

^AUCL

TRACK.

In 2015 the LHC went to 13 TeV

We may get lucky...

But we can also ask a different question:
- is the Standard Model still the right theory?
- are there any signs of different behaviour?

To answer this question, need precision measurements

→ QCD and electroweak physics (excluding top and Higgs)

Focus on 13 TeV results:

rrere

- total inelastic cross section
- min bias
- underlying event

Sec. 2

- inclusive jets
- inclusive W, Z
- Z+jets
- dibosons

UCL Total Inelastic σ

G. Hesketh 5

Showing tracks with pT>100 MeV

Run: 267358 Event: 7543551 2015-06-10 00:48:15 CEST

Total Inelastic σ

G. Hesketh 6

The majority of pp collisions are low Q^2

- non-perturbative QCD

Trigger using MBTS

- plastic scintillator 3.6 m from interaction region

- covers $2.07 < |\eta| < 3.86$
- \rightarrow insensitive to elastic and low mass diffraction

Run: 267358 Event: 7543551 2015-06-10 00:48:15 CEST

Total Inelastic σ

G. Hesketh

New ATLAS measurement Consistent with expected rise in cross section

 $\sigma_{\text{inel}} = 79.3 \pm 0.6 \text{ (exp.)} \pm 1.3 \text{ (lum.)} \pm 2.5 \text{ (extrap.) mb.}$

Dataset:

- 60 μb⁻¹, June 2015
- 0.0023 collisions per crossing

Test Pythia 8

- one of the LHC standards

EPOS LHC & QGSJET-II

- used for cosmic ray shower simulation

Minimum Bias

8

To learn more about collisions:

Reconstruct charged tracks with letal <2.5 pT>500 MeV Correct to primary charged particles

Phys. Lett. B (2016), Vol 758, pp. 67-88 extended to pT>100 MeV: **arXiv: 1606.01133**

Underlying event

9

Using same data sample as minbias analysis

- tracks with pT > 500 MeV, | eta | <2.5

ATL-PHYS-PUB-2015-019

Select leading track, pT>1 GeV

- divide event relative to this track

Further select beginnings of "hard" tail:

- require >=1 track with pT > 5 GeV
- beginning of jet formation
- "back-to-back" topology

Underlying event

G. Hesketh 10

"Factorize" events into hard scatter and underlying event

Underlying event ~independent of hard scatter as Q² increases Present in all collisions – important input for tuning non-perturbative models - along with jet fragmentation, min bias and multi-parton scatters

Dijet event:

- jet 1 pT 810 GeV

- jet 2 pT 750 GeV
- dijet mass 8.8 TeV

Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST

Look at very high pT objects

- search for new interactions

G. Hesketh

13

d²σ/d*p*_T d*y* [pb/GeV] - search for new interactions **10¹⁰** 10^{7} \rightarrow Test perturbative QCD 10^{4} Use a suite of single jet triggers 10 - pT > 55 → 360 GeV Jet selection: 10⁻² antikt R = 0.4 jets 10⁻⁵ pT > 100 GeV, |y|<3.2 10⁻⁸ 10⁻¹¹ Events 10^e **10**⁻¹⁴ ATLAS Preliminary √s=13 TeV, 15.7 fb⁻¹ 10⁻¹⁷ Data Background fit 10⁵

Look at very high pT objects

ATLAS-CONF-2016-092

ATLAS-CONF-2016-069

NLO parton level prediction with non-perturbative corrections

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

Precision of results (limited by JES) puts constraints on PDFs

Run: 267638 Event: 242090708 2015-06-14 01:01:14 CEST

Jse electron & muon decay modes as colourless probe of collision - test pQCD, constrain proton structure

Run: 267638 Event: 242090708 2015-06-14 01:01:14 CEST

Lepton pT > 25 GeV Lepton $|\eta| < 2.5$ Z: 66 < M_I < 116 GeV W: MET > 25 GeV M_T > 50 GeV

Inclusive W/Z

NNLO pQCD predictions: DYNNLO & FEWZ ...with NLO EW corrections: FEWZ & SANC

Phys. Lett. B 759 (2016) 601

- ATLAS-eqWZ12nnlo PDF set used 7 TeV data

Leptons + (missing energy) + jets is a common search signature

- eg SuSy decay cascade from Wolgang Hollik's "Introduction to SuSy/MSSM"

arXiv:1605.04285

Test of pQCD modelling

- Z+{0,1,2,...} matrix elements, matched to parton shower
- then merged together, removing any overlaps

Test of pQCD modelling

- Z+{0,1,2,...} matrix elements, matched to parton shower
- then merged together, removing any overlaps

G. Hesketh

22

- LO MadGraph5_aMC@NLO + Pythia8 (CKKW-L), Alpgen + Pythia6 (MLM)
- NLO Sherpa (ME+PS@NLO), MadGraph5_aMC@NLO+Pythia8 (FxFx)
- NLO Blackhat + Sherpa (fixed order)
- NNLO Z + 1 jet (Phys. Rev. Lett. 116 (2016) 152001)

23

- LO MadGraph5_aMC@NLO + Pythia8 (CKKW-L), Alpgen + Pythia6 (MLM)
- NLO Sherpa (ME+PS@NLO), MadGraph5_aMC@NLO+Pythia8 (FxFx)
- NLO Blackhat + Sherpa (fixed order)
- NNLO Z + 1 jet (Phys. Rev. Lett. 116 (2016) 152001)

- LO MadGraph5 aMC@NLO + Pythia8 (CKKW-L), Alpgen + Pythia6 (MLM)
- NLO Sherpa (ME+PS@NLO), MadGraph5_aMC@NLO+Pythia8 (FxFx)
- NLO Blackhat + Sherpa (fixed order)
- NNLO Z + 1 jet (Phys. Rev. Lett. 116 (2016) 152001)

≜UC

Z + jets

G. Hesketh

25

- LO MadGraph5_aMC@NLO + Pythia8 (CKKW-L), Alpgen + Pythia6 (MLM)
- NLO Sherpa (ME+PS@NLO), MadGraph5_aMC@NLO+Pythia8 (FxFx)
- NLO Blackhat + Sherpa (fixed order)
- NNLO Z + 1 jet (Phys. Rev. Lett. 116 (2016) 152001)

NNLO hadron-collider calculations v. time

Gavin Salam let me know of any significant omissions

Slide by Gavin Salam, LHCP 2016

Dibosons

Disobons provide a different test:

- QCD and electroweak couplings
- one of the surviving small excesses:
 - W+Z \rightarrow JJ, small excess ~ 2 TeV at end of Run 1, again in 2016

Dibosons

28

Disobons provide a different test

- QCD and electroweak couplings
- additional triple and quartic boson couplings

Use leptonic decays:

- WW: highest cross section, but 2 neutrinos
- ZZ lowest cross section, measure full system

SM:
$$\mathcal{L}^{gauge} = -\frac{1}{4} \mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i \left[g_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu\nu} W^{\dagger\mu} V^{\nu}) + \kappa^V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{(\lambda^V)}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\rho} \right]$$

BSM:

ATLAS-CONF-2016-090

Data

SM (stat)

9000

- in fiducial phase space
- extrapolate to the total phase space

W+Z

32

√s = 13 TeV, 3.2 fb⁻¹

ATLAS

- inclusive cross section, and now differential

- explained by moving to NNLO

10²

10

Δσ^{fid.} [fb]

aTGC

 $g_1^V (W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W_{\mu\nu} W^{\dagger\mu} V^{\nu}) + \kappa^V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu} + \underbrace{\frac{\lambda^V}{2}}_{V \rho\mu} W^{\dagger}_{\rho\mu} W^{\mu}_{\nu} V^{\nu\rho}$ \mathcal{L}_{WWV} BSM:

Similar sensitivity from 8 TeV and 13 TeV data

 \rightarrow combine, 20% improvement in limits

New physics?

The reach of the LHC?

G. Hesketh 35 Standard Model Production Cross Section Measurements Status: August 2016

ATLAS in Run-2

Upgraded

New detectors in Run-2:

- Innermost pixel layer IBL, 3.4cm from interaction point
- Forward proton detectors (one arm in 2016, 210m from IP)

improved running at high luminosities and rates

Minimum Bias

n_{ch}

200

250

n_{ch}

Study recently extended to lower pT: pT>500 MeV \rightarrow pT > 100 MeV

Highlights differences between models

Results will be used to tune models

arXiv: 1606.01133

Inclusive W/Z

39

Use electron & muon decay modes as colourless probe of collision

- test pQCD, constrain proton structure

Measure cross-section ratios:

- fully cancel lumi uncertainties and partially systematics.
- precision < 2% will constrain PDFs

Prediction		Fiducial cross section
		$pp \rightarrow WW \rightarrow \ell\ell\nu\nu$ [fb]
Measured $\sigma_{\rm fid}^{e\mu}(WW)$	3	$374 \pm 7(\text{stat}) + 25_{-23}(\text{syst}) + 8_{-7}(\text{lumi})$
$\sigma(\text{nNLO}_{\text{fid},e\mu})$	PowHeg+Pythia8~NLO+NLL	311 ± 15
$\sigma(\text{approx. NNLO}_{\text{fid},e\mu})$	NNLO	335 ± 18
σ (approx. (NNLO + NNLL) _{fid,eµ}	Quoted from arXiv:1410.4745	358 ± 14
$\sigma(\text{NNLO } p_{\text{T}}\text{-Resum}_{\text{fid},e\mu})$	MC reweighted to NNLL resummed p	$P_{\rm T}({\rm WW}) \ 349 \pm 19$

• $nNLO = NLO qq \rightarrow WW + NNLO gg \rightarrow H \rightarrow WW + LO gg \rightarrow WW$ $NNLO = NNLO qq \rightarrow WW + NNLO gg \rightarrow H \rightarrow WW + LO gg \rightarrow WW$

ATLAS-CONF-2015-049