Holographic Wilson loops in Lifshitz-like backgrounds

Anastasia Golubtsova¹

based on works with Dima Ageev, Irina Ia. Aref'eva and Eric Gourgoulhon 1601.06046 [JHEP(2016)] 1606.03995

¹BLTP JINR

Recent Developments in Strings and Gravity, Corfu 2016 Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Outline

- 2 Gravity dual and holographic Wilson loops
- 3 WL as non-local probes of thermalization

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Outline

Motivation

- The anisotropic QGP
- Wilson loops
- Gravity/Gauge duality

2 Gravity dual and holographic Wilson loops

- The Lifshitz-like black branes
- Spatial Wilson loops and Pseudopotentials
- Spatial string tension

3 WL as non-local probes of thermalization

- The Vaidya solution
- WL in time-dependent backgrounds

Motivation •••••• Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

The quark-gluon plasma (2005)

- QGP is a strongly coupled fluid (LHC & RHIC experiments)
- QGP is created in time $\tau \sim 0.1 {\rm fm/c}$ after the collision (short time of thermalization)
- QGP is anisotropic for a short time $0 < \tau_{therm} < \tau < \tau_{iso}$.

Figure: Picture from: P.Sorensen, C.Shen

• D = 4 Multiplicity is proportional to entropy of D = 5 BH Gubser'08

Motivation	
00000000	

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Wilson loops

- The Wilson loop is a physical gauge invariant object
- It measures the interaction potential between the external quarks
- Transport coefficients of QGP (jet quenching parameter, drag force etc.)

Motivation	
00000000	

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Wilson loops

- The Wilson loop is a physical gauge invariant object
- It measures the interaction potential between the external quarks
- Transport coefficients of QGP (jet quenching parameter, drag force etc.)
- Non-local probe of thermalization (holographic)

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Wilson loops

- The Wilson loop is a physical gauge invariant object
- It measures the interaction potential between the external quarks
- Transport coefficients of QGP (jet quenching parameter, drag force etc.)
- Non-local probe of thermalization (holographic)

Holographic Wilson loop

The expectation value of WL in the fundamental representation calculated on the gravity side:

$$W[C] = \langle \operatorname{Tr}_F e^{i \oint_C dx_\mu A_\mu} \rangle = e^{-S_{string}[C]},$$

where C in a contour on the boundary, F – the fundamental representation, S is the minimal action of the string hanging from the contour C in the bulk.

J.M. Maldacena' 98

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Holographic models

Holographic models

• Top-down approach: low-energy approximation of string theory (supergravity model) in asymptotically AdS backgrounds trying to reproduce features similar to QCD Examples:Sakai-Sugimoto model ($D4 - D8 - \bar{D}8$ -branes), Mateos-Trancanelli model (D3 - D7-branes).

Holographic models

- Top-down approach: low-energy approximation of string theory (supergravity model) in asymptotically AdS backgrounds trying to reproduce features similar to QCD Examples:Sakai-Sugimoto model ($D4 D8 \bar{D}8$ -branes), Mateos-Trancanelli model (D3 D7-branes).
- Bottom-up approach: effective 5D gravitational theory with matter in
 - asymptotically AdS spacetimes
 - non-conformal backgrounds

Examples: wall models (Karch et al., Erlich et al.), improved holographic QCD model (Kiritsis et al.)

Holographic models

- Top-down approach: low-energy approximation of string theory (supergravity model) in asymptotically AdS backgrounds trying to reproduce features similar to QCD Examples:Sakai-Sugimoto model ($D4 D8 \bar{D}8$ -branes), Mateos-Trancanelli model (D3 D7-branes).
- Bottom-up approach: effective 5D gravitational theory with matter in
 - asymptotically AdS spacetimes
 - non-conformal backgrounds

Examples: wall models (Karch et al., Erlich et al.), improved holographic QCD model (Kiritsis et al.)

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Breaking scale invariance

The AdS/CFT correspondence: The Field Theory

• the conformal group SO(D,2)

of a D-dimensional CFT

$$(t,x_i)
ightarrow (\lambda t,\lambda x_i)$$
 , $i=1,..,d-1$

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$ds^{2} = r^{2} \left(-dt^{2} + d\vec{x}_{d-1}^{2} \right) + \frac{dr^{2}}{r^{2}}$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Breaking scale invariance

The AdS/CFT correspondence: The Field Theory

• the conformal group SO(D,2)

of a D-dimensional CFT

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$(t, x_i) \to (\lambda t, \lambda x_i)$$
, $i = 1, ..., d - 1 \mid ds^2 = r^2 \left(-dt^2 + d\vec{x}_{d-1}^2 \right) + \frac{dr^2}{r^2}$

Generalizations?

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Breaking scale invariance

The AdS/CFT correspondence:

The Field Theory

• the conformal group SO(D,2)

of a D-dimensional CFT

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$(t, x_i) \to (\lambda t, \lambda x_i)$$
, $i = 1, ..., d - 1$ $ds^2 = r^2 \left(-dt^2 + d\vec{x}_{d-1}^2 \right) + \frac{dr^2}{r^2}$

Generalizations?

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Breaking scale invariance

The AdS/CFT correspondence:

The Field Theory

- the conformal group SO(D,2)
- of a D-dimensional CFT

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$(t, x_i) \rightarrow (\lambda t, \lambda x_i)$$
, $i = 1, ..., d - 1$ $ds^2 = r^2 (-dt^2 + d\vec{x}_{d-1}^2) + \frac{dr^2}{r^2}$

Generalizations?

 $\begin{array}{cccc} \mbox{Lifshitz scaling:} & t \rightarrow \lambda^{\nu}t, & \vec{x} \rightarrow \lambda \vec{x}, & r \rightarrow \frac{1}{\lambda}r, \\ \mbox{where} & \nu & \mbox{is the Lifshitz dynamical exponent} \\ \mbox{Lifshitz fields theories} \\ \mbox{Lifshitz metric:} & ds^2 = -r^{2\nu}dt^2 + \frac{dr^2}{r^2} + r^2d\vec{x}_{d-1}^2 \\ \mbox{Kachru, Liu, Milligan '08} \end{array}$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Breaking scale invariance

The AdS/CFT correspondence:

The Field Theory

- the conformal group SO(D,2)
- of a D-dimensional CFT

The Gravitational Background

• the group of isometries

of AdS_{D+1}

$$(t, x_i) \rightarrow (\lambda t, \lambda x_i)$$
, $i = 1, ..., d - 1$ $ds^2 = r^2 (-dt^2 + d\vec{x}_{d-1}^2) + \frac{dr^2}{r^2}$

Generalizations?

 $\begin{array}{cccc} \mbox{Lifshitz scaling:} & t \rightarrow \lambda^{\nu}t, & \vec{x} \rightarrow \lambda \vec{x}, & r \rightarrow \frac{1}{\lambda}r, \\ \mbox{where} & \nu & \mbox{is the Lifshitz dynamical exponent} \\ & \mbox{Lifsthiz fields theories} \\ \mbox{Lifshitz metric:} & ds^2 = -r^{2\nu}dt^2 + \frac{dr^2}{r^2} + r^2d\vec{x}_{d-1}^2 \\ & \mbox{Kachru, Liu, Milligan '08} \end{array}$

 $\nu = 1$: AdS-metric.

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Lifshitz-like spacetimes for holography

• A spatial extension of the Lifshitz scaling

$$(t, x, y, r) \to (\lambda^{\nu} t, \lambda^{\nu} x, \lambda y_1, \lambda y_2, \frac{r}{\lambda})$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Lifshitz-like spacetimes for holography

• A spatial extension of the Lifshitz scaling

$$(t, x, y, r) \to (\lambda^{\nu} t, \lambda^{\nu} x, \lambda y_1, \lambda y_2, \frac{r}{\lambda})$$

Lifshitz-like backgrounds

$$ds^2 = r^{2\nu} \left(-dt^2 + dx^2\right) + r^2 dy_1^2 + r^2 dy_2^2 + \frac{dr^2}{r^2},$$
 M. Taylor'08, Pal'09.

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Lifshitz-like spacetimes for holography

• A spatial extension of the Lifshitz scaling

$$(t, x, y, r) \to (\lambda^{\nu} t, \lambda^{\nu} x, \lambda y_1, \lambda y_2, \frac{r}{\lambda})$$

Lifshitz-like backgrounds

$$ds^{2} = r^{2\nu} \left(-dt^{2} + dx^{2} \right) + r^{2} dy_{1}^{2} + r^{2} dy_{2}^{2} + \frac{dr^{2}}{r^{2}},$$

M. Taylor'08, Pal'09.

The 5d Lifshitz-like metrics

$$\begin{split} \mathsf{Type} &- (\mathbf{1}, \mathbf{2}) \quad ds^2 = r^{2\nu} \left(-dt^2 + dx^2 \right) + r^2 \left(dy_1^2 + dy_2^2 \right) + \frac{dr^2}{r^2}. \\ \mathsf{Type} &- (\mathbf{2}, \mathbf{1}) \quad ds^2 = r^{2\nu} \left(-dt^2 + dx_1^2 + dx_2^2 \right) + r^2 dy^2 + \frac{dr^2}{r^2}. \end{split}$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Type IIB SUGRA, D3 - D7-branes

 $\mathcal{M} = M_5 \times X_5$: M_5 is a 5d Lifshitz-like metric, X_5 is an Einstein manifold.

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Type IIB SUGRA, D3 - D7-branes

 $\mathcal{M} = M_5 \times X_5$: M_5 is a 5d Lifshitz-like metric, X_5 is an Einstein manifold.

D3-D7 system, Azeyanagi, Lin, Takayanagi'09

$$ds^{2} = \tilde{R}^{2} \left[\rho^{2} \left(-dt^{2} + dx^{2} + dy^{2} \right) + \rho^{4/3} dw^{2} + \frac{d\rho^{2}}{\rho^{2}} \right] + R^{2} ds^{2}_{X_{5}}.$$

$$\nu = 3/2, \quad r \equiv \rho^{2/3}, \quad (t, x, y, w, \rho) \to \left(\lambda t, \lambda x, \lambda y, \lambda^{2/3} w, \frac{\rho}{\lambda} \right)$$

$$\mathcal{M}_{5} \times X_{5} \quad | \ t \quad x \quad y \quad r \mid w \mid s_{1} \quad s_{2} \quad s_{3} \quad s_{4} \quad s_{5}$$

• •0 ···0	÷		Э	•		~ 1	~ 2	-0	~4	- 0	
D3	×	\times	\times		×						
D7	×	×	×			×	\times	\times	×	×	

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

Mateos&Trancanelli'11

$$ds^{2} = \frac{1}{u^{2}} \left(-\mathcal{FB} dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + \mathcal{H} dx_{3}^{2} + \frac{du^{2}}{\mathcal{F}} \right) + \mathcal{Z} d\Omega_{S^{5}}^{2}.$$

The functions $\mathcal{F}, \mathcal{B}, \mathcal{H}$ depend on the radial direction u and the anisotropy α . At high temperatures $\alpha \ll T$: $\mathcal{F}(u) = 1 - \frac{u^4}{u_h^4} + \frac{\alpha^2}{24u_h^2} \left[8u^2(u_h^2 - u^2) - 10u^4 \log 2 + (3u_h^4 + 7u^4) \log(1 + \frac{u^2}{u_h^2}) \right]$ $\mathcal{B}(u) = 1 - \frac{\alpha^2}{24u_h^2} \left[\frac{10u^2}{u_h^2 + u^2} + \log(1 + \frac{u^2}{u_h^2}) \right], \ \mathcal{H}(u) = \left(1 + \frac{u^2}{u_h^2} \right)^{\frac{\alpha^2 u_h^2}{4}}.$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

Mateos&Trancanelli'11

$$ds^{2} = \frac{1}{u^{2}} \left(-\mathcal{FB} dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + \mathcal{H} dx_{3}^{2} + \frac{du^{2}}{\mathcal{F}} \right) + \mathcal{Z} d\Omega_{S^{5}}^{2}.$$

The functions $\mathcal{F}, \mathcal{B}, \mathcal{H}$ depend on the radial direction u and the anisotropy α . At high temperatures $\alpha \ll T$: $\mathcal{F}(u) = 1 - \frac{u^4}{u_h^4} + \frac{\alpha^2}{24u_h^2} \left[8u^2(u_h^2 - u^2) - 10u^4 \log 2 + (3u_h^4 + 7u^4) \log(1 + \frac{u^2}{u_h^2}) \right]$ $\mathcal{B}(u) = 1 - \frac{\alpha^2}{24u_h^2} \left[\frac{10u^2}{u_h^2 + u^2} + \log(1 + \frac{u^2}{u_h^2}) \right], \ \mathcal{H}(u) = \left(1 + \frac{u^2}{u_h^2} \right)^{\frac{\alpha^2 u_h^2}{4}}.$

*D*7-probes in *D*3-background $Lif_{IR}/AdS_{5,UV} \times X_5 \Rightarrow$ deformed SYM. $\alpha = 0 \Rightarrow$ isotropic *D*3-brane AdS/CFT: $AdS_5 \times S^5 \Rightarrow \mathcal{N} = 4$ SYM. Jet quenching, drag force, potentials... see Giataganas et al.'12

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Type IIB SUGRA, D3 - D7-branes: Anisotropic QGP

Mateos&Trancanelli'11

$$ds^{2} = \frac{1}{u^{2}} \left(-\mathcal{FB} dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + \mathcal{H} dx_{3}^{2} + \frac{du^{2}}{\mathcal{F}} \right) + \mathcal{Z} d\Omega_{S^{5}}^{2}.$$

The functions $\mathcal{F}, \mathcal{B}, \mathcal{H}$ depend on the radial direction u and the anisotropy α . At high temperatures $\alpha \ll T$: $\mathcal{F}(u) = 1 - \frac{u^4}{u_h^4} + \frac{\alpha^2}{24u_h^2} \left[8u^2(u_h^2 - u^2) - 10u^4 \log 2 + (3u_h^4 + 7u^4) \log(1 + \frac{u^2}{u_h^2}) \right]$ $\mathcal{B}(u) = 1 - \frac{\alpha^2}{24u_h^2} \left[\frac{10u^2}{u_h^2 + u^2} + \log(1 + \frac{u^2}{u_h^2}) \right], \ \mathcal{H}(u) = \left(1 + \frac{u^2}{u_h^2}\right)^{\frac{\alpha^2 u_h^2}{4}}.$

D7-probes in D3-background $Lif_{IR}/AdS_{5,UV} \times X_5 \Rightarrow$ deformed SYM. $\alpha = 0 \Rightarrow$ isotropic D3-brane AdS/CFT: $AdS_5 \times S^5 \Rightarrow \mathcal{N} = 4$ SYM. Jet quenching, drag force, potentials... see Giataganas et al.'12

- difficult to study
- not cover experimental data

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Outline

Motivation

- The anisotropic QGP
- Wilson loops
- Gravity/Gauge duality

② Gravity dual and holographic Wilson loops

- The Lifshitz-like black branes
- Spatial Wilson loops and Pseudopotentials
- Spatial string tension

3 WL as non-local probes of thermalization

- The Vaidya solution
- WL in time-dependent backgrounds

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Black branes in Lifshiz-like spacetimes

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{|g|} \left(R[g] + \Lambda - \frac{1}{2} \partial_M \phi \partial^M \phi - \frac{1}{4} e^{\lambda \phi} F_{(2)}^2 \right),$$

 Λ $\;$ is negative cosmological constant.

The Einstein equations

$$R_{mn} = -\frac{\Lambda}{3}g_{mn} + \frac{1}{2}(\partial_m \phi)(\partial_n \phi) + \frac{1}{4}e^{\lambda\phi} \left(2F_{mp}F_n^p\right) - \frac{1}{12}e^{\lambda\phi}F^2g_{mn}.$$

The scalar field equation

$$\Box \phi = \frac{1}{4} \lambda e^{\lambda \phi} F^2, \quad \text{with} \quad \Box \phi = \frac{1}{\sqrt{|g|}} \partial_m (g^{mn} \sqrt{|g|} \partial_n \phi).$$

The gauge field

$$D_m\left(e^{\lambda\phi}F^{mn}\right) = 0.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Gravity duals: black brane

The Lifshitz-like black brane

$$\begin{split} ds^2 &= e^{2\nu r} \left(-f(r)dt^2 + dx^2 \right) + e^{2r} \left(dy_1^2 + dy_2^2 \right) + \frac{dr^2}{f(r)}, \\ \text{where} \quad f(r) &= 1 - m e^{-(2\nu + 2)r}. \quad \text{Aref'eva,AG, Gourgoulhon'16} \\ F_{(2)} &= \frac{1}{2}qdy_1 \wedge dy_2, \quad \phi &= \phi(r), \quad e^{\lambda\phi} = \mu e^{4r}. \end{split}$$

The Hawking temperature of the black brane:

$$T = \frac{1}{\pi} \frac{(\nu+1)}{2\nu} m^{\frac{\nu}{2\nu+2}}.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Gravity duals: black brane

The Lifshitz-like black brane

$$\begin{split} ds^2 &= e^{2\nu r} \left(-f(r) dt^2 + dx^2 \right) + e^{2r} \left(dy_1^2 + dy_2^2 \right) + \frac{dr^2}{f(r)}, \\ \text{where} \quad f(r) &= 1 - m e^{-(2\nu + 2)r}. \quad \text{Aref'eva,AG, Gourgoulhon'16} \\ F_{(2)} &= \frac{1}{2} q dy_1 \wedge dy_2, \quad \phi &= \phi(r), \quad e^{\lambda \phi} = \mu e^{4r}. \end{split}$$

The Hawking temperature of the black brane:

$$T = \frac{1}{\pi} \frac{(\nu+1)}{2\nu} m^{\frac{\nu}{2\nu+2}}.$$

$$ds^{2} = \frac{(-f(z)dt^{2} + dx^{2})}{z^{2}} + \frac{(dy_{1}^{2} + dy_{2}^{2})}{z^{2/\nu}} + \frac{dz^{2}}{z^{2}f(z)},$$

$$f(z) = 1 - mz^{2+2/\nu}, \quad z = \frac{1}{r^{\nu}}.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Gravity duals: black brane

The Lifshitz-like black brane

$$\begin{split} ds^2 &= e^{2\nu r} \left(-f(r) dt^2 + dx^2 \right) + e^{2r} \left(dy_1^2 + dy_2^2 \right) + \frac{dr^2}{f(r)}, \\ \text{where} \quad f(r) &= 1 - m e^{-(2\nu + 2)r}. \quad \text{Aref'eva,AG, Gourgoulhon'16} \\ F_{(2)} &= \frac{1}{2} q dy_1 \wedge dy_2, \quad \phi &= \phi(r), \quad e^{\lambda \phi} = \mu e^{4r}. \end{split}$$

The Hawking temperature of the black brane:

$$T = \frac{1}{\pi} \frac{(\nu+1)}{2\nu} m^{\frac{\nu}{2\nu+2}}.$$

$$\begin{split} ds^2 &= \frac{(-f(z)dt^2 + dx^2)}{z^2} + \frac{(dy_1^2 + dy_2^2)}{z^{2/\nu}} + \frac{dz^2}{z^2 f(z)}, \\ f(z) &= 1 - mz^{2+2/\nu}, \quad z = \frac{1}{r^{\nu}}. \end{split}$$

5d GAUGED $U(1)^3$ SUGRA

Donos, Gauntlett'12, Hoker, Kraus'12

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Holographic Wilson Loops

• The expectation value of WL in the fundamental representation calculated on the gravity side:

$$W[C] = \langle \operatorname{Tr}_F e^{i \oint_C dx_\mu A_\mu} \rangle = e^{-S_{string}[C]}.$$

The Nambu-Goto action is

$$S_{string} = \frac{1}{2\pi\alpha'} \int d\sigma^1 d\sigma^2 \sqrt{-\det(h_{\alpha\beta})},\tag{1}$$

with the induced metric of the world-sheet $h_{\alpha\beta}$ given by

$$h_{\alpha\beta} = g_{MN} \partial_{\alpha} X^M \partial_{\beta} X^N, \quad \alpha, \beta = 1, 2,$$
⁽²⁾

 g_{MN} is the background metric, $X^M=X^M(\sigma^1,\sigma^2)$ specify the string, $\sigma^1,\,\sigma^2$ parametrize the worldsheet.

• The potential of the interquark interaction

$$W(T,X) = \langle \operatorname{Tr} e^{i \oint_{T \times X} dx_{\mu} A_{\mu}} \rangle \sim e^{-V(X)T}.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Holographic Wilson Loops

A similar operator to probe QCD is the spatial rectangular Wilson loop of size $X \times Y$ (for large Y)

$$W(X,Y) = \langle \mathsf{T} r e^{i \oint_{X \times Y} dx_{\mu} A_{\mu}} \rangle = e^{-\mathcal{V}(X)Y}$$

defines the so called pseudopotential \mathcal{V} :

$$\mathcal{V}(X) = \frac{S_{string}}{Y}.$$

The spatial Wilson loops obey the area law at all temperature, i.e.

$$\mathcal{V}(X) \sim \sigma_s X,$$

where σ_s defines the spatial string tension

$$\sigma_s = \lim_{X \to \infty} \frac{\mathcal{V}(X)}{X}.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Holographic spatial Wilson loops

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Spatial WL in Lifshitz-like backgrounds

Rectangular WL in the spatial planes xy_1 (or xy_2) and y_1y_2 . Possible configurations: D.Ageev, I.Ya.Aref'eva,AG, E.Gourgoulhon'16

• a rectangular loop in the xy_1 (or xy_2) plane with a short side of the length ℓ in the longitudinal x direction and a long side of the length L_{y_1} along the transversal y_1 direction

$$x \in [0, \ell < L_x], \quad y_1 \in [0, L_{y_1}];$$

• a rectangular loop in the xy_1 plane with a short side of the length ℓ in the transversal y_1 direction and a long side of the length L_x along the longitudinal x direction:

$$x \in [0, L_x], \quad y_1 \in [0, \ell < L_{y_1}];$$

• a rectangular loop in the transversal y_1y_2 plane with a short side of the length ℓ in one of transversal directions (say y_1) and a long side of the length L_{y_2} along the other transversal direction y_2

$$y_1 \in [0, \ell < L_{y_1}], \quad y_1 \in [0, L_{y_2}].$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Static WL. Case 1: $\sigma^1 = x$, $\sigma^2 = y_1$, z = z(x), v = v(x).

The renormalized Nambu-Goto action

$$S_{x,y_{1(\infty)},ren} = \frac{L_{y_1}}{2\pi\alpha'} \frac{1}{z_*^{1/\nu}} \int_0^1 \frac{dw}{w^{1+1/\nu}} \left[\frac{1}{\sqrt{f(z_*w)\left(1-w^{2+2/\nu}\right)}} - 1 \right] - \frac{\nu}{z_*^{1/\nu}},$$

where $w = z/z_*$. The length scale is

$$\frac{\ell}{2} = 2z_* \int_{z_0/z_*}^1 \frac{w^{1+1/\nu} \, dw}{f(z_*w)(1-w^{2+2/\nu})}$$

Then pseudopotential $\mathcal{V}_{x,y_{1(\infty)}} = \frac{S_{x,y_{1(\infty)},ren}}{L_{y_1}}.$ For small ℓ – the deformed Coulomb part

$$\mathcal{V}_{x,y_{1(\infty)}}(\ell,
u) \underset{\ell \sim 0}{\sim} - \frac{\mathcal{C}_1(
u)}{\ell^{1/
u}}$$

For large ℓ

$$\mathcal{V}_{x,y_{1(\infty)}}(\ell,\nu) \underset{\ell \to \infty}{\sim} \sigma_{s,1}(\nu) \,\ell.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Static WL. Case 1: $\sigma^1 = x$, $\sigma^2 = y_1$, z = z(x), v = v(x).

Figure: $\mathcal{V}_{x,y_{1(\infty)}}$ as a function of ℓ , $\nu = 2, 3, 4((a), (b), (c))$. The temperature T = 30, 100, 150, 200 MeV (from down to top) for all. In (d): $\mathcal{V}_{x,y_{1(\infty)}}$ for $\nu = 1, 2, 3, 4$ (from top to down) at T = 100 MeV.

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Static WL. Case 2: $\sigma^1 = x$, $\sigma^2 = y_1$, $z = z(y_1)$, $v = v(y_1)$

The renormalized Nambu-Goto action

$$S_{y_1, x_{(\infty)}, ren} = \frac{L_x}{2\pi\alpha'} \frac{1}{z_*} \int_{z_0/z_*}^1 \frac{dw}{w^2} \left[\frac{1}{\sqrt{f(z_*w)\left(1 - w^{2+2/\nu}\right)}} - 1 \right] - \frac{1}{z_*}.$$

The length scale is

$$\ell = 2z_*^{1/\nu} \int_0^1 \frac{w^{2/\nu} dw}{f(z_*w) \left(1 - w^{2+2/\nu}\right)}$$

The pseudopotential $\mathcal{V}_{y_1, x_{(\infty)}} = \frac{S_{y_1, x_{(\infty)}, ren}}{L_x}$. For small ℓ – the deformed Coulomb part

$$\mathcal{V}_{y_1, x_{(\infty)}} \underset{\ell \sim 0}{\sim} - \frac{\mathcal{C}_2(\nu)}{\ell^{\nu}}.$$

For large ℓ

$$\mathcal{V}_{y_1, x_{(\infty)}}(\ell, \nu) \underset{\ell \to \infty}{\sim} \sigma_{s, 2}(\nu) \ell$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Static WL.Case 2: $\sigma^1 = x$, $\sigma^2 = y_1$, $z = z(y_1)$, $v = v(y_1)$

Figure: $\mathcal{V}_{y_1, x_{(\infty)}}$ as a function of ℓ for $\nu = 2, 3, 4$ ((a),(b),(c)). T = 30, 100, 150, 200 MeV from down to top, respectively, for all. In (d) \mathcal{V} for $\nu = 1, 2, 3, 4$ (from left to right, respectively) at T = 100 MeV.

The renormalized Nambu-Goto action

$$S_{y_1y_{2(\infty)},ren} = \frac{L_{y_2}}{2\pi\alpha'} \frac{1}{z_*^{1/\nu}} \int\limits_{\frac{z_0}{z_*}}^1 \frac{dw}{w^{1+1/\nu}} \left[\frac{1}{\sqrt{f(z_*w)\left(1-w^{4/\nu}\right)}} - 1 \right] - \frac{\nu}{z_*^{1/\nu}}.$$

The length scale is

$$\ell = z_*^{1/\nu} \int \frac{dw}{w^{1-3/\nu} \sqrt{f(z_*w) \left(1 - w^{4/\nu}\right)}}.$$

The pseudopotential $\mathcal{V}_{y_1, y_{2(\infty)}} = \frac{S_{y_1, y_{2(\infty)}}}{L_{y_2}}.$ For small ℓ –

$$\mathcal{V}_{y_1, y_{2(\infty)}} \underset{\ell \to 0}{\sim} - \frac{\mathcal{C}_3(\nu)}{\ell}.$$

For large ℓ

$$\mathcal{V}_{y_1, y_{2(\infty)}}(\ell, \nu) \underset{\ell \to \infty}{\sim} \sigma_{s,3}(\nu) \, \ell.$$

Figure: $\mathcal{V}_{y_1, y_{2(\infty)}}$ as a function of ℓ for $\nu = 2, 3, 4$ ((a),(b),(c), respectively). We take T = 30, 100, 150, 200 MeV from down to top, for (a),(b) and (c). In (d) $\mathcal{V}_{y_1, y_{2(\infty)}}$ for $\nu = 1, 2, 3, 4$ (from left to right) at T = 100 MeV.

(c)

l[fm]

(d)

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Spatial string tension

Figure: The dependence of the spatial string tension $\sqrt{\sigma_s}$ on orientation and temperature. The solid lines corresponds to the rectangular Wilson loop with a short extent in the x-direction, while the dashed lines correspond to a short extent in the y-direction. The dotted lines correspond to the rectangular Wilson loop in the transversal y_1y_2 plane. (a) Blue line corresponds to $\nu = 1$, gray lines correspond to $\nu = 2$, green lines correspond to $\nu = 3$ and the brown ones correspond to $\nu = 4$. (b) The spatial string tension $\sqrt{\sigma_s}$ for different orientations for $\nu = 4$.

Alanen et al.'09, A. Dumitru et al.'13-14

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Outline

Motivation

- The anisotropic QGP
- Wilson loops
- Gravity/Gauge duality

2 Gravity dual and holographic Wilson loops

- The Lifshitz-like black branes
- Spatial Wilson loops and Pseudopotentials
- Spatial string tension

3 WL as non-local probes of thermalization

- The Vaidya solution
- WL in time-dependent backgrounds

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

The infalling shell background

The ingoing Eddington-Finkelstein coordinates

$$dv = dt + \frac{dz}{f(z)}.$$

The Vaidya solution in Lifshitz background

$$\begin{split} ds^2 &= -z^{-2}f(z)dv^2 - 2z^{-2}dvdz + z^{-2}dx^2 + z^{-2/\nu}(dy_1^2 + dy_2^2), \\ f &= 1 - m(v)z^{2+2/\nu}, v < 0 - \text{inside the shell}, v > 0 - \text{outside}, \\ f(v,z) &= 1 - \frac{M}{2}\left(1 + \tanh\frac{v}{\alpha}\right)z^{2+\frac{2}{\nu}} \end{split}$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

The infalling shell background

The ingoing Eddington-Finkelstein coordinates

$$dv = dt + \frac{dz}{f(z)}.$$

The Vaidya solution in Lifshitz background

$$\begin{split} ds^2 &= -z^{-2}f(z)dv^2 - 2z^{-2}dvdz + z^{-2}dx^2 + z^{-2/\nu}(dy_1^2 + dy_2^2), \\ f &= 1 - m(v)z^{2+2/\nu}, v < 0 - \text{inside the shell}, v > 0 - \text{outside}, \\ f(v,z) &= 1 - \frac{M}{2}\left(1 + \tanh\frac{v}{\alpha}\right)z^{2+\frac{2}{\nu}} \end{split}$$

• The Vaidya solution interpolates between the black hole (outside the shell) and the Lifshitz-like vacuum (inside the shell).

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 1

$$v = v(x), \quad z = z(x), \quad f = f(v, z).$$

$$S_{x,y_{1(\infty)}} = \frac{L_y}{2\pi\alpha'} \int \frac{dx}{z^{1+1/\nu}} \sqrt{1 - f(z, v)v'^2 - v'z'}, \quad t \equiv \frac{d}{dx}$$

The corresponding equations of motion are

$$\begin{split} v'' &= \frac{1}{2} \frac{\partial f}{\partial z} v'^2 + \frac{(\nu+1)}{\nu z} (1 - fv'^2 - 2v'z'), \\ z'' &= -\frac{\nu+1}{\nu} \frac{f}{z} + \frac{\nu+1}{\nu} \frac{f^2 v'^2}{z} - \frac{1}{2} \frac{\partial f}{\partial v} v'^2 - \frac{1}{2} fv'^2 \frac{\partial f}{\partial z} - v'z' \frac{\partial f}{\partial z}, \\ &+ 2 \frac{(\nu+1)}{\nu z} fv'z'. \end{split}$$

The boundary conditions $z(\pm \ell) = 0$, $v(\pm \ell) = t$. The initial conditions $z(0) = z_*$, $v(0) = v_*$, z'(0) = 0, v'(0) = 0. The pseudopotential is

$$\mathcal{V}_{x,y_{1(\infty)}} = \frac{S_{x,y_{1(\infty)},ren}}{L_{y_1}}$$

Figure: $\mathcal{V}_{x,y_{1(\infty)}}$ as a function of ℓ at fixed values of t for $\nu = 1, 2, 3, 4$ ((a),(b),(c),(d), respectively). Different curves correspond to time t = 0.1, 0.5, 0.9, 1.4, 2 (from down to top, respectively).

$$\delta \mathcal{V}_1(x,t) = \mathcal{V}_{x,y_{1(\infty)}}(x,t) - \mathcal{V}_{x,y_{1(\infty)}}(x,t_f).$$

Figure: The time dependence of $-\delta \mathcal{V}_1(x,t)$, for different values of the length ℓ , $\nu = 2, 3, 4$ ((a),(b),(c), respectively). Different curves correspond to $\ell = 0.7, 1.2, 1.5, 1.7, 2$ (from down to top, respectively). In (d) we have shown $-\delta \mathcal{V}_1(x,t)$ as a function of t at $\ell = 2$ for $\nu = 1, 2, 3, 4$ (from top to down).

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 2

$$v = v(y_1), \quad z = z(y_1), \quad f = f(v, z)$$

$$S_{y_1, x_{(\infty)}} = \frac{L_x}{2\pi\alpha'} \int dy_1 \frac{1}{z^2} \sqrt{\left(\frac{1}{z^{2/\nu-2}} - f(z, v)(v')^2 - 2v'z'\right)}, \quad \ell \equiv \frac{d}{dy_1}$$

The corresponding equations of motion are

$$\begin{split} v'' &= \frac{1}{2} \frac{\partial f}{\partial z} v'^2 + \frac{\nu + 1}{\nu z} \left(z^{2-2/\nu} - \frac{2\nu}{(1+\nu)} f v'^2 - 2v' z' \right), \\ z'' &= -\frac{\nu + 1}{\nu} f z^{1-2/\nu} + \frac{2(\nu - 1)z'^2}{\nu} + \frac{2}{\nu} \frac{f^2 v'^2}{z} - \frac{1}{2\nu} \frac{\partial f}{\partial v} v'^2 - \frac{1}{2\nu} f \frac{\partial f}{\partial z} v'^2 \\ &- z' v' \frac{\partial f}{\partial z} + \frac{4}{z} f z' v'. \end{split}$$

The boundary conditions $z(\pm \ell) = 0$, $v(\pm \ell) = t$. The initial conditions $z(0) = z_*$, $v(0) = v_*$, z'(0) = 0, v'(0) = 0. The pseudopotential is

$$\mathcal{V}_{y_1, x_{(\infty)}} = \frac{S_{y_1, x_{(\infty)}, ren}}{L_{y_1}}$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 2

Figure: $\mathcal{V}_{y_1x_{\infty}}$ as a function of ℓ at fixed values of t for $\nu = 1, 2, 3, 4$ ((a),(b),(c),(d), respectively). Different curves correspond to t = 0.1, 0.5, 0.9, 1.4, 2 from down to top.

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 2

$$\delta \mathcal{V}_{y_1, x_{(\infty)}}(x, t) = \mathcal{V}_{y_1, x_{(\infty)}}(x, t) - \mathcal{V}_{y_1, x_{(\infty)}}(x, t_f).$$

Figure: The time dependence of $-\delta \mathcal{V}_{y_1, x_{(\infty)}}(x, t)$ for different values of the length ℓ , $\nu = 2, 3, 4$ ((a),(b),(c), respectively). Different curves correspond to $\ell = 2, 2.5, 3, 3.5, 4$ (from down to top, respectively). In (d) $-\delta \mathcal{V}_2(x, t)$ as a function of t at $\ell = 2$ for $\nu = 1, 2, 3, 4$ (from top to down, respectively).

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 3

$$v = v(y_1), \quad z = z(y_1), \quad f = f(v, z).$$

$$S_{y_1, y_{2,(\infty)}} = \frac{L_{y_2}}{2\pi\alpha'} \int dy_1 \frac{1}{z^{1+1/\nu}} \sqrt{\left(\frac{1}{z^{2/\nu-2}} - f(v')^2 - 2v'z'\right)}.$$

The corresponding equations of motion are

$$v'' = \frac{1}{2} \frac{\partial f}{\partial z} v'^2 + \frac{2}{z\nu} \left(z^{2-2/\nu} - \frac{\nu+1}{2} f v'^2 - 2v'z' \right),$$

$$z'' = -\frac{2}{\nu} f z^{1-2/\nu} + 2 \frac{\nu-1}{\nu} \frac{z'^2}{z} + \frac{\nu+1}{\nu z} f^2 v'^2 - \frac{1}{2} \frac{\partial f}{\partial v} v'^2 - \frac{1}{2} f \frac{\partial f}{\partial z} v'^2$$

$$- z'v' \frac{\partial f}{\partial z} + \frac{2(\nu+1)}{\nu z} f v'z'.$$
(3)

The boundary conditions $z(\pm \ell) = 0$, $v(\pm \ell) = t$. The initial conditions $z(0) = z_*$, $v(0) = v_*$, z'(0) = 0, v'(0) = 0. The pseudopotential is

$$\mathcal{V}_{y_1, y_{2,(\infty)}}(t, \ell) = \frac{S_{y_1, y_{2,(\infty)}, ren}}{L_{y_2}}.$$

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 3

Figure: $\mathcal{V}_{y_1, y_{2,(\infty)}}(l, t)$ as a function of the length ℓ at fixed values of t, $\nu = 1, 2, 3, 4$ ((a),(b),(c),(d)). (a): we take t = 0.1, 0.5, 0.9, 1.4, 2 from down to top, respectively; for plots (b),(c),(d): t = 0.4, 1.5, 2.5, 3.34, 4 from down to top, respectively.

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

WL in time-dependent backgrounds.Case 3

$$\delta \mathcal{V}_{y_1, y_{2,(\infty)}}(x, t) = \mathcal{V}_{y_1, y_{2,(\infty)}}(x, t) - \mathcal{V}_{y_1, y_{2,(\infty)}}(x, t_f).$$

Figure: $-\delta \mathcal{V}_{y_1, y_{2,(\infty)}}(x, t)$ on t for different $\ell, \nu = 2, 3, 4$ ((a),(b),(c)). (a): l = 2.2, 3, 3.85, 4.4, 5.2 from top to down; (b): l = 3, 4.1, 5.2, 6, 7.1 from top to down; (c): l = 3.4, 4.6, 5.9, 6.8, 8 from top to down. In (d): $-\delta \mathcal{V}_3(x, t)$ as a function of t at $\ell = 3$ for $\nu = 1, 2, 3, 4$ (from top to down, respectively).

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Summary and Outloook

Done

- **9** Black brane and shell solutions with Lifshitz-like asymptotics
- Wilson loops in the Lifshitz-like backgrounds
- Seudopotentials and spatial string tensions

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Summary and Outloook

Done

- Solutions with Lifshitz-like asymptotics
- Wilson loops in the Lifshitz-like backgrounds
- Seudopotentials and spatial string tensions

Open questions

- Time-like Willson loops, potentials, quarkonium spectrum that CAN FIT experemental data for multiplicity
- Jet quenching parameter for anizotropic background that CAN FIT experemental data for multiplicity
- Generalization for non-zero chemical potential (non-zero barionic density)
- Isotropization, holographic RG-flow from $AdS_3 \times R^2$ to Lif_5 ?
- Any supergravity embeddings?

Gravity dual and holographic Wilson loops

WL as non-local probes of thermalization

Thank you for your attention!