with loop contributions, building blocks for renormalization

BRS symmetry: invariance of Γ under BRS transformations,

$$\begin{split} S(\Gamma) &= \int \mathrm{d}^4 x \, \left[\frac{\delta \Gamma}{\delta \varphi_i} \, s \varphi_i + \cdots \right] = 0 & S: \, \text{ST-operator} \\ \Rightarrow \quad \frac{\delta S(\Gamma)}{\delta \varphi_j \dots} &= 0 & \text{relations between vertex functions} \\ & \text{ST identities} \end{split}$$

 ⇒ all UV divergences in vertex functions can be removed by (multiplicative) renormalization of parameters and fields in the classical Lagrangian/action

SUSY gauge theories

SUSY transformation modify BRS transformations,

$$\label{eq:limit} \begin{split} \mathcal{L}_{\mathrm{fix}} + \mathcal{L}_{\mathrm{ghost}} \\ \text{not invariant under SUSY transformations} \end{split}$$

BRS transformations → SUSY-BRS transformations
 combine BRS and SUSY transformations

SUSY gauge theories

SUSY transformation modify BRS transformations,

$$\label{eq:linear} \begin{split} \mathcal{L}_{\mathrm{fix}} + \mathcal{L}_{\mathrm{ghost}} \\ \text{not invariant under SUSY transformations} \end{split}$$

• BRS transformations \rightarrow SUSY-BRS transformations combine BRS and SUSY transformations

SUSY BRS symmetry \Rightarrow ST identities

ST id must be fulfilled at any order, including counterterms \Rightarrow structure of counterterms

result:

⇒ all UV divergences in vertex functions can be removed by (multiplicative) renormalization of parameters and fields in the classical Lagrangian/action.

Parameters to be renormalized: supersymmetric and soft-breaking parameters.

counterms fulfill the ST id \Leftrightarrow the regularization scheme for loop calculations is symmetric

otherwise: symmetry-restoring counterterms needed, determined by the ST id

important for practical calculations

practical calculations are done in

- Image: dimensional regularization D_{reg} : $p^{\mu}, A^{\mu}, \gamma^{\mu}, g_{\mu\nu}$ in D dimensions
 not supersymmetric,
 needs symmetry-restoring counterterms
- dimensional reduction D_{red}: only momenta in D dimensions, no symmetry-restoring counterterms needed (at one-loop), beyond one-loop no general proof yet

4. Tests of the MSSM

- **SUSY** parameters \rightarrow mass spectrum + mixing matrices
- interaction terms \rightarrow Feynman rules for the MSSM
- calculate processes with SUSY particles
 - production cross sections for colliders
 - decay widths/ branching ratios

in terms of the model parameters

- confront predictions with experimental results: direct searches
- Calculate electroweak precision observables (PO) with virtual SUSY particles M_W, Z observables, muon g 2, and M_h (!)
- compare predictions with experimental results for PO: indirect searches

indirect: precision observables with SUSY quantum loops

muon decay $\mu^- \rightarrow e^- \nu_\mu \ \bar{\nu}_e$

X = Higgs bosons, SUSY particles

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \cdot \left[1 + \Delta r(m_t, X)\right]$$

dark: $m_{\tilde{t}}, m_{\tilde{b}} > 500 \,\text{GeV}$ $m_{\tilde{q}}, m_{\tilde{g}} > 1200 \,\text{GeV}$

determines W mass

 $M_W = M_W(\alpha, G_F, M_Z, \boldsymbol{m_t}, \boldsymbol{X})$

 $m_{\tilde{t}}, m_{\tilde{b}} > 1000 \,\text{GeV}$ $(m_{\tilde{q}}, m_{\tilde{g}} > 1200 \,\text{GeV})$

+ charginos and sleptons above 500 GeV

muon g-2

new contributions from virtual SUSY partners of $\mu, \, \nu_{\mu}$ and of $W^{\pm}, \, Z$

extra terms

$$+ \quad \frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} \cdot \frac{v_2}{v_1}$$

can provide missing contribution for $M_{\rm SUSY} = 200 - 600 \, {\rm GeV}$

direct: SUSY searches at the LHC

> at the LHC sparticles are pair produced

- dominantly squarks and gluinos via the strong interaction
- they decay via cascades into the stable LSP (neutralino or gravitino), assuming R-parity conservation

> common signature:

- multiple, high energetic jets and transverse missing momentum
- distinguish final states by additional particles

zero, one, two, .. leptons (e, μ), two photons, ... b-jets if 3rd generation squarks are lighter than other generation squarks

incomplete event reconstruction due to LSP

ightarrow distributions of jets (and leptons)

• searches need predictions for production and decays of SUSY particles

• LHC: LO contributions to squark pair production (QCD tree level) cross sections depend essentially only on α_s and s-particle masses

- decay modes depend in detail on model parameters and chiralities
- simplifying assumptions for experimental analyses

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016 Model

 $\sum_{\substack{\lambda_1 \lambda_1 \\ \lambda_1 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_1 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_1 \lambda_1 \\ \lambda_1 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_1 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_1 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_1 \lambda_2 \\ \lambda_1 \lambda_2 \\ \lambda_2 \lambda_2 \\ \lambda_1 \lambda_2 \\$

Other Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$

 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$

 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_1^+$

Searches

Inclusive

squarks

gen. sct pr

3rd din

lived

Long-partic

ЧЧ

Model	e, μ, τ, γ	Jets	E _T miss	∫ <i>L dt</i> [fb	¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}\bar{s}, \bar{s} \rightarrow q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{s}\bar{s}\bar{s}, \bar{s} \rightarrow q \ell(\ell_{1} \gamma_{2}) \tilde{\chi}_{1}^{0} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \\ 5 \\ 1\text{-}2 \ r + 0\text{-}1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \\ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3	\$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\begin{aligned}{llllllllllllllllllllllllllllllllllll	1.85 TeV 1.35 TeV 1.86 TeV 1.83 TeV 1.7 TeV 1.6 TeV 2.0 Te ¹ 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q}) = m(\tilde{g}) \\ &(\tilde{k}^0) < 200 \ \text{GeV}, \ m(1^{st} \ \text{gen}, \tilde{q}) = m(2^{nd} \ \text{gen}, \tilde{q}) \\ &m(\tilde{q}) = M(\tilde{k}^0) < 5 \ \text{GeV} \\ &m(\tilde{k}^0) - 0 \ \text{GeV}, \ m(\tilde{k}^0) = 0.5(m(\tilde{k}^0) + m(\tilde{g})) \\ &m(\tilde{k}^0) < 400 \ \text{GeV}, \ m(\tilde{k}^0) = 0.5(m(\tilde{k}^0) + m(\tilde{g})) \\ &m(\tilde{k}^0) < 500 \ \text{GeV} \\ &m(\tilde{k}^0) < 500 \ \text{GeV} \\ &m(\tilde{k}^0) > 550 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu < 0 \\ &m(\tilde{k}^0) > 580 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu > 0 \\ &m(NLSP) > 30 \ \text{GeV} \\ &m(\tilde{k}^0) > 1.8 \times 10^{-4} \ \text{eV}, \ m(\tilde{g}) = m(\tilde{q}) = 1.5 \ \text{TeV} \end{split}$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	ğ ğ ğ	1.89 TeV 1.89 TeV <mark>1.37 TeV</mark>	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)<300 \text{ GeV}$	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow \tilde{x}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1},\tilde{t}_{1}\rightarrow \tilde{x}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1},\tilde{t}_{1}\rightarrow \tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1},\tilde{t}_{1}\rightarrow \tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1},\tilde{t}_{1}\rightarrow \tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(natural GMSB) \\ \tilde{t}_{1}\tilde{t}_{2}\tilde{t}_{2},\tilde{t}_{2}\rightarrow\tilde{t}_{1}+Z \\ \tilde{t}_{2}\tilde{t}_{2},\tilde{t}_{2}\rightarrow\tilde{t}_{1}+h \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes 4 Yes Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	b1 840 GeV b1 325-685 GeV k1-170 GeV 200-720 GeV k1-90-198 GeV 205-850 GeV k1 90-323 GeV k1 150-600 GeV k2 220-720 GeV k2 320-620 GeV		$\begin{split} & (\tilde{\kappa}_{1}^{0}) < 100 \text{GeV} \\ & (\tilde{\kappa}_{1}^{0}) < 150 \text{GeV}, \ & (\tilde{\kappa}_{1}^{+}) = m(\tilde{\kappa}_{1}^{0}) + 100 \text{GeV} \\ & (\tilde{\kappa}_{1}^{+}) = 2m(\tilde{\kappa}_{1}^{0}), \ & (m(\tilde{\kappa}_{1}^{0}) = 55 \text{GeV} \\ & (m(\tilde{\kappa}_{1}^{0}) - 160 \text{GeV} \\ & (m(\tilde{\kappa}_{1}^{0}) - 510 \text{GeV} \\ & (m(\tilde{\kappa}_{1}^{0}) - 300 \text{GeV} \\ & (m(\tilde{\kappa}_{1}^{0}) = 0 \text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
$ \begin{array}{l} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{1,\mathbf{R}},\tilde{\ell}\rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0}\rightarrow \tilde{\ell}_{1}\nu_{1}^{\ell}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{1}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0}\rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0}\rightarrow \tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{*}, h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{3}^{*}\tilde{\chi}_{2}^{*}\rightarrow \tilde{\ell}_{R}\ell \\ GGM (wino NLSP) weak prod. \\ GGM (bino NLSP) weak prod. \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c} \tilde{\ell} & 90\mbox{-}335 \mbox{ GeV } \\ \tilde{\chi}_1^{\pm} & 140\mbox{-}475 \mbox{ GeV } \\ \tilde{\chi}_1^{\pm} & 355 \mbox{ GeV } \\ \tilde{\chi}_1^{\pm} & \chi_2^{\pm} & 715 \mbox{ GeV } \\ \tilde{\chi}_1^{\pm} & \chi_2^{\pm} & 425 \mbox{ GeV } \\ \tilde{\chi}_{2,3}^{\pm} & 425 \mbox{ GeV } \\ \tilde{\chi}_{2,3}^{\pm} & 570 \mbox{ GeV } \\ \tilde{W} & 115\mbox{-}370 \mbox{ GeV } \\ \end{array} $	$m(ilde{x}_1^{\pm})=m$ $m(ilde{x}_2^0)=m(ilde{x}_2^0)=$	$\begin{split} m(\tilde{k}_{1}^{0}) &= 0 \text{ GeV } \\ m(\tilde{k}_{1}^{0}) &= 0 \text{ GeV }, m(\tilde{\ell}, \tilde{\nu}) &= 0.5(m(\tilde{\ell}_{1}^{+}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}) &= 0 \text{ GeV }, m(\tilde{\tau}, \tilde{\nu}) &= 0.5(m(\tilde{k}_{1}^{+}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}) &= m(\tilde{k}_{2}^{0}) , m(\tilde{k}_{1}^{0}) &= 0, \tilde{\ell} \text{ decoupled } \\ m(\tilde{k}_{1}^{+}) &= m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}) &= 0, \tilde{\ell} \text{ decoupled } \\ m(\tilde{k}_{1}^{0}) &= m(\tilde{k}_{1}^{0}) &= 0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{k}_{2}^{0}) + m(\tilde{k}_{1}^{0})) \\ err < 1 \text{ mm } \\ err < 1 \text{ mm } \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
$\begin{array}{l} \text{Direct} \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-} \text{ prod., long-lived} \tilde{X}\\ \text{Direct} \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-} \text{ prod., long-lived} \tilde{X}\\ \text{Stable, stopped} \tilde{g} \text{ R-hadron}\\ \text{Stable } \tilde{g} \text{ R-hadron}\\ \text{Metastable } \tilde{g} \text{ R-hadron}\\ \text{GMSB, stable } \tilde{r}, \tilde{X}_{1}^{0} {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \pi\\ \text{GMSB, } \tilde{X}_{1}^{0} {\rightarrow} \sqrt{c}, \text{ long-lived } \tilde{X}_{1}^{0}\\ \tilde{g}_{\tilde{g}}, \tilde{X}_{1}^{0} {\rightarrow} \sqrt{c}, \text{ long-lived } \tilde{X}_{1}^{0}\\ \text{GGM} \tilde{g}_{\tilde{g}}, \tilde{X}_{1}^{0} {\rightarrow} Z\tilde{G} \end{array}$	$ \begin{array}{c} \stackrel{+}{\underset{1}{\overset{\pm}{\overset{\pm}{1}}}} & \text{Disapp. trk} \\ & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ & \text{dE/dx trk} \\ (e,\mu) & 1-2 \mu \\ & 2 \gamma \\ & \text{displ. } ee/e\mu/\mu \\ & \text{displ. vtx + je} \end{array} $	1 jet - 1-5 jets - - - - τ ts -	Yes Yes - - - Yes - Yes	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	X [±] ₁ 270 GeV X [±] ₁ 495 GeV \tilde{g} 850 GeV \tilde{g} 850 GeV \tilde{g} 440 GeV χ^0_1 440 GeV $\tilde{\chi}^0_1$ 1.0 T $\tilde{\chi}^0_1$ 1.0 T	1.58 TeV 1.57 TeV •V	$\begin{split} & (\bar{\chi}_{1}^{+}) - m(\bar{\chi}_{1}^{0}) - 160 \text{ MeV}, \ \tau(\bar{\chi}_{1}^{+}) = 0.2 \text{ ns} \\ & m(\bar{\chi}_{1}^{+}) - m(\bar{\chi}_{1}^{0}) - 160 \text{ MeV}, \ \tau(\bar{\chi}_{1}^{+}) < 15 \text{ ns} \\ & m(\bar{\chi}_{1}^{0}) = 100 \text{ GeV}, \ 10 \ \mu \text{sc} < \tau(\bar{\chi}) < 1000 \text{ s} \\ & m(\bar{\chi}_{1}^{0}) = 100 \text{ GeV}, \ \tau > 10 \text{ ns} \\ & 10 < \tan \beta - 50 \\ & 10 < \tan \beta - 50 \\ & 1 < \tau(\bar{\chi}_{1}^{0}) < 3 \text{ ns}, \text{ SPS8 model} \\ & 7 < \tau(\tau \bar{\chi}_{1}^{0}) < 740 \text{ mm}, \ m(\bar{\chi}) = 1.3 \text{ TeV} \\ & 6 < \operatorname{cr}(\bar{\chi}_{1}^{0}) < 480 \text{ mm}, \ m(\bar{\chi}) = 1.1 \text{ TeV} \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162
$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu\nu, , \\ \tilde{\chi}_1^+ \tilde{\chi}_1, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau\tau\nu_e, e\tau\nu \\ \tilde{g}_8, \tilde{g} \rightarrow qq \\ \tilde{g}_8, \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}_8, \tilde{g} \rightarrow i_1, \tilde{\iota}_1 \rightarrow bs \\ \tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow b\ell \\ \end{array} $	$\begin{array}{c} \hline e\mu, e\tau, \mu\tau \\ 2 e, \mu (SS) \\ \mu\mu\nu & 4 e, \mu \\ \tau & 3 e, \mu+\tau \\ 0 & 4 \\ 2 e, \mu (SS) \\ 0 \\ 2 e, \mu \end{array}$	-5 large- <i>R</i> je -5 large- <i>R</i> je 0-3 <i>b</i> 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes Yes tts - tts - Yes -	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	\$\vec{r}\$, \$\vec{q}\$, \$\vec{v}\$ 1.1 \$\vec{x}\$	1.9 TeV 1.45 TeV 1 TeV 1.55 TeV 1.3 TeV 2V	$\begin{array}{l} \lambda_{311}'=0.11,\lambda_{132/133/233}=0.07\\ m(\tilde{q})=m(\tilde{g}),c\tau_{LSP}<1\mbox{ m}(\tilde{k}_1^3)>400GeV,\lambda_{12k}\neq0\ (k=1,2)\\ m(\tilde{k}_1^3)>0.2\times m(\tilde{k}_1^3),\lambda_{133}\neq0\\ BR(()=BR(b)=BR(c)=0\%\\ m(\tilde{k}_1^3)=800\ GeV\\ m(\tilde{k}_1)<750\ GeV\\ BR(\tilde{t}_1\rightarrow be/\mu)>20\%\\ \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	õ 510 GeV		m($\tilde{\chi}_1^0$)<200 GeV	1501.01325
[,] a selection of the availa es or phenomena is shov	ble mass limi vn.	ts on new		1)-1	1	Mass scale [TeV]	

0 *Only a selection of the available mass li

states or phenomena is shown.

ATLAS Preliminary

