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Computer Algebra Systems

• Commercial systems: Mathematica, Maple,
Matlab/MuPAD, MathCad, Reduce, Derive . . .

• Free systems: FORM, GiNaC, Maxima, Axiom, Cadabra,
Fermat, GAP, Singular, Sage . . .

• Generic systems: Mathematica, Maple, Matlab/MuPAD,
Maxima, MathCad, Reduce, Axiom, Sage, GiNaC . . .

• Specialized systems: Cadabra, Singular, Magma, CoCoA,
GAP . . .

• Many more . . .

T. Hahn, Introduction to Mathematica and FORM – p.2



Mathematica vs. FORM

Mathematica

• Much built-in
knowledge,

• ‘Big and slow’ (esp. on
large problems),

• Very general,

• GUI, add-on packages . . .

FORM

• Limited mathematical knowledge,

• ‘Small and fast’ (also on large
problems),

• Optimized for certain classes of
problems,

• Batch program (edit–run cycle).
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Mathematica
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Mathematica Components

“Mathematica”

mathematica

Frontend
(GUI)

math

Kernel
(Computation)

MathLink

http://wwwth.mpp.mpg.de/members/hahn/corfu2016/intro_math.pdf
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Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:

myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either

T. Hahn, Introduction to Mathematica and FORM – p.6



Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.
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Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b

T. Hahn, Introduction to Mathematica and FORM – p.8



The Pillars of Mathematica
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List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:

tab = Table[Random[], {10^7}];

test1 := Block[ {sum = 0},

Do[ sum += tab[[i]], {i, Length[tab]} ];

sum ]

test2 := Apply[Plus, tab]

Here are the timings:

Timing[test1][[1]] ☞ 8.29 Second

Timing[test2][[1]] ☞ 1.75 Second
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Map, Apply, and Pure Functions

Map applies a function to all elements of a list:

Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:

Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.
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Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]
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Attributes

Attributes characterize a function’s behavior before and while
it is subjected to pattern matching. For example,

Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] ☞ {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold... attributes are needed to pass variables by
reference:

Attributes[listadd] = {HoldFirst}

listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value.
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Decisions

Mathematica’s If Statement has three entries: for True, for
False, but also for Undecidable. For example:

If[8 > 9, yes, no] ☞ no

If[a > b, yes, no] ☞ If[a > b, yes, no]

If[a > b, yes, no, dunno] ☞ dunno

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, . . . These functions have no undecided
state: in case of doubt they return False.
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Equality

Just as with decisions, there are several types of equality,
decidable and undecidable:

a == b ☞ a == b

a === b ☞ False

a == a ☞ True

a === a ☞ True

The full name of ‘===’ is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==’:

Solve[x^2 == 1, x] ☞ {{x -> -1}, {x -> 1}}

Needless to add, ‘=’ is a definition and quite different:

x = 3 — assign 3 to x
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Selecting Elements

Select selects elements fulfilling a criterium:

Select[{1, 2, 3, 4, 5}, # > 3 &] ☞ {4, 5}

Cases selects elements matching a pattern:

Cases[{1, a, f[x]}, _Symbol] ☞ {a}

Using Levels is generally a very fast way to extract parts:

list = {f[x], 4, {g[y], h}}

Depth[list] ☞ 4 — list is 4 levels deep (0, 1, 2, 3)

Level[list, {1}] ☞ {f[x], 4, {g[y], h}}

Level[list, {2}] ☞ {x, g[y], h}

Level[list, {3}] ☞ {y}

Level[list, {-1}] ☞ {x, 4, y, h}

Cases[expr, _Symbol, {-1}]//Union

— find all variables in expr
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MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

For more details see arXiv:1107.4379.
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Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh ................ Shell Magic

math << \_EOF_ ............ start Here document (note the \)

<< FeynArts‘

<< FormCalc‘

top = CreateTopologies[...];

...

_EOF_ ..................... end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.
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Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x
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Code generation

• Conversion of Mathematica expression to Fortran/C
painless.

• Optimized output can easily run faster than in
Mathematica.

• Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

• Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x^2 + Sin[x^2]];

Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

• FormCalc’s code-generation functions produce optimized
standalone code.
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Mathematica ↔ Fortran

Mathematica → Fortran:

• Get FormCalc from http://feynarts.de/formcalc

• Write out arbitrary Mathematica expression:

h = OpenCode["file"]
WriteExpr[h, {var -> expr, ...}]

Close[h]

Fortran → Mathematica:

• Get http://feynarts.de/formcalc/FortranGet.tm

• Compile: mcc -o FortranGet FortranGet.tm

• Load in Mathematica: Install["FortranGet"]

• Read Fortran code: FortranGet["file.F"]
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Mathematica Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.
Many third-party packages are available at MathSource,
http://library.wolfram.com/infocenter/MathSource.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.
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Books

• Michael Trott
The Mathematica Guidebook
for { Programming, Graphics,
Numerics, Symbolics } (4 vol)
Springer, 2004–2006.

• Andrei Grozin
Introduction to Mathematica for
Physicists
Springer, 2013.
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FORM
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FORM Essentials

• A FORM program is divided into Modules.
Simplification happens only at the end of a module.

• FORM is strongly typed –
all variables have to be declared:
Symbols, Vectors, Indices, (N)Tensors, (C)Functions.

• FORM works on one term at a time:
Can do “Expand[(a + b)^2]” (local operation) but
not “Factor[a^2 + 2 a b + b^2]” (global operation).

• FORM is mainly strong on polynomial expressions.

• FORM program + documentation + course available from
http://nikhef.nl/∼form.
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A Simple Example in FORM

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Running this program gives:
FORM by J.Vermaseren,version 4.0(Mar 1 2013) Run at: Tue May 8 10:14:12 2013

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Time = 0.00 sec Generated terms = 6

expr Terms in output = 6

Bytes used = 104

expr =

d^2 - 2*c*d + c^2 - 2*a*d + 2*a*c + a^2;

0.00 sec out of 0.00 sec
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Module Structure

A FORM program consists of Modules. A Module is
terminated by a “dot” statement (.sort, .store, .end, . . .)

• Generation Phase (“normal” statements)
During the execution of “normal” statements terms are
only generated. This is a purely local operation – only
one term at a time needs to be looked at.

• Sorting Phase (“dot” statements):
At the end of the module all terms are inspected and
similar terms collected. This is the only ‘global’ operation
which requires FORM to look at all terms
‘simultaneously.’
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id x = a + b;

.sort

endif;

.end

if(count(b,1)==1);
multiply 4*a/b;

print;

l expr = a*x + x^2;

+14*a^2   +b^2

a*x    +x^2

+2*a^2   +3*a*b    +b^2

+a^2   +a*b    +a^2   +a*b   +a*b    +b^2

+2*a^2    +12*a^2   +b^2
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Id-Statement

The central statement in FORM is the id-Statement:

a^3*b^2*c

id a*b = d; ☞ a*c*d^2 — multiple match

once a*b = d; ☞ a^2*b*c*d — single match

only a*b = d; ☞ a^3*b^2*c — no exact match possible

id does not, by default, match negative powers:

x + 1/x

id x = y; ☞ x^-1 + y

id x^n? = y^n; ☞ y^-1 + y — wildcard exponent
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Patterns

Patterns are possible, too:

f(a, b, c) + f(1, 2, 3)

id f(a, b, c) = 1; ☞ 1 + f(1, 2, 3)

— explicit match

id f(a?, b?, c?) = 1; ☞ 2

— wildcard match

id f(?a) = g(?a); ☞ g(a, b, c) + g(1, 2, 3)

— group-wildcard match

id f(a?int_, ?a) = a; ☞ 1 + f(a, b, c)

— constrained wildcard

id f(a?{a,b}, ?a) = a; ☞ a + f(1, 2, 3)

— alternatives
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Bracketing, Collecting

bracket puts specified items outside the bracket.
antibracket puts specified items inside the bracket.
collect moves the bracket contents to a function.

Symbols a, b, c, d;

Local expr = (a + b)*(c + d);

print;

.sort
expr = a*c + a*d + b*c + b*d;

bracket a, b;

print;

.sort
expr = + a * ( c + d )

+ b * ( c + d );

CFunction f;

collect f;

bracket f;

print;

.end
expr = + f(c + d) * ( a + b );
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Preprocessor

FORM has a Preprocessor which operates before the compiler.

Many constructs are familiar from C, but the FORM
preprocessor can do more:

• #define, #undefine, #redefine,

• #if{,def,ndef} . . . #else . . . #endif,

• #switch . . . #endswitch,

• #procedure . . . #endprocedure, #call,

• #do . . . #enddo,

• #write, #message, #system.

The preprocessor works across modules, e.g. a do-loop can
contain a .sort statement.
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Dollar Variables

• Not strongly typed, can contain ‘everything.’

• Preserved across module boundaries.

• Can be operated on during preprocessing (#$X = . . .)
and normal operation ($X = . . .).

• Can received matched pattern: once f(x?$var) = . . .

• No arrays.

s a, b;

L F = (a + b)^6;

#$n = 0;

$n = $n + 1;

print "term %$ is %t", $n;

.end

☞ term 1 is + a^6

term 2 is + 6*a^5*b

term 3 is + 15*a^4*b^2

term 4 is + 20*a^3*b^3

term 5 is + 15*a^2*b^4

term 6 is + 6*a*b^5

term 7 is + b^6
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Special Commands for High-Energy Physics

• Gamma matrices: g_, g5_, g6_, g7_.

• Fermion traces: trace4, tracen, chisholm.

• Levi-Civita tensors: e_, contract.

• Index properties: {,anti,cycle}symmetrize.

• Dummy indices: sum, replaceloop.
(e.g. ∑i aibi + ∑ j a jb j = 2 ∑i aibi)
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FORM Summary

• FORM is a freely available Computer Algebra System
with some specialization on High Energy Physics.

• Programming in FORM takes more ‘getting used to’ than
in Mathematica. Also, FORM has no GUI or other
programming aids.

• FORM programs are module oriented with global
(= costly) operations occurring only at the end of module.
A strategical choice of these points optimizes
performance.

• FORM is much faster than Mathematica on polynomial
expressions and can handle in particular huge (GB)
expressions.
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FORM ↔ Mathematica

Mathematica → FORM:

• Get FormCalc from http://feynarts.de/formcalc

• After compilation the ToForm utility should be in the
executables directory (e.g. Linux-x86-64):

ToForm < file.m > file.frm

FORM → Mathematica:

• Get http://feynarts.de/formcalc/FormGet.tm

• Compile: mcc -o FormGet FormGet.tm

• Load in Mathematica: Install["FormGet"]

• Read a FORM output file: FormGet["file.out"]
Pipe output from FORM: FormGet["!form file.frm"]
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