
Introduction to Mathematica and FORM

Thomas Hahn

Max-Planck-Institut für Physik
München

http://wwwth.mpp.mpg.de/members/hahn/corfu2016/mmaform.pdf

T. Hahn, Introduction to Mathematica and FORM – p.1

Computer Algebra Systems

• Commercial systems: Mathematica, Maple,
Matlab/MuPAD, MathCad, Reduce, Derive . . .

• Free systems: FORM, GiNaC, Maxima, Axiom, Cadabra,
Fermat, GAP, Singular, Sage . . .

• Generic systems: Mathematica, Maple, Matlab/MuPAD,
Maxima, MathCad, Reduce, Axiom, Sage, GiNaC . . .

• Specialized systems: Cadabra, Singular, Magma, CoCoA,
GAP . . .

• Many more . . .

T. Hahn, Introduction to Mathematica and FORM – p.2

Mathematica vs. FORM

Mathematica

• Much built-in
knowledge,

• ‘Big and slow’ (esp. on
large problems),

• Very general,

• GUI, add-on packages . . .

FORM

• Limited mathematical knowledge,

• ‘Small and fast’ (also on large
problems),

• Optimized for certain classes of
problems,

• Batch program (edit–run cycle).

T. Hahn, Introduction to Mathematica and FORM – p.3

Mathematica

T. Hahn, Introduction to Mathematica and FORM – p.4

Mathematica Components

“Mathematica”

mathematica

Frontend
(GUI)

math

Kernel
(Computation)

MathLink

http://wwwth.mpp.mpg.de/members/hahn/corfu2016/intro_math.pdf

T. Hahn, Introduction to Mathematica and FORM – p.5

Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:

myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either

T. Hahn, Introduction to Mathematica and FORM – p.6

Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.

T. Hahn, Introduction to Mathematica and FORM – p.7

Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b

T. Hahn, Introduction to Mathematica and FORM – p.8

The Pillars of Mathematica

Li
st
-o
ri
en

te
d
P
ro
gr
a
m
m
in
g

P
a
tt
er
n
M
a
tc
h
in
g

GUI,
math/graphics functions, . . .

T. Hahn, Introduction to Mathematica and FORM – p.9

List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:

tab = Table[Random[], {10^7}];

test1 := Block[{sum = 0},

Do[sum += tab[[i]], {i, Length[tab]}];

sum]

test2 := Apply[Plus, tab]

Here are the timings:

Timing[test1][[1]] ☞ 8.29 Second

Timing[test2][[1]] ☞ 1.75 Second

T. Hahn, Introduction to Mathematica and FORM – p.10

Map, Apply, and Pure Functions

Map applies a function to all elements of a list:

Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:

Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.

T. Hahn, Introduction to Mathematica and FORM – p.11

Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]

T. Hahn, Introduction to Mathematica and FORM – p.12

Attributes

Attributes characterize a function’s behavior before and while
it is subjected to pattern matching. For example,

Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] ☞ {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold... attributes are needed to pass variables by
reference:

Attributes[listadd] = {HoldFirst}

listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value.

T. Hahn, Introduction to Mathematica and FORM – p.13

Decisions

Mathematica’s If Statement has three entries: for True, for
False, but also for Undecidable. For example:

If[8 > 9, yes, no] ☞ no

If[a > b, yes, no] ☞ If[a > b, yes, no]

If[a > b, yes, no, dunno] ☞ dunno

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, . . . These functions have no undecided
state: in case of doubt they return False.

T. Hahn, Introduction to Mathematica and FORM – p.14

Equality

Just as with decisions, there are several types of equality,
decidable and undecidable:

a == b ☞ a == b

a === b ☞ False

a == a ☞ True

a === a ☞ True

The full name of ‘===’ is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==’:

Solve[x^2 == 1, x] ☞ {{x -> -1}, {x -> 1}}

Needless to add, ‘=’ is a definition and quite different:

x = 3 — assign 3 to x

T. Hahn, Introduction to Mathematica and FORM – p.15

Selecting Elements

Select selects elements fulfilling a criterium:

Select[{1, 2, 3, 4, 5}, # > 3 &] ☞ {4, 5}

Cases selects elements matching a pattern:

Cases[{1, a, f[x]}, _Symbol] ☞ {a}

Using Levels is generally a very fast way to extract parts:

list = {f[x], 4, {g[y], h}}

Depth[list] ☞ 4 — list is 4 levels deep (0, 1, 2, 3)

Level[list, {1}] ☞ {f[x], 4, {g[y], h}}

Level[list, {2}] ☞ {x, g[y], h}

Level[list, {3}] ☞ {y}

Level[list, {-1}] ☞ {x, 4, y, h}

Cases[expr, _Symbol, {-1}]//Union

— find all variables in expr
T. Hahn, Introduction to Mathematica and FORM – p.16

MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

For more details see arXiv:1107.4379.

T. Hahn, Introduction to Mathematica and FORM – p.17

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh Shell Magic

math << _EOF_ start Here document (note the \)

<< FeynArts‘

<< FormCalc‘

top = CreateTopologies[...];

...

EOF end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Introduction to Mathematica and FORM – p.18

Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Introduction to Mathematica and FORM – p.19

Code generation

• Conversion of Mathematica expression to Fortran/C
painless.

• Optimized output can easily run faster than in
Mathematica.

• Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

• Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x^2 + Sin[x^2]];

Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

• FormCalc’s code-generation functions produce optimized
standalone code.

T. Hahn, Introduction to Mathematica and FORM – p.20

Mathematica ↔ Fortran

Mathematica → Fortran:

• Get FormCalc from http://feynarts.de/formcalc

• Write out arbitrary Mathematica expression:

h = OpenCode["file"]
WriteExpr[h, {var -> expr, ...}]

Close[h]

Fortran → Mathematica:

• Get http://feynarts.de/formcalc/FortranGet.tm

• Compile: mcc -o FortranGet FortranGet.tm

• Load in Mathematica: Install["FortranGet"]

• Read Fortran code: FortranGet["file.F"]

T. Hahn, Introduction to Mathematica and FORM – p.21

Mathematica Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.
Many third-party packages are available at MathSource,
http://library.wolfram.com/infocenter/MathSource.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.

T. Hahn, Introduction to Mathematica and FORM – p.22

Books

• Michael Trott
The Mathematica Guidebook
for { Programming, Graphics,
Numerics, Symbolics } (4 vol)
Springer, 2004–2006.

• Andrei Grozin
Introduction to Mathematica for
Physicists
Springer, 2013.

T. Hahn, Introduction to Mathematica and FORM – p.23

FORM

T. Hahn, Introduction to Mathematica and FORM – p.24

FORM Essentials

• A FORM program is divided into Modules.
Simplification happens only at the end of a module.

• FORM is strongly typed –
all variables have to be declared:
Symbols, Vectors, Indices, (N)Tensors, (C)Functions.

• FORM works on one term at a time:
Can do “Expand[(a + b)^2]” (local operation) but
not “Factor[a^2 + 2 a b + b^2]” (global operation).

• FORM is mainly strong on polynomial expressions.

• FORM program + documentation + course available from
http://nikhef.nl/∼form.

T. Hahn, Introduction to Mathematica and FORM – p.25

A Simple Example in FORM

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Running this program gives:
FORM by J.Vermaseren,version 4.0(Mar 1 2013) Run at: Tue May 8 10:14:12 2013

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Time = 0.00 sec Generated terms = 6

expr Terms in output = 6

Bytes used = 104

expr =

d^2 - 2*c*d + c^2 - 2*a*d + 2*a*c + a^2;

0.00 sec out of 0.00 sec

T. Hahn, Introduction to Mathematica and FORM – p.26

Module Structure

A FORM program consists of Modules. A Module is
terminated by a “dot” statement (.sort, .store, .end, . . .)

• Generation Phase (“normal” statements)
During the execution of “normal” statements terms are
only generated. This is a purely local operation – only
one term at a time needs to be looked at.

• Sorting Phase (“dot” statements):
At the end of the module all terms are inspected and
similar terms collected. This is the only ‘global’ operation
which requires FORM to look at all terms
‘simultaneously.’

T. Hahn, Introduction to Mathematica and FORM – p.27

Sorting and Generating
S

ec
on

d
m

od
u

le
F

ir
st

 m
od

u
le

G e n e r a t i n g

S o r t i n g

First
term

Second
term

G e n e r a t i n g

S o r t i n g

id x = a + b;

.sort

endif;

.end

if(count(b,1)==1);
multiply 4*a/b;

print;

l expr = a*x + x^2;

+14*a^2 +b^2

a*x +x^2

+2*a^2 +3*a*b +b^2

+a^2 +a*b +a^2 +a*b +a*b +b^2

+2*a^2 +12*a^2 +b^2

T. Hahn, Introduction to Mathematica and FORM – p.28

Id-Statement

The central statement in FORM is the id-Statement:

a^3*b^2*c

id a*b = d; ☞ a*c*d^2 — multiple match

once a*b = d; ☞ a^2*b*c*d — single match

only a*b = d; ☞ a^3*b^2*c — no exact match possible

id does not, by default, match negative powers:

x + 1/x

id x = y; ☞ x^-1 + y

id x^n? = y^n; ☞ y^-1 + y — wildcard exponent

T. Hahn, Introduction to Mathematica and FORM – p.29

Patterns

Patterns are possible, too:

f(a, b, c) + f(1, 2, 3)

id f(a, b, c) = 1; ☞ 1 + f(1, 2, 3)

— explicit match

id f(a?, b?, c?) = 1; ☞ 2

— wildcard match

id f(?a) = g(?a); ☞ g(a, b, c) + g(1, 2, 3)

— group-wildcard match

id f(a?int_, ?a) = a; ☞ 1 + f(a, b, c)

— constrained wildcard

id f(a?{a,b}, ?a) = a; ☞ a + f(1, 2, 3)

— alternatives

T. Hahn, Introduction to Mathematica and FORM – p.30

Bracketing, Collecting

bracket puts specified items outside the bracket.
antibracket puts specified items inside the bracket.
collect moves the bracket contents to a function.

Symbols a, b, c, d;

Local expr = (a + b)*(c + d);

print;

.sort
expr = a*c + a*d + b*c + b*d;

bracket a, b;

print;

.sort
expr = + a * (c + d)

+ b * (c + d);

CFunction f;

collect f;

bracket f;

print;

.end
expr = + f(c + d) * (a + b);

T. Hahn, Introduction to Mathematica and FORM – p.31

Preprocessor

FORM has a Preprocessor which operates before the compiler.

Many constructs are familiar from C, but the FORM
preprocessor can do more:

• #define, #undefine, #redefine,

• #if{,def,ndef} . . . #else . . . #endif,

• #switch . . . #endswitch,

• #procedure . . . #endprocedure, #call,

• #do . . . #enddo,

• #write, #message, #system.

The preprocessor works across modules, e.g. a do-loop can
contain a .sort statement.

T. Hahn, Introduction to Mathematica and FORM – p.32

Dollar Variables

• Not strongly typed, can contain ‘everything.’

• Preserved across module boundaries.

• Can be operated on during preprocessing (#$X = . . .)
and normal operation ($X = . . .).

• Can received matched pattern: once f(x?$var) = . . .

• No arrays.

s a, b;

L F = (a + b)^6;

#$n = 0;

$n = $n + 1;

print "term %$ is %t", $n;

.end

☞ term 1 is + a^6

term 2 is + 6*a^5*b

term 3 is + 15*a^4*b^2

term 4 is + 20*a^3*b^3

term 5 is + 15*a^2*b^4

term 6 is + 6*a*b^5

term 7 is + b^6

T. Hahn, Introduction to Mathematica and FORM – p.33

Special Commands for High-Energy Physics

• Gamma matrices: g_, g5_, g6_, g7_.

• Fermion traces: trace4, tracen, chisholm.

• Levi-Civita tensors: e_, contract.

• Index properties: {,anti,cycle}symmetrize.

• Dummy indices: sum, replaceloop.
(e.g. ∑i aibi + ∑ j a jb j = 2 ∑i aibi)

T. Hahn, Introduction to Mathematica and FORM – p.34

FORM Summary

• FORM is a freely available Computer Algebra System
with some specialization on High Energy Physics.

• Programming in FORM takes more ‘getting used to’ than
in Mathematica. Also, FORM has no GUI or other
programming aids.

• FORM programs are module oriented with global
(= costly) operations occurring only at the end of module.
A strategical choice of these points optimizes
performance.

• FORM is much faster than Mathematica on polynomial
expressions and can handle in particular huge (GB)
expressions.

T. Hahn, Introduction to Mathematica and FORM – p.35

FORM ↔ Mathematica

Mathematica → FORM:

• Get FormCalc from http://feynarts.de/formcalc

• After compilation the ToForm utility should be in the
executables directory (e.g. Linux-x86-64):

ToForm < file.m > file.frm

FORM → Mathematica:

• Get http://feynarts.de/formcalc/FormGet.tm

• Compile: mcc -o FormGet FormGet.tm

• Load in Mathematica: Install["FormGet"]

• Read a FORM output file: FormGet["file.out"]
Pipe output from FORM: FormGet["!form file.frm"]

T. Hahn, Introduction to Mathematica and FORM – p.36

	Computer Algebra Systems
	Mathematica vs. FORM
	
	Mathematica Components
	Expert Systems
	Immediate and Delayed Assignment
	Almost everything is a List
	The Pillars of Mathematica
	List-oriented Programming
	Map, Apply, and Pure Functions
	Patterns
	Attributes
	Decisions
	Equality
	Selecting Elements
	MathLink
	Scripting Mathematica
	Scripting Mathematica
	Code generation
	Mathematica $leftrightarrow $ Fortran
	Mathematica Summary
	Books
	
	FORM Essentials
	A Simple Example in FORM
	Module Structure
	Sorting and Generating
	Id-Statement
	Patterns
	Bracketing, Collecting
	Preprocessor
	Dollar Variables
	Special Commands for High-Energy Physics
	FORM Summary
	FORM $leftrightarrow $ Mathematica

