Super No-Scale Models

Hervé Partouche

Ecole Polytechnique, Paris

 $16 \ {\rm September} \ 2016$

Based on works done in collaboration with Costas Kounnas arXiv:1511.02709, 1607.01767

Corfu Summer Institute : Recent Developments in Strings and Gravity Ioanina, 13 – 17 September 2016

- 2 Example of $\mathcal{N} = 4 \rightarrow 0$ super no-scale model
 - 3 Moduli deformations

(1) $\mathcal{N} = 2 \to 0$ and $\mathcal{N} = 1 \to 0$ super no-scale models

Main ideas

- Strings unify gravity and gauge interactions at the quantum level.
- Particle physics : Start with classical 4D Minkowski space + implement perturbation theory to derive quantum physics.
- But from gravity point of view : Cosmological constant generated by quantum loops.
 - Except if susy : perturbative $\Lambda=0$
 - If not susy at all : $\Lambda = \mathcal{O}(M_s^4)$
- Intermediate situation : **No-Scale Models**

[Cremmer, Ferrara, Kounnas, Nanopoulos,'83]

- At tree level : susy spontaneously broken + Minkowski space
- Potential $\mathcal{V}_{\text{tree}} \geq 0$ and admits $m_{3/2}$ as a modulus : flat direction

- Magnitude of the 1-loop effective potential $\mathcal{V}_{1\text{-loop}}$ is dictated by $m_{3/2}$. For small $m_{3/2}$, does $\mathcal{V}_{1\text{-loop}}$ admit a small expectation value?
- Generically, **NO** : runaway behavior of $m_{3/2}$, tadpole for dilaton and other moduli, destabilized, magnitude of $\mathcal{V}_{1-\text{loop}}$ still too large,...

• To find a loophole, we consider a context where all computations can be done explicitly, in perturbation theory :

• Heterotic string

• Coordinate Dependent Compactification

= "stringy Scherk-Schwarz mechanism", to break spontaneously susy and gauge symmetry : [Rhom,'84] [Kounnas, Porrati,'88] [Kounnas, Rostand,'90]

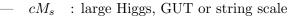
 $m_{3/2} = \frac{M_s}{R}$

where R is the characteristic size of the compact space involved in the susy breaking

- Taking R large, to have $m_{3/2}$ and hopefully $|\mathcal{V}_{1-\text{loop}}|$ small,
- \implies Light towers of KK modes : They dominate in $\mathcal{V}_{1\text{-loop}}$.

• In an $\mathcal{N} = 4, 2, 1 \to 0$ No-Scale Model, choose a point in classical moduli space $\langle G_{IJ} \rangle$, $\langle B_{IJ} \rangle$, $\langle Wilson lines \rangle$,...

• Suppose there are no scales between 0 and $m_{3/2}$.



$m_{3/2}$: towers of KK modes of mass $\propto m_{3/2}$

 $0 : n_B$ massless bosons and n_F massless fermions

$$\mathcal{V}_{1\text{-loop}} = \xi (n_F - n_B) m_{3/2}^4 + \mathcal{O}(e^{-cM_s/m_{3/2}}) \;, \qquad \xi > 0$$

$$\mathcal{V}_{1-\text{loop}} = \xi (n_F - n_B) m_{3/2}^4 + \mathcal{O}(e^{-cM_s/m_{3/2}})$$

• Other contexts: In the No-Scale Model in Supergravity, $\mathcal{V}_{1-\text{loop}}$ contains

$$\operatorname{Str} M^0 \Lambda^4_{\text{cut-off}} = 0 \qquad (\Lambda_{\text{cut-off}} = M_s)$$

$$\operatorname{Str} M^2 \Lambda_{\operatorname{cut-off}}^2 = 2 \, Q^2 \, m_{3/2}^2 \, \Lambda_{\operatorname{cut-off}}^2$$

- $Q^2(z, \bar{z})$ can be nonzero if $\mathcal{N} = 2, 1 \to 0$.
- At low energy, keeping only relevant operators

$$Q^2 \Lambda^2_{\text{cut-off}} \to cst \Lambda^2_{\text{cut-off}} \Longrightarrow \partial^2_{\phi} = 0 \; : \; \text{No gauge hierarchy problem}$$

 $\mathcal{L}_{sugra} \rightarrow \mathcal{L}_{susy} + \mathcal{L}_{soft}$, MSSM-like [Barbieri, Ferrara, Savoy,'82] [Cremmer, Fayet, Girardello,'83] **Bottom-Up** : In MSSM, impose $m_{3/2} \sim m_Z$ by hand, e.g. for the electroweak radiative breaking to take place.

Up to Bottom : In sugra, $m_{3/2}$ is a field \implies minimize $\mathcal{V}_{1\text{-loop}}$ If $Q \neq 0$, with subdominant $m_{3/2}^4$:

 $\langle m_{3/2} \rangle = 0$: exact susy or $\langle m_{3/2} \rangle \sim \Lambda_{\rm cut-off}$: hard breaking

 \implies Large Hierarchy Compatible (LHC) no-scale models :

 $Q(z, \bar{z}) \equiv 0$ [Kounnas, Ferrara, Zwirner,'94]

Compute gauge radiative corrections in MSSM, with dynamical $m_{3/2}$, in presence of leftover 1-loop cosmological term $m_{3/2}^4$

 \implies Stabilization of $m_{3/2}$ and electroweak radiative breaking. [Kounnas, Pavel, Zwirner,'94]

But: Cosmological constant still big.

• In our case, LHC automatically.

$$\mathcal{V}_{1\text{-loop}} = \xi (n_F - n_B) m_{3/2}^4 + \mathcal{O}(e^{-cM_s/m_{3/2}})$$

A large $M_s^2 m_{3/2}^2$ would arise if we would keep a finite number of states below M_s in the loop.

Here, we keep the contribution of infinite towers of KK modes.

This would work in a KK field theory (not string), where susy is spontaneously broken by the Sherk-Schwarz mechanism.

• We could apply the LHC stabilization picture, but we are worried about the large remaining cosmological term.

 \implies We cannot really decouple gravity to end up with an effective theory in flat space.

 \implies Define "Super No-Scale Models" in string theory : $n_F = n_B$ when $m_{3/2} < cM_s$. But susy spontaneously broken !

[Abel, Dienes, Mavroudi,'15] [Kounnas, H.P.,'15] [Florakis, Rizos,'16]

 \implies Standard Model needs hidden sector

- General case : Some scales may be lower than $m_{3/2}$.
- Switch on small deviations collectively denoted Y, to $\langle G_{IJ} \rangle$, $\langle B_{IJ} \rangle$, $\langle Wilson lines \rangle$,...
 - cM_s : large Higgs, GUT or string scale

- $\begin{array}{ccc} & & & \\ &$
- $n_B(Y)$ and $n_F(Y)$ interpolate between different integer values, reached at distinct points in moduli space.
- \implies Expand in Y

• In the particular case of $\mathcal{N}=4
ightarrow \mathcal{N}=0$

 $\mathcal{V}_{1\text{-loop}} = \xi (n_F - n_B) m_{3/2}^4 - b \,\tilde{\xi} \, m_{3/2}^2 (Y M_s)^2 + \dots + \mathcal{O}(M_s^4 \, e^{-cM_s/m_{3/2}})$

- The *Y*'s are Wilson lines of the gauge group factors.
- The b's are their β -function coefficients. $\tilde{\xi} > 0$.
 - $b < 0 \Longrightarrow \mathbf{Y}$ stabilized at 0
 - $b > 0 \Longrightarrow$ Instability
 - $b = 0 \Longrightarrow$ Massless [Kounnas, H.P.,'15]

• The Stable Super No-Scale Models satisfy

$$\mathcal{V}_{1\text{-loop}} = \mathcal{O}(e^{-cM_s/m_{3/2}})$$

$$m_{3/2} \simeq 10 \text{ TeV} \implies |\mathcal{V}_{1-\text{loop}}| \simeq e^{-10^{13}}$$

 $|\mathcal{V}_{1-\text{loop}}| \simeq 10^{-120} \implies m_{3/2} \simeq 10^{-2} M_s$

They extend the notion of No-Scale Models at the 1-loop level :

 $\mathcal{V}_{1\text{-loop}} \geq 0$ and $m_{3/2}$ is a flat direction, as long as $m_{3/2}$ is small enough • Note that in Type II and orientifold theories, there exist non-susy models with

$$\mathcal{V}_{1-\text{loop}} = 0$$
 i.e. $N_F = N_B$ are any mass level !

[Kachru, Kumar, Silverstein,'98] [Harvey,'98][Shiu, Tye,'98] [Blumenhagen, Gorlich,'98][Angelantonj, Antoniadis, Forger,'99][Satoh, Sugawara, Wada,'15]

When obtained *via* spontaneous breaking of susy, they are super no-scale models in a "strong sense".

- However
 - $\mathcal{V}_{2-\text{loops}}$ has no reason to vanish. [Aoki, D'Hoker, Phong,'03]
 - When a perturbative heterotic dual is known, it is a conventional super no-scale models : $n_F = n_B$.

[Harvey,'98] [Angelantonj, Antoniadis, Forger,'99]

2 Example of $\mathcal{N} = 4 \to 0$ super no-scale model

3 Moduli deformations

(1) $\mathcal{N} = 2 \to 0$ and $\mathcal{N} = 1 \to 0$ super no-scale models

Example of $\mathcal{N} = 4 \to 0$ super no-scale model

• Start from $\mathcal{N} = 4$, $E_8 \times E_8$ heterotic string on $T^2 \times T^2 \times T^2$:

$$Z = \frac{1}{\tau_2 \eta^2 \bar{\eta}^2} \frac{\Gamma^{(1)}}{\eta^2 \bar{\eta}^2} \frac{\Gamma^{(2)}}{\eta^2 \bar{\eta}^2} \frac{\Gamma^{(3)}}{\eta^2 \bar{\eta}^2} \left(\frac{V_8 - S_8}{V_8 - S_8} \right) \bar{E}_8 \bar{E}_8$$

where the left-moving worldsheet fermions contribute

$$V_8 - S_8 = \sum_{a,b=0}^{1} (-1)^{a+b+ab} \frac{\theta {b \brack b}^4}{\eta^4}$$

and the lattice is modular invariant

$$\Gamma^{(1)} = \sum_{\substack{m_1, m_2 \\ n_1, n_2}} q^{\frac{1}{2}|p_L|^2} \bar{q}^{\frac{1}{2}|p_R|^2} = \frac{\sqrt{\det G}}{\tau_2} \sum_{\substack{\tilde{m}_1, \tilde{m}_2 \\ n_1, n_2}} e^{-\frac{\pi}{\tau_2}(\tilde{m}_i + n_i\tau)(G+B)_{ij}(\tilde{m}_j + n_j\bar{\tau})}$$

• To break susy, couple lattice to the spin structure via a modular invariant sign, e.g. 1^{st} directon of T^2

$$(-1)^{\tilde{m}_1 a + n_1 b + \tilde{m}_1 n_1}$$

$$(-1)^{\tilde{m}_1 a + n_1 b + \tilde{m}_1 n_1} \implies m_1 + \frac{a + n_1}{2}$$
: shifts the KK masses

- When the first T^2 is large, all massless states have $n_1 = 0$. \implies The massless fermions (a = 1) get a KK mass $m_{3/2}$ $\implies n_F = 0$. Cannot be super no-scale.
- We need to keep some fermions massless :

$$\bar{E}_8 \equiv \bar{O}_{16} + \bar{S}_{16} = \frac{1}{2} \sum_{\gamma, \delta = 0}^{1} \frac{\bar{\theta} [\frac{\gamma}{\delta}]^8}{\bar{\eta}^8}, \quad \text{where } \gamma = 0 \Leftrightarrow \bar{O}_{16} \text{ and } \gamma = 1 \Leftrightarrow \bar{S}_{16}.$$

• Insert

$$(-1)^{\tilde{m}_1(a+\gamma+\gamma')+n_1(b+\delta+\delta')+\tilde{m}_1n_1}$$

 $\implies \begin{cases} \text{When } \gamma + \gamma' = 0 \text{ or } 2, \text{ nothing changes.} \\ \\ \text{When } \gamma + \gamma' = 1, \text{ roles of Bosons and Fermions reversed.} \end{cases}$

$$Z = \frac{1}{\tau_2 \eta^2 \bar{\eta}^2} \frac{\Gamma^{(2)}}{\eta^2 \bar{\eta}^2} \frac{\Gamma^{(3)}}{\eta^2 \bar{\eta}^2} \frac{1}{\eta^2 \bar{\eta}^2} \times \left[\Gamma^{(1)} \begin{bmatrix} e \\ e \end{bmatrix} \left(V_8(\bar{O}_{16}\bar{O}_{16} + \bar{S}_{16}\bar{S}_{16}) - S_8(\bar{O}_{16}\bar{S}_{16} + \bar{S}_{16}\bar{O}_{16}) \right) \right. \\ \left. + \Gamma^{(1)} \begin{bmatrix} e \\ o \end{bmatrix} \left(V_8(\bar{O}_{16}\bar{S}_{16} + \bar{S}_{16}\bar{O}_{16}) - S_8(\bar{O}_{16}\bar{O}_{16} + \bar{S}_{16}\bar{S}_{16}) \right) \right. \\ \left. + \Gamma^{(1)} \begin{bmatrix} o \\ e \end{bmatrix} \left(O_8(\bar{V}_{16}\bar{C}_{16} + \bar{C}_{16}\bar{V}_{16}) - C_8(\bar{V}_{16}\bar{V}_{16} + \bar{C}_{16}\bar{C}_{16}) \right) \right. \\ \left. + \Gamma^{(1)} \begin{bmatrix} o \\ o \end{bmatrix} \left(O_8(\bar{V}_{16}\bar{V}_{16} + \bar{C}_{16}\bar{C}_{16}) - C_8(\bar{V}_{16}\bar{C}_{16} + \bar{C}_{16}\bar{V}_{16}) \right) \right] \\ \left. - (1) \begin{bmatrix} o \\ o \end{bmatrix} \left(O_8(\bar{V}_{16}\bar{V}_{16} + \bar{C}_{16}\bar{C}_{16}) - C_8(\bar{V}_{16}\bar{C}_{16} + \bar{C}_{16}\bar{V}_{16}) \right) \right] \right]$$

where $\Gamma^{(1)}$ parity of winding parity of momentum

•
$$m_{3/2}^2 = \frac{|U_1|^2 M_s^2}{\operatorname{Im} T_1 \operatorname{Im} U_1}$$

where T_1, U_1 are the Kähler and complex structure of the first T^2 . • When $\operatorname{Im} T_1$ is large, the gauge group is

 $U(1)^2 \times G^{(2)} \times G^{(3)} \times SO(16) \times SO(16)$

• The massless spectrum satisfies

$$n_B = 8 \Big(244 + \dim G^{(2)} + \dim G^{(3)} \Big) , \qquad n_F = 8 \times 256 .$$

12 missing bosons are obtained when T_2, U_2 and T_3, U_3 at the enhanced symmetry points

 $G^{(2)} \times G^{(3)} = SU(2)^4$ or $G^{(2)} \times G^{(3)} = SU(3) \times SU(2) \times U(1)$

• At these points, the model develops a super no-scale structure.

Properties of the model

$$m_{3/2}^2 = \frac{|U_1|^2 M_s^2}{\operatorname{Im} T_1 \operatorname{Im} U_1}$$

• When $\operatorname{Im} T_1 > 1$, $\operatorname{Im} U_1 \sim 1$

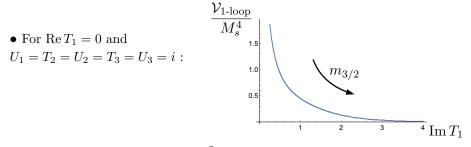
$$m_{3/2} < M_s$$
, $\mathcal{V}_{1-\text{loop}} = \mathcal{O}(e^{-cM_s/m_{3/2}})$: super no-scale regime

• When $\operatorname{Im} T_1$ decreases up to ~ 1

 $m_{3/2} \sim M_s$, $\mathcal{V}_{1\text{-loop}}$ is not small.

Do we have an Hagedorn-like divergence of $\mathcal{V}_{1-\text{loop}}$?

- In $(-1)^{\tilde{m}_1 a}$ breaking, **YES** : $O_8 \bar{O}_{16} \bar{O}_{16} \Longrightarrow$ Tachyons
- In $(-1)^{\tilde{m}_1(a+\gamma+\gamma')}$ breaking, **NO**: $O_8\bar{V}_{16}\bar{V}_{16} \Longrightarrow$ Non-level matched



• When Im $T_1 \rightarrow 0$, the first T^2 shrinks, which is equivalent to a dual theory in 6D, explicitly non susy.

So, when $m_{3/2} > M_s$, the model is better interpreted as a compactification of this non-susy theory down to 4 dimensions.

• The model is self-dual under

$$(T_1, U_1) \longrightarrow \left(-\frac{1}{U_1}, -\frac{1}{T_1}\right)$$

So, evolving T_1 from 0 (non susy) to $i\infty$ (super no-scale) \iff evolving U_1 from $i\infty$ (super no-scale) to 0 (non susy).

2 Example of $\mathcal{N} = 4 \rightarrow 0$ super no-scale model

3 Moduli deformations

(1) $\mathcal{N} = 2 \to 0$ and $\mathcal{N} = 1 \to 0$ super no-scale models

- The $\mathcal{N} = 4$ models have gauge groups of rank 6 + 16.
- The moduli are the 6 scalars of the $\mathcal{N} = 4$ vector multiplets associated to these Cartan $U(1)^{6+16}$

$$\frac{SO(6, 6+16)}{SO(6) \times SO(6+16)}$$

- The $\mathcal{N} = 4 \rightarrow 0$ susy breaking does not reduce the rank. Thus, we give a mass to the fermionic part of the $\mathcal{N} = 4$ vector multiplets.
- \implies The $\mathcal{N} = 4 \rightarrow 0$ no-scale models have the same moduli space.

 \bullet The $\mathcal{N}=4 \rightarrow 0$ super no-scale model model we have presented is at a point where

• $T^2 \times T^2 \times T^2$

- the first torus is large
- the last two tori are at enhanced symmetry points where the model is **super no-scale**, *e.g.*

$$U(1)^2 \times SU(2)^4 \times SO(16)^2$$

We switch on arbitrary marginal deformations of the classical theory around this point and compute $\mathcal{V}_{1\text{-loop}}$ to study the local stability :

Is the super no-scale point a minimum, maximum or saddle ?

• Compute
$$\mathcal{V}_{1-\text{loop}} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} Z(\text{moduli})$$

• In the undeformed background, for any massless state s_0 of fermion number F_0 , Z gets contributions from

- the KK tower of modes with even momenta and fermion number F_0 .
- the KK tower of their superpartners with odd momenta $(\Longrightarrow \text{ mass shift } m_{3/2}).$

$$(-1)^{F_0} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 \frac{|U_1m_1-m_2|^2}{\operatorname{Im} T_1 \operatorname{Im} U_1}} = (-1)^{F_0} \frac{\operatorname{Im} T_1}{\tau_2} \sum_{\tilde{m}_1,\tilde{m}_2} e^{-\frac{\pi \operatorname{Im} T_1}{\tau_2 \operatorname{Im} U_1} |\tilde{m}_1 + \frac{1}{2} + U_1 \tilde{m}_2|^2}$$

$$\implies \int_{\mathcal{F}} d^2 \tau \left(\cdots \right) = \int_{-1/2}^{1/2} d\tau_1 \int_0^{+\infty} d\tau_2 \left(\cdots \right) + \mathcal{O}(e^{-\operatorname{Im} T_1})$$

- Only the level matched states contribute
- The super massive states (windings, oscillators) yield $\mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})$

 \bullet Only the **pure KK modes along the large** T^2 contribute substantially

$$\mathcal{V}_{1\text{-loop}} = -\frac{M_s^4}{(2\pi)^4} \sum_{s_0=1}^{n_B+n_F} (-1)^{F_0} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} \sum_{m_1,m_2} (-1)^{m_1} e^{-\pi\tau_2 M_L^2} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} + \mathcal{O}(e^{-c\sqrt{\operatorname{Im} T_1}})^{-1} \int_0^{+\infty} \frac{d\tau_2}{2\tau_2^3} + \mathcal{O}(e^{-c\sqrt$$

- Same result in a pure KK field theory, when susy is spontaneously broken by the usual Sherk-Schwarz mechanism.

- It is UV finite. As is the case when finite temperature is switched on in a susy field theory. No $\Lambda^2_{\text{cut-off}}$ divergence.

• When we switch on small background deformations, only M_L varies.

• All worldsheet marginal operators are

$$Y_{IJ} \partial X^{I} \overline{\partial} X^{J}$$
, $I, J = 1, \dots, 6$
i.e. Metric and antisymmetric tensor of T^{6}

 $Y_{I\alpha} \partial X^I \bar{\partial} \phi^{\alpha}, \ \alpha = 1, \dots, 16$ *i.e.* Wilson lines of $SO(16)^2$ along T^6

• The deformed KK masses are

$$M_L^2 = P_I G^{IJ} P_J$$

where $P_I = m_I + Y_{I\alpha} Q^{\alpha} + \frac{1}{2} Y_{I\alpha} Y_{J\alpha} n_J + (B+G)_{IJ} n_J$

and Q^{α} are the charges of the state s_0 under $SO(16)^2$: In the Singlet, Adjoint or Spinorial representation. • Compute $\mathcal{V}_{1-\text{loop}}$ and expand at order Y^2 , around the point

$$G = \prod_{i=1}^{8} G_i = U(1)^2 \times SU(2)^4 \times SO(16)^2$$

Redefine the Wilson lines Y's

$$Y_{IA}^{(i)}$$
 $I = 1, ..., 6, A = 1, ..., \mathrm{rk} G_i$

• For any $\mathcal{N} = 4 \rightarrow 0$ no-scale model, super or not :

$$\mathcal{V}_{1\text{-loop}} = \xi'(n_F - n_B)m_{3/2}^{\prime 4}$$
$$-\tilde{\xi} \ m_{3/2}^2 \sum_{i=1}^8 \ b_i \sum_{I=1}^6 \sum_{A=1}^{\mathrm{rk} \ G_i} (Y_{IA}^{(i)}M_s)^2 + \dots + \mathcal{O}(M_s^4 \ e^{-cM_s/m_{3/2}})$$

where
$$m_{3/2}^{\prime 2} = \frac{|U_1'|^2 M_s^2}{\operatorname{Im} T_1' \operatorname{Im} U_1'}, \qquad \xi' = \frac{(\operatorname{Im} U_1')^2}{16\pi^7 |U_1'|^4} E_{(1,0)}(U_1'|3)$$

 $E_{(1,0)}(U|s) = \sum_{\tilde{m}_1, \tilde{m}_2} \frac{(\operatorname{Im} U)^s}{\left|\tilde{m}_1 + \frac{1}{2} + \tilde{m}_2 U\right|^{2s}}, \quad \tilde{\xi} = \frac{3 \operatorname{Im} U_1}{16\pi^5 |U_1|^2} E_{(1,0)}(U_1|2)$

$$\mathcal{V}_{1\text{-loop}} = \xi'(n_F - n_B)m_{3/2}'^4$$
$$-\tilde{\xi} \ m_{3/2}^2 \sum_{i=1}^8 \ b_i \sum_{I=1}^6 \sum_{A=1}^{\operatorname{rk} G_i} (Y_{IA}^{(i)}M_s)^2 + \dots + \mathcal{O}(M_s^4 \ e^{-cM_s/m_{3/2}})$$

• T'_1 , U'_1 and thus $m'_{3/2}$ involve the deformations of the metric that break the $T^2 \times T^4$ factorization.

• The β -function coefficients arise from the fact that at quadratic order, the Wilson lines are dressed by charges.

Sum over all states s_0 *i.e.* charges $\Longrightarrow b_i$.

- $b_{U(1)} = 0 \implies \text{Massless}$
- $b_{SU(2)} = -\frac{8}{3} \times 2 < 0 \implies$ Moduli stabilized at the origin.
- $b_{SO(16)} = +\frac{8}{3} \times 2 > 0 \implies$ Tachyonic : They condense and break $SO(16)^2$ to subgroups with negative or vanishing b's and total rank 16.

Stabilization

- The super no-scale models can be considered in a **cosmological** scenario.
- They are all stable at early times, if finite temperature effects are taken into account.
- At finite T,

 $\mathcal{V}_{1\text{-loop}} \longrightarrow \text{free energy}$

 $(\text{mass})^2 \longrightarrow T^2 + (\text{mass})^2 \implies T^2 \pm m_{3/2}^2$ for moduli

 \bullet As the Universe expands, T decreases :

• As long as $T > m_{3/2}$: No tachyons \Longrightarrow the models are stable.

• When T crosses $m_{3/2}$: Higgs phase transitions take place.

- 2 Example of $\mathcal{N} = 4 \rightarrow 0$ super no-scale model
- 3 Moduli deformations
- (4) $\mathcal{N} = 2 \rightarrow 0$ and $\mathcal{N} = 1 \rightarrow 0$ super no-scale models

$\mathcal{N} = 2 \rightarrow 0$ super no-scale models

• Consider an $\mathcal{N} = 4 \to 0$ No-Scale Model on $T^2 \times T^4$, where susy is broken by Coordinate dependent compactification (Scherk-Schwarz) along the 1st direction of T^2 .

• Implement \mathbb{Z}_2 twist on T^4 .

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} \left[\frac{\operatorname{Str}}{\operatorname{untw}} \frac{1+\mathbb{G}}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} + \frac{\operatorname{Str}}{\operatorname{twist}} \frac{1+\mathbb{G}}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} \right]$$

• The modes with $n_1 \neq 0$ are super massive $\Longrightarrow \mathcal{O}(e^{-\operatorname{Im} T_1})$.

For
$$n_1 = 0$$
, $\underset{untw}{\operatorname{Str}} \mathbb{G}(\cdots) = 0$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0} = \frac{1}{2} \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to0} + \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0} \big|_{twist} + \mathcal{O}(e^{-\operatorname{Im} T_1})$$

 $\frac{1}{2} \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to0} \text{ depends on Wilson lines that survive the } \mathbb{Z}_2 \text{ projection } i.e.$ the $T^2 \times T^4$ factorization.

$\mathcal{N} = 2 \rightarrow 0$ super no-scale models

• Consider an $\mathcal{N} = 4 \to 0$ No-Scale Model on $T^2 \times T^4$, where susy is broken by Coordinate dependent compactification (Scherk-Schwarz) along the 1st direction of T^2 .

• Implement \mathbb{Z}_2 twist on T^4 .

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} \left[\frac{\operatorname{Str}}{\operatorname{untw}} \frac{1+\aleph}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} + \operatorname{Str}_{twist} \frac{1+\mathbb{G}}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} \right]$$

• The modes with $n_1 \neq 0$ are super massive $\Longrightarrow \mathcal{O}(e^{-\operatorname{Im} T_1})$.

For
$$n_1 = 0$$
, $\underset{untw}{\operatorname{Str}} \mathbb{G}(\cdots) = 0$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0} = \frac{1}{2} \left. \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to0} + \left. \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0} \right|_{twist} + \mathcal{O}(e^{-\operatorname{Im}T_1}) \right.$$

 $\frac{1}{2} \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to0} \text{ depends on Wilson lines that survive the } \mathbb{Z}_2 \text{ projection } i.e.$ the $T^2 \times T^4$ factorization.

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0}\big|_{twist} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} \operatorname{Str}_{twist} \frac{1+\mathbb{G}}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2}$$

Twisted Hypermultiplets, with a mass splitting $m_{3/2}$ between the bosons and fermions

- charged under gauge group
 - \implies Their mass depends on untwisted Wilson lines
 - \Longrightarrow they modify the Wilson lines stability condition
- may contain at the massless level twisted moduli
 ⇒ Quaternionic manifold [Work in progress]

• Except if the twisted states are super massive, in which case

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0}\big|_{twist} = \mathcal{O}(e^{-\operatorname{Im}T_1})$$

• Impose \mathbb{Z}_2 twist of T^4 to also shift 2^{nd} direction of T^2 , which is very large $\implies \mathbb{Z}_2^{free}$

$$(X^1, X^2, X^3, X^4, X^5, X^6) \longrightarrow (X^1, X^2 + \frac{1}{2}, -X^3, -X^4, -X^5, -X^6)$$

• The 2 ends of the string are separated by half a perimeter of $X^2 \implies$ super massive. They decouple in the large T^2 limit.

Spontaneous breaking : $\mathcal{N} = 4 \longrightarrow \mathcal{N} = 2 \longrightarrow \mathcal{N} = 0$

at scales
$$\frac{M_s^2}{\operatorname{Im} T_1 \operatorname{Im} U_1}$$
, $\frac{|U_1|M_s^2}{\operatorname{Im} T_1 \operatorname{Im} U_1}$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to2\to0} = \frac{1}{2} \,\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to0} + \mathcal{O}(e^{-\operatorname{Im}T_1})$$

• The descendent is super no-scale if the parent is.

• Its stability is dictated by the b's of the $\mathcal{N} = 4 \rightarrow 0$ parent theory.

$\mathcal{N} = 1 \rightarrow 0$ super no-scale models

 \bullet Consider an $\mathcal{N}=2 \rightarrow 0$ No-Scale Model

• On $T^2 \times T^2 \times T^2$, with \mathbb{Z}_2 twists on $T^2 \times T^2$ (free or not)

- susy is broken by Coordinate dependent compactification (Scherk-Schwarz) along the 1^{st} direction of T^2 .
- Add \mathbb{Z}'_2 twists on $T^2 \times T^2$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=1\to0} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} \left[\frac{\text{Str}}{\text{untw}'} \frac{1+\mathbb{G}'}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} + \frac{\text{Str}}{\text{twist}'} (\cdots) \right]$$

- untw' is the $\mathcal{N} = 2 \rightarrow 0$ spectrum

- *twist'* contains states twisted along $T^2 \implies$ Vanishing momentum and windings \implies masses independent of T_1, U_1 and $m_{3/2} \implies \text{SUSY}$

- twist' + the conformal block untw' with \mathbb{G}' form an $SL(2,\mathbb{Z})$ modular orbit $\Longrightarrow untw'$ with \mathbb{G}' vanishes

$\mathcal{N} = 1 \rightarrow 0$ super no-scale models

 \bullet Consider an $\mathcal{N}=2 \rightarrow 0$ No-Scale Model

• On $T^2 \times T^2 \times T^2$, with \mathbb{Z}_2 twists on $T^2 \times T^2$ (free or not)

- susy is broken by Coordinate dependent compactification (Scherk-Schwarz) along the 1^{st} direction of T^2 .
- Add \mathbb{Z}'_2 twists on $T^2 \times T^2$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=1\to0} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} \left[\operatorname{Str}_{untw'} \frac{1+\mathbb{G}'}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} + \operatorname{Str}_{twist'} \cdots \right) \right]$$

- untw' is the $\mathcal{N} = 2 \rightarrow 0$ spectrum

- *twist'* contains states twisted along $T^2 \implies$ Vanishing momentum and windings \implies masses independent of T_1, U_1 and $m_{3/2} \implies \text{SUSY}$

- twist' + the conformal block untw' with \mathbb{G}' form an $SL(2,\mathbb{Z})$ modular orbit $\Longrightarrow untw'$ with \mathbb{G}' vanishes

$\mathcal{N} = 1 \rightarrow 0$ super no-scale models

 \bullet Consider an $\mathcal{N}=2 \rightarrow 0$ No-Scale Model

• On $T^2 \times T^2 \times T^2$, with \mathbb{Z}_2 twists on $T^2 \times T^2$ (free or not)

- susy is broken by Coordinate dependent compactification (Scherk-Schwarz) along the 1^{st} direction of T^2 .
- Add \mathbb{Z}'_2 twists on $T^2 \times T^2$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=1\to0} = -\frac{M_s^4}{(2\pi)^4} \int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2^2} \left[\operatorname{Str}_{untw'} \frac{1+\cancel{k'}}{2} q^{\frac{1}{4}M_L^2} \bar{q}^{\frac{1}{4}M_R^2} + \operatorname{Str}_{twist'} \cdots \right) \right]$$

- untw' is the $\mathcal{N} = 2 \rightarrow 0$ spectrum

- *twist'* contains states twisted along $T^2 \implies$ Vanishing momentum and windings \implies masses independent of T_1, U_1 and $m_{3/2} \implies \text{SUSY}$

- twist' + the conformal block untw' with \mathbb{G}' form an $SL(2,\mathbb{Z})$ modular orbit $\Longrightarrow untw'$ with \mathbb{G}' vanishes

 \bullet For all these $\mathcal{N}=1 \rightarrow 0$ No-Scale Models

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=1\to0} = \frac{1}{2} \, \mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to0}$$

- It is Super No-Scale if the parent $\mathcal{N} = 2 \to 0$ is.
- The moduli (and instabilities) are those of the parent model that survive the \mathbb{Z}'_2 projection *i.e.* $T^2 \times T^2 \times T^2$ factorization.
- If $\mathbb{Z}_2^{free} \times \mathbb{Z}_2'$, we can see \mathbb{Z}_2' as a hard breaking of $\mathcal{N} = 4$ to $\mathcal{N} = 2$ and \mathbb{Z}_2^{free} as a spontaneous breaking of $\mathcal{N} = 2 \to \mathcal{N} = 1$

$$\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=2\to\mathcal{N}=1\to0} = \frac{1}{4} \,\mathcal{V}_{1\text{-loop}}^{\mathcal{N}=4\to0}$$

However, not chiral.

- Morality : For $\mathcal{V}_{1\text{-loop}}$, nothing new in the $\mathcal{N} = 1 \to 0$ No-Scale Models $(\mathbb{Z}_2 \times \mathbb{Z}'_2)$, compared to $\mathcal{N} = 2 \to 0$ case (\mathbb{Z}_2) .
 - Because the twisted spectrum under \mathbb{Z}'_2 has tree level susy degeneracy \implies contribution to Z at 1-loop vanishes.
 - The classical moduli in this sector are still marginal at 1-loop.
- At 2 loops, interactions with non susy states (untwisted') will lift the degeneracy

 \implies The moduli in the twisted' sector will have a non-trivial potential at 2-loops.

Conclusion

• The **Super No-Scale Models** are those which induce an almost vanishing cosmological term at 1-loop

$$\mathcal{V}_{1\text{-loop}} = \xi \underbrace{(n_F - n_B)}_{0} m_{3/2}^4 + \mathcal{O}(e^{-cM_s/m_{3/2}})$$

 \implies Bosons - Fermions degeneracy at the massless level.

• Up to
$$\mathcal{O}(e^{-cM_s/m_{3/2}})$$
 terms (*e.g.* 10^{-120} , $10^{-10^{13}})$:
No tadpoles for dilaton, $m_{3/2}$, other moduli.

• In the $\mathcal{N} = 4 \rightarrow 0$ case, their quantum stability is guaranteed if there are no Non-Asymptotically Free gauge groups (b > 0).

- The $\mathcal{N} = 2 \rightarrow 0$ case requires the analysis of the twisted sector. [Work in progress]
- The $\mathcal{N} = 1 \to 0$ case requires the analysis at 2-loops.
- Or : Quantum stability if finite T is greater than $m_{3/2}$.

- When such a model is stable, it makes sense to
 - decouple gravity to obtain a theory in flat space
 - It is susy + soft terms
- Question : Is the effective potential at genus $g \ge 2$ still flat ?

$$\left(\xi\underbrace{(n_F-n_B)}_{0}+\kappa g_s^2\right)m_{3/2}^4 \implies \text{New constraint }\kappa=0?$$