Grand Unification

(Beyond the Standard Model after LHC 13TeV)

G. Ross, Corfu, September 2016

Experimentally the Standard Model reigns supreme :

CKM FILLOT ICHEP 10

sol. w/ cos 28 < 0 (exc) at CL > 0.95)

0.8

1.0

But leaves many questions unanswered....

Most promising...new symmetries....

Mystery: Why are there so many types of particles?

Why do the particles have such a large range of masses?

Why does the pattern of particles repeat three times?

Why do neutrinos have mass at all (in the Standard Model they are massless)?

Characteristic multiplet structure

$SU(3) \times SU(2) \times U(1)$

Grand Unification $SU(5) \supset SU(3) \otimes SU(2) \otimes U(1)$

Georgi Glashow

Group of 5×5 complex unitary matrices with determinant 1

Grand Unification $SU(5) \supset SU(3) \otimes SU(2) \otimes U(1)$ $(\overline{5})_{La} : \bigcirc SU(3) \otimes SU(3) \otimes SU(2) \otimes U(1)$ $g_{d^c} + Q_{e^-} = 0$ $SU(2) \qquad Q_{d^c} = 1/3$

Remaining 10 states?

 $\frac{n(n-1)}{1 \times 2} = 10$

Gauge boson structure SU(5)

Group of 5×5 complex unitary matrices with determinant 1

50 - 25 - 1 = 24 independent matrices - adjoint representation

$$U = \exp\left(-i\sum_{i=1}^{24} \beta^{i}L^{i}\right), \qquad U^{\dagger}U = 1 \implies L^{i} \text{ Hermitian generators}$$
Covariant derivative: Gauge bosons V_{μ}^{a}
Define $\frac{1}{\sqrt{2}}V_{\mu} \equiv \frac{1}{2}\sum_{a=1}^{24}V_{\mu}^{a}L^{a}, \qquad (D_{\mu}\psi_{5})^{i} = \left[\delta_{j}^{i}\partial_{\mu} - \frac{ig}{2}\sum_{a=1}^{24}V_{\mu}^{a}(L^{a})_{j}^{i}\right]\psi_{5}^{i}$

$$V_{\mu} = \begin{bmatrix} G_{1}^{i} - \frac{2B}{\sqrt{30}} & G_{2}^{i} & G_{2}^{i} & \overline{X}_{1} & \overline{Y}_{1} \\ G_{1}^{2} & G_{2}^{2} - \frac{2B}{\sqrt{30}} & G_{3}^{2} & \overline{X}_{2} & \overline{Y}_{2} \\ G_{1}^{3} & G_{2}^{3} & G_{3}^{3} - \frac{2B}{\sqrt{30}} & \overline{X}_{3} & \overline{Y}_{3} \\ X_{1} & X_{2} & X_{3} & \frac{W_{\mu}^{3}}{\sqrt{2}} + \frac{3B}{\sqrt{30}} & W^{*} \\ Y_{1} & Y_{2} & Y_{3} & W^{-} & -\frac{W_{\mu}^{3}}{\sqrt{2}} + \frac{3B}{\sqrt{30}} \end{bmatrix}$$
Lepto-quark interactions

Spontaneous symmetry breaking

Grand Unification $SO(10) \supset SU(5) \supset SU(3) \otimes SU(2) \otimes U(1)$

Anomaly free

SO(10): Group of matrices R that leave invariant length of 10-dim vector

 $R^T R = RR^T = 1$ Adjoint representation $SO(n): n^2 - (n^2 + n)/2 = n(n-1)/2$ SO(10) 45 gauge bosons

SO(10): Group of matrices R^t that leave invariant length of 10-dim vector

 $R^T R = RR^T = 1$ Adjoint representation $O(n): n^2 - (n^2 + n)/2 = n(n-1)/2$ SO(10) 45 gauge bosons

Spinorial (16 dim) representation:

 $c.f. \ SO(3) \sim SU(2) \qquad \psi_{\alpha=1,2}, \quad R = e^{i\omega^{ab}\sigma_{ab}}, \quad \sigma_{ab} = \frac{1}{2}\varepsilon_{abc}\sigma_c \equiv \frac{i}{2}[\sigma_a,\sigma_b]$ $SO(10) \quad \chi_{16}^{\pm} = \psi_1 \times \psi_2 \times \psi_3 \times \psi_4 \times \psi_5 \quad \text{with} \quad \sum_{i=1}^5 \sigma_3^i = \pm 1$ χ_{24}^4

Outstanding Questions in Particle Physics *circa* 2016 ... there has never been a better time to be a particle physicist!

Higgs boson and EWSB

- m_H natural or fine-tuned ?
- → if natural: what new physics/symmetry?
- does it regularize the divergent V_LV_L cross-section at high $M(V_LV_L)$? Or is there a new dynamics?
- elementary or composite Higgs ?
- Is it alone or are there other Higgs bosons ?
- origin of couplings to fermions
- coupling to dark matter ?
- C does it violate CP ?
- cosmological EW phase transition

Dark matter:

- composition: WIMP, sterile neutrinos, axions, other hidden sector particles, ...
- One type or more ?
- Only gravitational or other interactions ?

The two epochs of Universe's accelerated expansion:

- primordial: is inflation correct ? which (scalar) fields? role of quantum gravity?
- □ today: dark energy (why is ∧ so small?) or gravity modification ?
 ICHEP 2016 - I. Shipsey

Quarks and leptons:

- why 3 families ?
- Image: Provide the second s
- **C** *CP* violation in the lepton sector
- C matter and antimatter asymmetry
- baryon and charged lepton number violation

Physics at the highest E-scales: how is gravity connected with the other forces ? do forces unify at high energy ?

Neutrinos:

- v masses and and their origin
- what is the role of H(125)?
- Majorana or Dirac ?
- CP violation
- □ additional species \rightarrow sterile v?

$$g_1(M_X) = g_2(M_X) = g_3(M_X) = g_5$$

Gauge Couplings

SM evolution of gauge couplings

$$\alpha_{i}^{-1}(\mu) = \alpha^{-1}(M_{X}) + \frac{1}{2\pi}b_{i}\ln\left(\frac{M_{X}}{\mu}\right) + \dots$$

$$b_{i}^{SM} = \begin{pmatrix} 0\\ -\frac{22}{3}\\ -11 \end{pmatrix} + N_{g}\begin{pmatrix} \frac{4}{3}\\ \frac{4}{3}\\ \frac{4}{3} \end{pmatrix} + H\begin{pmatrix} \frac{1}{10}\\ \frac{1}{6}\\ 0 \end{pmatrix}$$

 $\overline{M}_{X} \sim 10^{14} GeV$

Outstanding Questions in Particle Physics circa 2016

... there has never been a better time to be a particle physicist!

Higgs boson and EWSB

- m_H natural or fine-tuned ?
- \rightarrow if natural: what new physics/symmetry?
- does it regularize the divergent V_LV_L cross-section at high $M(V_LV_L)$? Or is there a new dynamics?
- elementary or composite Higgs ?
- Is it alone or are there other Higgs bosons ?
- origin of couplings to fermions
- coupling to dark matter ?
- C does it violate CP ?

Dark matter:

cosmological EW phase transition

Quarks and leptons:

- Why 3 families ?
- masses and mixing
- **C** *CP* violation in the lepton sector
- **W** matter and antimatter asymmetry
- baryon and charged lepton number violation

Physics at the highest E-scales:

- W how is gravity connected with the other forces ?
- do forces unify at high energy ?

Composition: WIMP, sterile neutrinos,

- axions, other hidden sector particles, ..
- one type or more ?
- Only gravitational or other interactions ?

The two epochs of Universe's accelerated expansion:

- primordial: is inflation correct ? which (scalar) fields? role of quantum gravity?
- □ today: dark energy (why is ∧ so small?) or gravity modification ?
 ICHEP 2016 – I. Shipsey

Neutrinos:

- **V** masses and and their origin
- \mathbf{V} what is the role of H(125)?
- C Majorana or Dirac ?
- **CP** violation
- \Box additional species \rightarrow sterile v?

The Standard model as an effective field theory...

A renormalisable, spontaneously broken, local gauge quantum field theory

$$L_{eff}\left(\phi_{light}, \psi_{heavy}, M, E\right) \xrightarrow{E \ll M} L_{eff}\left(\phi_{light}, E\right) + O\left(\frac{1}{M}\right)$$

• Renormalisable $D \le 4 + O(1 / M)$

$$L_{effective}^{SM} \supset M_A A^{\mu} + m_f f_R$$

$$M_A, m_f \ll M_X, M_{Planck}$$

Fermions chiralVector gauge bosons

(Massless - vectorlike couplings; massive - chiral couplings)

The Standard model as an effective field theory...

A renormalisable, spontaneously broken, local gauge quantum field theory

$$L_{eff}\left(\phi_{light}, \psi_{heavy}, M, E\right) \xrightarrow{E \ll M} L_{eff}\left(\phi_{light}, E\right) + O\left(\frac{1}{M}\right)$$

• Renormalisable $D \le 4 + O(1 / M)$

$$L_{effective}^{SM} \supset M_A \swarrow A^{\mu} + m_f \swarrow f_R$$

$$M_A, m_f \ll M_X, M_{Planck}$$

Fermions chiralVector gauge bosons(Massless - vectorlike couplings; massive - chiral couplings)Light Higgs ? $L_{effective}^{SM} \supset M_{u}^{2} |H|^{2}$

The Standard model as an effective field theory...

A renormalisable, spontaneously broken, local gauge quantum field theory

$$L_{eff}\left(\phi_{light}, \psi_{heavy}, M, E\right) \xrightarrow{E \ll M} L_{eff}\left(\phi_{light}, E\right) + O\left(\frac{1}{M}\right)$$

• Renormalisable $D \le 4 + O(1 / M)$

$$L_{effective}^{SM} \supset M_A A^{\mu} + m_f f_R$$

Vector gauge bosons

Fermions chiral

$$M_A, m_f \ll M_X, M_{Planck}$$

(Massless - vectorlike couplings; massive - chiral couplings)

• Light Higgs X The Hierarchy problem $H - \underbrace{\begin{pmatrix} t \\ \bar{t} \end{pmatrix}}_{t} H = \delta^{t} M_{H}^{2} \simeq -\frac{h_{t}^{2}}{8\pi^{2}} \int_{0}^{\Lambda^{2}} dk^{2} = \frac{h_{t}^{2}}{8\pi^{2}} \Lambda^{2} + O(m_{t}^{2} \ln(\frac{m_{t}}{\Lambda}))$

Field theory: δm^2 not measureable ...only $m^2 = m_0^2 + \delta m^2$ "physical"

Hierarchy problem?

$$h \begin{pmatrix} t, W, \\ Z, h \end{pmatrix} h$$

$$\delta m_h^2 = \frac{3G_F}{4\sqrt{2}\pi^2} \left(4m_t^2 - 2m_W^2 - m_Z^2 - m_h^2\right) \Lambda^2 = \left(\frac{\Lambda}{500 GeV}\right)^2$$

Field theory: δm^2 not measureable

...only
$$m^2 = m_0^2 + \delta m^2$$
 "physical"

GUTS:

$$\delta m_h^2 \propto M_X^2 \ln \left(\frac{Q^2 + M_X^2}{\Lambda^2} \right)$$

h(Q) (X) h(Q)

- "real hierarchy problem"

Perhaps a huge hint?

of something "BSM"?

no shortage of ideas

Categories of BSM

Supersymmetric theories - a Bose-like top

BSM

Little Higgs-like theories – a Vector-like top

Composite Higgs – a Cooper Pair-lik<u>e</u> H

Extra dimensions

Categories of BSM

Supersymmetric theories – a Bose-like top

BSM

SUSY GUTS

Little Higgs-like theories – a Vector-like top

Composite Higgs – a Cooper Pair-like H

Extra dimensions

SUSY GUTS

$$G_{GUT} \times G_{Flavour} \times (N = 1 \text{ SUSY})$$
Supermultiplets

SO(10): V_{45} Vector +3 φ_{16} chiral + H_{10} chiral +...

SUSY gauge coupling unification

$$\alpha_{i}^{-1}(\mu) = \alpha^{-1}(M_{X}) + \frac{1}{2\pi}b_{i}\ln\left(\frac{M_{X}}{\mu}\right) + \dots$$

$$b_{i}^{SM} = \begin{pmatrix} 0 \\ -\frac{22}{3} \\ -11 \end{pmatrix} + N_{g}\begin{pmatrix} \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \end{pmatrix} + H\begin{pmatrix} \frac{1}{10} \\ \frac{1}{6} \\ 0 \end{pmatrix}$$

$$b_{i}^{MSSM} = \begin{pmatrix} 0 \\ -6 \\ -9 \end{pmatrix} + N_{g} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + H \begin{pmatrix} \frac{3}{10} \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

?

SUSY gauge coupling unification

 $\sin^2 \theta_W = 0.2334 \pm 0.0025 - 0.25(\alpha_s - 0.119) = 0.2311 \pm 0.0007 \quad (Expt)$ $\alpha_s = 0.134 \pm 0.01 - 4(\sin^2 \theta_W - 0.2334) = 0.119 \pm 0.01 \quad (Expt)$

 $\sin^2 \theta_W = 0.23116(12) \quad (Expt)$

$$\alpha_s = 0.134 \pm 0.01 - 4(\sin^2 \theta_W - 0.23116)$$
 c.f. 0.1184(7) (Expt)

Gauge unification - Heterotic String

$$\begin{array}{c}
I \\
L_{eff}^{HS} = \int d^{10}x \sqrt{g} e^{-\phi} \left(\frac{4}{\alpha'^4}R + \frac{k_i}{\alpha'^3}TrF_i^2 + \ldots\right) \\
\int d^4x V \quad \alpha_{10}^{-1} \quad \alpha' = 1/M_{string}^2 \text{ only scale} \\
G_N = \frac{\alpha_{10}\alpha'^4}{64\pi V}, \quad \alpha_{String} = \frac{\alpha_{10}\alpha'^3}{16\pi V} \quad \bullet \quad G_N = \frac{\alpha_{String}\alpha'}{4} \\
\hline
\frac{1}{g_i^2(M_Z)} = \frac{k_i}{g_{string}^2} + b_i \ln\left(\frac{M_{string}}{M_Z}\right) + \Delta_i \\
\end{array}$$

$$\begin{array}{c}
M_{string} = g_{string} \cdot M_{Planck} = 3.6 \times 10^{17} \, GeV \quad c.f \cdot M_U^{"expt"} = (2.6 \pm 2) \cdot 10^{16} \, GeV
\end{array}$$

Mystery: Why are there so many types of particles?

Why do the particles have such a large range of masses?

Why does the pattern of particles repeat three times?

Why do neutrinos have mass at all (in the Standard Model they are massless)?
DATA :

$$16\pi^{2}\frac{dg_{t}}{dt} = g_{t}\left[\frac{9}{2}g_{t}^{2} - 8g_{c}^{2} - \kappa_{t}(t)\right], \qquad \kappa_{t}(t) = \frac{9}{4}g^{2}(t) + \frac{17}{12}g'^{2}(t)$$

$$16\pi^{2}\frac{d}{dt}\left[\ln(g_{t}/g_{c})\right] = \frac{9}{2}g_{t}^{2} - (8 - b_{0})g_{c}^{2}, \qquad g_{t}^{2} = \frac{2}{9}(8 - b_{0})g_{c}^{2}|_{\text{IRFP}}$$

-

-

 $\Rightarrow m_t = 110 GeV$

$$16\pi^{2}\frac{dg_{t}}{dt} = g_{t}\left[\frac{9}{2}g_{t}^{2} - 8g_{c}^{2} - \kappa_{t}(t)\right], \qquad \kappa_{t}(t) = \frac{9}{4}g^{2}(t) + \frac{17}{12}g'^{2}(t)$$

$$16\pi^{2}\frac{d}{dt}\left[\ln(g_{t}/g_{c})\right] = \frac{9}{2}g_{t}^{2} - (8 - b_{0})g_{c}^{2}, \qquad g_{t}^{2} = \frac{2}{9}(8 - b_{0})g_{c}^{2}|_{\text{IRFP}}$$

-

-

 $\Rightarrow m_t = 110 GeV$...but

$$16\pi^{2}\frac{dg_{t}}{dt} = g_{t}\left[\frac{9}{2}g_{t}^{2} - 8g_{c}^{2} - \kappa_{t}(t)\right], \qquad \kappa_{t}(t) = \frac{9}{4}g^{2}(t) + \frac{17}{12}g'^{2}(t)$$

$$16\pi^{2}\frac{d}{dt}\left[\ln(g_{t}/g_{c})\right] = \frac{9}{2}g_{t}^{2} - (8 - b_{0})g_{c}^{2}, \qquad g_{t}^{2} = \frac{2}{9}(8 - b_{0})g_{c}^{2}|_{\text{IRFP}}$$

-

 $\Rightarrow m_t = 110 GeV \dots$ but

$$\begin{split} \mathcal{D}\lambda &= 4\lambda^2 + 12\lambda g_t^2 - 36g_t^4 - 3\lambda(3g^2 + g'^2) \\ &+ \frac{9}{4} - [2g^4 + (g^2 + g'^2)^2], \end{split}$$

$$m_{\rm H} = (\frac{2}{3} \lambda^{\rm eff} v^2)^{1/2} = 72 \,\,{\rm GeV}$$

Mass matrix structure:

$$L_{Yukawa} = Y_{ij}^{u} Q^{i} u^{c,j} H + Y_{ij}^{d} Q^{i} d^{c,j} \overline{H}$$

$$M_{ij}^{u} = Y_{ij}^{u} < H^{0} > \qquad M_{ij}^{d} = Y_{ij}^{d} < \overline{H}^{0} >$$

$$M_{ij}^{u} = V_{L}^{d} M_{Diag}^{u} V_{R}$$

$$M^{d} = U_{L}^{\dagger} \overline{M_{Diag}^{d}} U_{R}$$

$$\underline{V_{CKM}} = V_{L}^{\dagger} U_{L}$$

The data for quarks is *consistent* with a very symmetric structure :

$$\frac{M^{d,u}}{m^{b,t}} \simeq \begin{pmatrix} <\varepsilon^4 & \varepsilon^3 & \varepsilon^3 \\ \varepsilon^3 & \varepsilon^2 & \varepsilon^2 \\ \varepsilon^3 & \varepsilon^2 & 1 \end{pmatrix} \qquad \varepsilon^{d} = 0.15$$

O(1) coefficients suppressed

 $= 0.213 - 0.223, \delta = 90^{\circ}$

$$q \leftrightarrow l$$
 symmetry?

Charged leptons are consistent with a similar form

$$\frac{M^{d,l,u}}{m^{b,\tau,t}} \approx \begin{pmatrix} <\varepsilon^4 & \varepsilon^3 & \varepsilon^3 \\ \varepsilon^3 & a\varepsilon^2 & a\varepsilon^2 \\ \varepsilon^3 & a\varepsilon^2 & 1 \end{pmatrix} \qquad \begin{array}{c} \varepsilon^d = 0.15, \ a^d = 1 \\ \varepsilon^1 = 0.15, \ a^1 = -3 \\ \varepsilon^u = 0.05, \ a^u = 1 \end{pmatrix}$$

SU(5): Charged fermion masses

 $\overline{5} \times 10 = 5 + \overline{45}$ $10 \times 10 = \overline{5} + 45 + 50$ $\overline{5} \times \overline{5} = \overline{10} + \overline{15}$ $L_{Yukawa}^{5} = \left(\psi_{Ri\alpha}^{\dagger}\right) m_{ij}^{D} \chi_{Lj}^{\alpha\beta} H_{\beta}^{\dagger} - \frac{1}{4} \varepsilon_{\alpha\beta\gamma\delta\varepsilon} \left(\chi^{T}\right)_{Li}^{\alpha\beta} \sigma^{2} m_{ij}^{U} \chi_{Lj}^{\gamma\delta} H^{\varepsilon} + h.c.$

Charged fermion masses

 $\overline{5} \times 10 = 5 + \overline{45}$ $10 \times 10 = \overline{5} + 45 + 50$ $\overline{5} \times \overline{5} = \overline{10} + \overline{15}$ $L^{5}_{Yukawa} = \left(\psi^{\dagger}_{Ri\alpha}\right) m^{D}_{ij} \chi^{\alpha\beta}_{Lj} H^{\dagger}_{\beta} - \frac{1}{4} \varepsilon_{\alpha\beta\gamma\delta\varepsilon} \left(\chi^{T}\right)^{\alpha\beta}_{Li} \sigma^{2} m^{U}_{ij} \chi^{\gamma\delta}_{Lj} H^{\varepsilon} + h.c.$

After diagonalising down quark mass matrix:

$$m_d = m_e^{\times}$$
$$m_s = m_\mu^{\times}$$
$$m_b = m_\tau^{\times}$$

Charged fermion masses

 $\overline{5} \times 10 = 5 + \overline{45}$ $10 \times 10 = \overline{5} + 45 + 50$ $\overline{5} \times \overline{5} = \overline{10} + \overline{15}$ $L_{Yukawa}^{5} = (\psi_{Ri\alpha}^{\dagger}) m_{ij}^{D} \chi_{Lj}^{\alpha\beta} H_{\beta}^{\dagger} - \frac{1}{4} \varepsilon_{\alpha\beta\gamma\delta\epsilon} (\chi^{T})_{Li}^{\alpha\beta} \sigma^{2} m_{ij}^{U} \chi_{Lj}^{\gamma\delta} H^{\epsilon} + h.c.$ $L_{Y}^{45} = (\psi_{Ri\alpha}^{\dagger}) m_{ij}^{d} \chi_{Lj}^{\beta\gamma} H_{\beta\gamma}^{\dagger\alpha} + \varepsilon_{\alpha\beta\gamma\rho\tau} (\chi^{T})_{Li}^{\alpha\beta} \sigma^{2} m_{ij}^{u} \psi_{Lj}^{\gamma\delta} H_{\delta}^{\rho\tau} + h.c.$

$$-3m_d = m_e^{\times}$$
$$-3m_s = m_{\mu}^{\times}$$
$$-3m_b = m_{\tau}^{\times}$$

 $\langle H_a^{b5} \rangle = \mathrm{v}_{45} \left(\delta_a^b - 4 \delta_a^4 \delta_4^b \right), a, b = 1..4$

SU(2)XU(1) invariant component

GUT relations

Georgi-Jarlskog $(L^5)_{33+12+21} + (L^{45})_{22}$

GUT relations

$$m_b = 3m_\tau$$

$$m_s = 3.\frac{1}{3}.m_\mu$$

$$m_d = 3.3.m_e$$

Parameters	Input SUSY Parameters					
$\tan \beta$	1.3	10	38	50	38	38
γ_b	0	0	0	0	-0.22	+0.22
γ_d	0	0	0	0	-0.21	+0.21
γ_t	0	0	0	0	0	-0.44
Parameters	Corresponding GUT-Scale Parameters with Propagated Uncertainty					
$y^t(M_X)$	6^{+1}_{-5}	0.48(2)	0.49(2)	0.51(3)	0.51(2)	0.51(2)
$y^b(M_X)$	$0.0113^{+0.0002}_{-0.01}$	0.051(2)	0.23(1)	0.37(2)	0.34(3)	0.34(3)
$y^{\tau}(M_X)$	0.0114(3)	0.070(3)	0.32(2)	0.51(4)	0.34(2)	0.34(2)
$(m_u/m_c)(M_X)$	0.0027(6)	0.0027(6)	0.0027(6)	0.0027(6)	0.0026(6)	0.0026(6)
$(m_d/m_s)(M_X)$	0.051(7)	0.051(7)	0.051(7)	0.051(7)	0.051(7)	0.051(7)
$(m_e/m_\mu)(M_X)$	0.0048(2)	0.0048(2)	0.0048(2)	0.0048(2)	0.0048(2)	0.0048(2)
$(m_c/m_t)(M_X)$	$0.0009^{+0.001}_{-0.00006}$	0.0025(2)	0.0024(2)	0.0023(2)	0.0023(2)	0.0023(2)
$(m_s/m_b)(M_X)$	0.014(4)	0.019(2)	0.017(2)	0.016(2)	0.018(2)	0.010(2)
$(m_{\mu}/m_{\tau})(M_X)$	0.059(2)	0.059(2)	0.054(2)	0.050(2)	0.054(2)	0.054(2)
$A(M_X)$	$0.56^{+0.34}_{-0.01}$	0.77(2)	0.75(2)	0.72(2)	0.73(3)	0.46(3)
$\lambda(M_X)$	0.227(1)	0.227(1)	0.227(1)	0.227(1)	0.227(1)	0.227(1)
$\bar{\rho}(M_X)$	0.22(6)	0.22(6)	0.22(6)	0.22(6)	0.22(6)	0.22(6)
$\bar{\eta}(M_X)$	0.33(4)	0.33(4)	0.33(4)	0.33(4)	0.33(4)	0.33(4)
$J(M_X) imes 10^{-5}$	$1.4^{+2.2}_{-0.2}$	2.6(4)	2.5(4)	2.3(4)	2.3(4)	1.0(2)
Parameters	Comparison with GUT Mass Ratios					
$(m_b/m_\tau)(M_X)$	$1.00^{+0.04}_{-0.4}$	0.73(3)	0.73(3)	0.73(4)	1.00(4)	1.00(4)
$(3m_s/m_\mu)(M_X)$	$0.70^{+0.8}_{-0.05}$	0.69(8)	0.69(8)	0.69(8)	0.9(1)	0.6(1)
$(m_d/3 m_e)(M_X)$	0.82(7)	0.83(7)	0.83(7)	0.83(7)	1.05(8)	0.68(6)
$\left(\frac{\det Y^d}{\det Y^e}\right)(M_X)$	$0.57\substack{+0.08 \\ -0.26}$	0.42(7)	0.42(7)	0.42(7)	0.92(14)	0.39(7)

Table 2: The mass parameters continued to the GUT-scale M_X for various values of $\tan \beta$ and threshold corrections $\gamma_{t,b,d}$. These are calculated with the 2-loop gauge coupling and 2-loop Yukawa coupling RG equations assuming an effective SUSY scale $M_S = 500$ GeV.

Neutrinos ???

$$L_{eff}^{v} = m_{3} \,\overline{\phi}_{23}^{i} v_{i} \overline{\phi}_{23}^{j} v_{j} + m_{2} \,\overline{\phi}_{123}^{i} v_{i} \overline{\phi}_{123}^{j} v_{j}$$
$$< \overline{\phi}_{23} >^{i} = (0, 1, -1), \quad < \overline{\phi}_{123} >^{i} = (1, 1, 1)$$

Can one have a unified description of quark, charged lepton and neutrinos?

c.f.
$$L_{Dirac}^{q,l} = m_{t,b,l} \,\overline{\phi}_3^i \psi_i \,\overline{\phi}_3^j \psi_j^c + \dots \qquad <\phi_3 >^i = (0,0,1) \quad ???$$

Neutrinos ???

$$L_{eff}^{v} = m_{3} \,\overline{\phi}_{23}^{i} v_{i} \overline{\phi}_{23}^{j} v_{j} + m_{2} \,\overline{\phi}_{123}^{i} v_{i} \overline{\phi}_{123}^{j} v_{j}$$

$$< \overline{\phi}_{23} >^{i} = (0, 1, -1), \quad < \overline{\phi}_{123} >^{i} = (1, 1, 1)$$

See-Saw

Quarks, charged leptons, neutrinos can have similar Dirac mass :

$$L_{Dirac}^{q,l,v} = \alpha^{q,l,v} \psi_i \overline{\phi}_3^i \psi_j^c \overline{\phi}_3^j + \beta^{q,l,v} \left(\psi_i \overline{\phi}_{123}^i \psi_j^c \overline{\phi}_{23}^j + \psi_i \overline{\phi}_{23}^i \psi_j^c \overline{\phi}_{123}^j \right) + \gamma^{q,l} \psi_i \overline{\phi}_{23}^i \psi_j^c \overline{\phi}_{23}^j \Sigma \quad \alpha > \beta$$

$$\frac{M^{Dirac}}{m_3} = \begin{pmatrix} 0 & \varepsilon^3 & -\varepsilon^3 \\ \varepsilon^3 & a\varepsilon^2 + \varepsilon^3 & -a\varepsilon^2 + \varepsilon^3 \\ -\varepsilon^3 & -a\varepsilon^2 + \varepsilon^3 & 1 \end{pmatrix} \quad \varepsilon^{d} = 0.15, \ a^d = 1 \\ \varepsilon^1 = 0.15, \ a^e = -3 \\ \varepsilon^u = 0.05, \ a^u = 1 \\ \varepsilon^v = 0.05, \ a^v = 0 \end{pmatrix} \quad (\Sigma) \approx B - L + 2T_3^R$$

"See-saw" with sequential domination
$$M_{\nu} = M_D^{\nu} M_M^{-1} M_D^{\nu T}$$
 Minkowski
 $M_{\nu} \approx \begin{pmatrix} M_1 & & \\ & M_2 & \\ & & & M_3 \end{pmatrix}$ $M_1 \ll M_2 \ll M_3$ $M_1 \ll M_2 \ll M_3$ $M_1 \ll V_L$ Minkowski
 $M_{\nu} \approx \begin{pmatrix} M_1 & & & \\ & M_2 & & & \\ & & & & & V_L & & V_L \end{pmatrix}$

$$L_{Dirac}^{v} = \alpha \, \psi_{i} \overline{\phi}_{3}^{i} \psi_{j}^{c} \overline{\phi}_{3}^{j} + \beta \left(\psi_{i} \overline{\phi}_{123}^{i} \psi_{j}^{c} \overline{\phi}_{23}^{j} + \psi_{i} \overline{\phi}_{23}^{i} \psi_{j}^{c} \overline{\phi}_{123}^{j} \right) \quad \alpha > \beta$$

$$\mathcal{L}_{eff}^{v} = \frac{\beta^{2}}{M_{1}} \psi_{i} \phi_{123}^{i} \psi_{j} \phi_{123}^{j} + \frac{\beta^{2}}{M_{2}} \psi_{i} \phi_{23}^{i} \psi_{j} \phi_{23}^{j} + \frac{(\alpha + \beta)^{2}}{M_{3}} \psi_{i} \phi_{3}^{i} \psi_{j} \phi_{3}^{j}$$

• "See-Saw" with sequential domination
$$M_{v} = M_{D}^{v} M_{M}^{-1} M_{D}^{vT}$$
 Minkowski
 $M_{M} \approx \begin{pmatrix} M_{1} & & & \\ & M_{2} & & \\ & & M_{3} \end{pmatrix}$ $M_{1} << M_{2} << M_{3}$
 $M_{2} << M_{3}$
 $M_{1} << M_{2} << M_{3}$
 $M_{2} << M_{2} << M_{3}$
 $M_{2} << M_{3} <- M_{3} <- M_{3}$
 $M_{2} << M_{3} <- M$

Origin of fermion mass structure?

Family symmetry

Non-Abelian family symmetry

Promote ϕ_i to fields transforming under SU(3)_{family}

$$\frac{\phi_3}{M} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \frac{\phi_{23}}{M} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \varepsilon$$

Messenger mass

 $\frac{\phi_{123}}{M} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \varepsilon^2$

...can differ for u,d,l,v

Family symmetry

Non-Abelian family symmetry

Promote ϕ_i to fields transforming under SU(3)_{family}

$$\frac{\phi_3}{M} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \frac{\phi_{23}}{M} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \varepsilon \qquad \frac{\phi_{123}}{M} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \varepsilon^2$$

Vacuum alignment ???

Family symmetry

Non-Abelian family symmetry

Promote ϕ_i to fields transforming under SU(3)_{family}

$$\frac{\phi_3}{M} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \frac{\phi_{23}}{M} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \varepsilon \qquad \frac{\phi_{123}}{M} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \varepsilon^2$$

Vacuum alignment ??? \Rightarrow Discrete non Abelian symmetry

Non Abelian discrete symmetries

e.g.
$$Z_3 \ltimes Z_n$$

 $\phi_i \quad Z_3 \phi_i \quad Z_n \phi_i$
 $\phi_1 \quad \rightarrow \phi_2 \quad \rightarrow \quad \alpha \quad \phi_1$
 $\phi_2 \quad \rightarrow \phi_3 \quad \rightarrow \quad \alpha^2 \phi_2$
 $\phi_3 \quad \rightarrow \phi_1 \quad \rightarrow \quad \alpha^{-3} \phi_3$

 $\alpha^n = 1$

$$\Delta(3n^2) \qquad n=2, \quad \Delta(12) \equiv A_4$$
$$n=3, \quad \Delta(27)$$

Non Abelian discrete symmetries

e.g.
$$Z_3 \ltimes Z_n$$

$$\begin{array}{c} \phi_i & Z_3 \phi_i & Z'_n \phi_i \\ \hline \phi_1 & \to \phi_2 & \to & \alpha & \phi_1 \\ \phi_2 & \to \phi_3 & \to & \alpha^2 \phi_2 \\ \phi_3 & \to & \phi_1 & \to & \alpha^{-3} \phi_3 \end{array} \qquad \alpha^n = 1$$

Choice of discrete symmetry

• Vacuum structure :
$$Z_3 \ltimes Z_n \rightarrow \begin{cases} Z_3, \langle \phi \rangle = (1,1,1) & \lambda > 0 \\ Z_n, \langle \phi \rangle = (0,0,1) & \lambda < 0 \end{cases}$$

$$V(\phi) = -m^2 \phi^{\dagger i} \phi_i + \dots + \lambda m^2 \phi^{\dagger i} \phi_i \phi^{\dagger i} \phi_i$$

$$\Delta(27) \times U(1)$$

$$Q$$

$$S, \theta_{23} + 1$$

$$\Sigma, \theta_{123} - 2$$

$$L^{D,eff}_{a,mass} = \Psi_i \left(\frac{1}{M_{3,a}^2} \theta_3^i \theta_3^j + \frac{1}{M_{23,a}^3} \theta_{23}^i \theta_{23}^j \Sigma + \frac{1}{M_{123,a}^3} (\theta_{123}^i \theta_{23}^j + \theta_{23}^i \theta_{123}^j) S \right) \Psi_j^c H_5, a = u, d, l, v$$

$$\langle \Sigma \rangle \propto B - L + 2T_3^R$$

$$L_{v \ mass}^{D, eff} = \Psi_{i} \left(\frac{1}{M_{3,a}^{2}} \theta_{3}^{i} \theta_{3}^{j} + \frac{1}{M_{123,a}^{3}} (\theta_{123}^{i} \theta_{23}^{j} + \theta_{23}^{i} \theta_{123}^{j}) S \right) \Psi_{j}^{c} H_{5}$$

$$L_{Majorana \ mass}^{v} = \Psi_{i}^{c} \left(\frac{1}{M} \phi^{i} \phi^{j} + \frac{1}{M^{4}} [\alpha \theta_{23}^{i} \theta_{23}^{j} (\phi^{a} \phi^{a} \theta_{123}^{a}) + \beta (\theta_{23}^{i} \theta_{123}^{j} + \theta_{123}^{i} \theta_{23}^{j}) (\phi^{a} \phi^{a} \theta_{23}^{a}) \right] \Psi_{j}^{c}$$

$$\left\langle \phi \right\rangle |_{\Delta L=1} = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) M$$

$$\Delta(27) \times U(1)$$

$$Q$$

$$S, \theta_{23} + 1$$

$$\Sigma, \theta_{123} - 2$$

$$L^{D,eff}_{a,mass} = \psi_i \left(\frac{1}{M_{3,a}^2} \theta_3^i \theta_3^j + \frac{1}{M_{23,a}^3} \theta_{23}^i \theta_{23}^j \Sigma + \frac{1}{M_{123,a}^3} (\theta_{123}^i \theta_{23}^j + \theta_{23}^i \theta_{123}^j) S \right) \psi_j^c H_5, a = u, d, l, v$$

$$\langle \Sigma \rangle \propto B - L + 2T_3^R$$

$$L_{v\ mass}^{D,eff} = \Psi_{i} \left(\frac{1}{M_{3,a}^{2}} \theta_{3}^{i} \theta_{3}^{j} + \frac{1}{M_{123,a}^{3}} (\theta_{123}^{i} \theta_{23}^{j} + \theta_{23}^{i} \theta_{123}^{j}) S \right) \Psi_{j}^{c} H_{5}$$

$$L_{Majorana\ mass}^{v} = \Psi_{i}^{c} \left(\frac{1}{M} \theta^{i} \theta^{j} + \frac{1}{M^{4}} [\alpha \theta_{23}^{i} \theta_{23}^{j} (\theta^{a} \theta^{a} \theta_{123}^{a}) + \beta (\theta_{23}^{i} \theta_{123}^{j} + \theta_{123}^{i} \theta_{23}^{j}) (\theta^{a} \theta^{a} \theta_{23}^{a}) \right] \Psi_{j}^{c}$$

 m^2

Ve

ν_u

$$\sin \theta_{13} |_{v} = \sqrt{\frac{m_{2}}{3m_{1}}} = 0.24$$

$$\delta \sin \theta_{13} |_{lepton} = \frac{\sin \theta_{c}}{3} = 0.075$$

$$\int c.f. \ 0.15 |_{exp}$$

$$\sin^2 \theta_{12} = \frac{1}{3}, \quad c.f. \quad \sin^2 \theta_{12} \mid_{\exp} = 0.308^{+0.013}_{-0.012}$$

-

$$\sin \theta_{13} |_{v} = \sqrt{\frac{m_{2}}{3m_{1}}} = 0.24$$

$$\delta \sin \theta_{13} |_{lepton} = \frac{\sin \theta_{c}}{3} = 0.075$$

$$\frac{\sin^2 \theta_{12} = \frac{1}{3}}{\sin \theta_{23}} = \frac{1}{\sqrt{2}} - e^{i\delta} \sin \theta_{13} \Big|_{v} = 0.308^{+0.013}_{-0.012}$$
$$\sin \theta_{23} = \frac{1}{\sqrt{2}} - e^{i\delta} \sin \theta_{13} \Big|_{v} = c.f. \quad \sin^2 \theta_{23} = 0.574^{+0.026}_{-0.144}$$
$$75^{0} < \delta < 138 \text{ or } 222^{0} < \delta < 285^{0}.$$

Long Baseline Experiments

Long baseline oscillation experiments: an international campaign to test the 3-flavor paradigm, measure CP violation and go beyond.

Generation 2 expts

in the leptonic sector

By combining with SK in a global fit Marrone @ Neutrino 2016

CP conservation excluded at >2 σ

SUSY GUTS - Nucleon decay

Coloured Higgs mediation

$$\begin{split} SU(5) & \xrightarrow{M_X} SU(3) \times SU(2) \times U(1) \xrightarrow{M_W} SU(3) \times U(1) \\ \langle \Sigma \rangle &= \mathrm{v}_3 \mathrm{Diagonal}(2,2,2,-3,-3) \\ \left\langle H_{\overline{5}} \rangle &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ v \end{pmatrix} & \overset{\mathrm{fr}}{\overset{\mathrm{hr}}}{\overset{\mathrm{hr}}}}}}}{\overset{\mathrm{hr}}{\overset{\mathrm{hr}}{\overset{\mathrm{hr}}{\overset{\mathrm{hr}}{\overset{\mathrm{hr}}}}}}}}}}}}}}}}}}}} \right) SU(3) \times U(1) \\ \langle U_{H_{\overline{5}}}} \rangle = \left(1 \frac{1}{2M_T^2} (QY_{10}Q) (QY_5^TL) - \left(\frac{1}{2}QY_{10}Q + u^cY_{10}e^c} \right) (u^cY_{10}e^c)} (u^cY_{10}e^c)} \right}}{\overset{\mathrm{hr}}}}}}} \right) \\} \\ \\ \mathsf{hr}}_{H_{\overline{5}}}} \rangle = \left(1 \frac{1}{2M_T^2} (QY_{10}Q) (QY_5^TL) + \frac{1}{M_T^2} (d^cY_5u^c) (u^cY_{10}e^c)} (u^cY_{10}e^c)})}}}}{\overset{\mathrm{hr}}}}}} \right)$$

Doublet -triplet splitting

Missing doublet mechanism

No (1,2) component

 $\Theta_{50} = (8,2) + (6,3) + (\overline{6},1) + (3,2) + (\overline{3},1) + (1,1)$
Doublet -triplet splitting

Missing doublet mechanism

No (1,2) component

 $\Theta_{50} = (8,2) + (6,3) + (\overline{6},1) + (3,2) + (\overline{3},1) + (1,1)$

$$P_{MD} = b \Theta \Sigma_{75} H_u + b' \overline{\Theta} \Sigma_{75} H_d + \widetilde{M} \overline{\Theta} \Theta$$

$$\left< \Sigma_{75} \right> \propto M$$
 breaks SU(5) to SM

$$P_{MD} \supset bM \Theta_3 H_{uT} + b'M \overline{\Theta}_3 H_{dT} + \widetilde{M} \overline{\Theta}_3 \Theta_3$$

Only Higgs colour triplets get mass $m_T \propto \frac{M^2}{\widetilde{M}}$

Doublet -triplet splitting

Higher dimensions (String unification)

Breit, Ovrut, Segre

Doublet -triplet splitting

Higher dimensions (String unification)

Breit, Ovrut, Segre

e.g.
$$SU(5)$$
: $H = Z_3$, $\overline{H} = Diag(\alpha, \alpha, \alpha, 1, 1)$, $\alpha = e^{2i\pi/3}$
 $\left(H \otimes \overline{H}\right)$: $(1 \otimes \overline{5}) \rightarrow \left(\begin{array}{c}H^-\\\overline{H}^0\end{array}\right)_1$, $(3,\overline{5}) \rightarrow \left(\begin{array}{c}e\\v_e\end{array}\right)_1 \oplus \left(\begin{array}{c}d^c\\d^c\\d^c\end{array}\right)_{\alpha^2}$, Matter $\rightarrow (3,\overline{5}+10)$

SUSY GUTS - Nucleon decay

Gauge boson and Higgsino mediation

Gauge boson and Higgsino mediation

D=5 proton decay amplitude

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$ $+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$

 $+\frac{1}{M}\left(QQQL+QQQH_{d}+Q\overline{U}\overline{E}H_{d}+...(LLHH)\right)$

$$M_{\tilde{H}} > 10^{27} GeV, 10^9 M_{Planck}$$
???

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$ $+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$ $+ \frac{1}{M} \left(Q Q Q L + Q Q Q H_{d} + Q \overline{U} \overline{E} H_{d} + \dots (\mathcal{L}) \right)$

R-parity: Z_2

SUSY states odd

 Z_4^R special:

MSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

N	q_{10}	$q_{\overline{5}}$	q_{H_u}	q_{H_d}	$q_{\scriptscriptstyle N}$
4	1	1	0	0	2

Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg, Vaudrevange Babu, Gogoladze, Wang

Nucleon decay outlook

• Nucleon decay D=6 operators

$$\tau(p \to \pi^{0}e^{+}) = \left(\frac{M_{\rm GUT}}{10^{16} \text{ GeV}}\right)^{4} \left(\frac{1/35}{\alpha_{\rm GUT}}\right)^{2} \left(\frac{0.015 \text{ GeV}^{3}}{\alpha_{N}}\right)^{2} \left(\frac{5}{A_{L}}\right)^{2} 4.4 \times 10^{34} \text{ yr.}$$
Hadronic matrix element

$$\tau_{p \to e^{+}\pi^{0}}^{SuperK} > 2 \times 10^{34} \text{ yrs}$$
Giudice, Romanino

$$M_{\rm GUT} > \left(\frac{\alpha_{\rm GUT}}{1/35}\right)^{1/2} \left(\frac{\alpha_N}{0.015 \ {\rm GeV}^3}\right)^{1/2} \left(\frac{A_L}{5}\right)^{1/2} \ 6 \times 10^{15} \ {\rm GeV}^3$$

 $c.f. M_U = (2.5 \pm 2).10^{16} GeV$

GUTs need SUSY

... but where is SUSY?

Standard Constant 5-3 c.m/32 5-2 c.m/32 5-3 c.m/32	Sta	LAS SUSY Se tus: August 2016 Model	earches	s* - 98 ′Jets	Enits T	fearth	ver Limits Mass limit	VT = 7, 8 TeV	ATLAS Prelimina/ √s = 7, 8, 13 Te\ Reference	
Bit J MART 0 3.4 Yes 1.3 <th1.3< th=""> 1.3 <th1.3< th=""> <th1.< td=""><td>Inclusive Searches</td><td>$\begin{array}{l} \textbf{MSUGRACOUSSM} \\ (i), i) \rightarrow q_1^{(2)} \\ (i), i) \rightarrow q_1^{(2)} \\ (i), i \rightarrow q_1^{(2)} \\ (i), i \rightarrow q_1^{(2)} \rightarrow q_1^{(2)} \\ (i), i \rightarrow q_$</td><td>0 σ. μ. (1-2 τ 0 mono-jet 0 3 ε. μ 2 ε. μ. (55) 1-2 τ + 6 - 11 2 τ 7 7 2 ε. μ. (2) 0</td><td>2-10 jeta/3 2-6 jeta 1-3 jeta 2-6 jeta 2-6 jeta 2-6 jeta 4 jeta 0-3 jeta 1-5 3 jeta 2 jeta mono-jet</td><td></td><td>20.3 12.5 13.2 13.3 13.2 13.2 13.2 13.2 2.2 20.3 12.5 20.5</td><td>2 608 GeV 1 608 GeV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1.85 TeV m(j)-m(j) 35 TeV m(j)-m(j) 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 2.8 TeV 1.85 TeV m(j)-s0av 2.8 TeV 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.95 TeV m</td><td>1597.05025 ATLAS.COMP.G816.076 ATLAS.COMP.G816.076 ATLAS.COMP.G816.476 ATLAS.COMP.G816.476 ATLAS.COMP.G816.077 1007.05775 1007.05775 1007.05775 1007.05780 ATLAS.COMP.G816.066 11003.03786 1592.01518</td></th1.<></th1.3<></th1.3<>	Inclusive Searches	$ \begin{array}{l} \textbf{MSUGRACOUSSM} \\ (i), i) \rightarrow q_1^{(2)} \\ (i), i) \rightarrow q_1^{(2)} \\ (i), i \rightarrow q_1^{(2)} \\ (i), i \rightarrow q_1^{(2)} \rightarrow q_1^{(2)} \\ (i), i \rightarrow q_$	0 σ. μ. (1-2 τ 0 mono-jet 0 3 ε. μ 2 ε. μ. (55) 1-2 τ + 6 - 11 2 τ 7 7 2 ε. μ. (2) 0	2-10 jeta/3 2-6 jeta 1-3 jeta 2-6 jeta 2-6 jeta 2-6 jeta 4 jeta 0-3 jeta 1-5 3 jeta 2 jeta mono-jet		20.3 12.5 13.2 13.3 13.2 13.2 13.2 13.2 2.2 20.3 12.5 20.5	2 608 GeV 1 608 GeV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.85 TeV m(j)-m(j) 35 TeV m(j)-m(j) 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 2.8 TeV 1.85 TeV m(j)-s0av 2.8 TeV 1.85 TeV m(j)-s0av 1.85 TeV m(j)-s0av 1.95 TeV m	1597.05025 ATLAS.COMP.G816.076 ATLAS.COMP.G816.076 ATLAS.COMP.G816.476 ATLAS.COMP.G816.476 ATLAS.COMP.G816.077 1007.05775 1007.05775 1007.05775 1007.05780 ATLAS.COMP.G816.066 11003.03786 1592.01518	
$ \frac{h_{0}^{2}}{h_{0}^{2},h_{1}^{2},m_{1}^{2}}{h_{0}^{2},m_{1}^{2}$	R mod.	28.2-403(1 28.2-403(1 28.2-403(1)	0 0-1 e.p 0-1 e.p	3.8 3.8 3.5	Yes Yes	14.8 14.5 20.1	1	1.80 TeV m(2)=0.047 1.80 TeV m(2)=0.047 37 TeV m(2)<300.047	ATLAS-CONF-3016-052 ATLAS-CONF-3116-652 1407-3680	
As A	drect production	$b_1 b_1, b_1 \rightarrow b d_1^0$ $b_1 b_1 - b d_1^0$ $b_1 b_1 - b d_1^0$ $b_1 b_1 b_1 - b d_1^0$	0 2 e, µ (SS) 0 2 e, µ 0 2 e, µ 0 2 e, µ (Z) 3 e, µ (Z) 1 e, µ	2 h 1.5 1-2.0 0-2 jetu/1-2 mono-jet 1.5 1.5 0 jetu + 2 i	Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 4.7/13.3 4.7/13.3 3.2 20.3 13.3 20.3	540 GeV 325-665 GeV 325-665 GeV 300-725 GeV 300-725 GeV 300-850 GeV 300-850 GeV 329-700 GeV 329-700 GeV 329-700 GeV	ແດ້ງິ່ງ-1000.447 ເຫດີວ່າ: 550.047, ເຫດີວ່າ, ແຫດ້ວ່າ: 550.047 ເຫດີວ່າ: 500.47 ເຫດ້ວ່າ: 500.47 ເຫດ້ວ່າ: 550.047 ເຫດ້ວງ: 550.047 ເຫດ້ວງ: 550.047	1996.08772 ATLAS COMP 2816-077 10002106, ATLAS COMP 2816-077 1006.08116, ATLAS COMP 2816-077 1994.0777 1400.5127 ATLAS COMP 2816-080 1996.08018	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	direct	$\begin{array}{l} & b_{1,k}b_{1,k}, t \sim S_1^k \\ & b_{1,k}^* (x_1^k - x_2^k)(\mathcal{F}) \\ & \mathcal{F}_1^* (x_1^k - x_2^k)(\mathcal{F}) \\ & \mathcal{F}_1^* (x_1^k - x_2^k)(\mathcal{F}), \mathcal{F}_2^k (\mathcal{F}) \\ & \mathcal{F}_2^* (x_1^k - \mathcal{F})(\mathcal{F}), \mathcal{F}_2^k (\mathcal{F}) \\ & \mathcal{F}_1^* (x_1^k - \mathcal{F})(\mathcal{F}) \\ & \mathcal{F}_1^* (x_1^k - \mathcal{F}) \\ & \mathcal{F}_1^* (x_1^k - \mathcal{F})(\mathcal{F}) \\ & \mathcal{F}_1^* (x_1^k - \mathcal{F}) \\ &$	2 e.p 2 e.p 2 e.p 2 s e.p 2 3 e.p 2 3 e.p 4 e.p.q 1 e.p + q 2 q	0 0 02/#8 020 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-325 GeV 140-475 GeV 355 GeV 715 GeV 23 425 GeV 635 GeV 900 GeV 900 GeV	າດນີ້ ໂດຍ ປີ ແມ່ນີ້ ເຊິ່ງ ແມ່ນີ້	1 400 5294 1 600 5096 1 407 6350 1 402 7029 1 408 5095, 1 402 7029 9 51 407 110 1 405 5095 1 507 4540 1 507 4540	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	particles	Direct $\hat{k}_1^* \hat{k}_1$ prod., long-lived \hat{k} Direct $\hat{k}_1^* \hat{k}_1$ prod., long-lived \hat{k} Stable, and the second physical second physical Stable p P-hashon Measurable p R-hashon GMSB, splate $k_1^{R_1} \rightarrow k_2^{R_2}$, long-lived \hat{k}_1 (GMSB, $k_1^{R_1} \rightarrow k_2^{R_2}$, long-lived \hat{k}_1 (gmSB), $k_1^{R_2} \rightarrow k_2^{R_2}$, long-lived \hat{k}_1 (GMSB), $k_1^{R_2} \rightarrow k_2^{R_2}$	Disapp. W dEldx th 0 HK dEldx th dEldx th 27 displ. er.lgn/ displ. vts + jo	1 jet 1-5 jørs - - 42 -	Yes Yes Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	278 GeV 665 GeV 853 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	mc21)=00(2)=160 MeVc rx21)=0.2 res mc21=002(3=002)=160 MeVc rx21)=0.2 res mc21=160 GeVc rx=10 res 1.57 TeV 和C21=100 GeVc rx=10 res 16-rage/160 1-rx57(1+0 res, 59558 resdel ア-we17(1+0 res, 59558 resdel ア-we17(1+0 res, 10555 resdel ア-we17(1+0 res, 10555 resdel ア-we17(1+0 res, 10555 resdel ア-we17(1+0 res, 10555 resdel T-we17(1+0 resder T-we17(1+0 resd	1310.3075 1504.0000 1310.8984 1504.08128 1504.04528 1411.5785 1408.5542 1504.05162 1504.05162	
η η <th <t<="" <th="" td=""><td>MPV</td><td>$\begin{array}{l} UFV_{\beta\beta}\!\!=\!$</td><td>αμετιμτ 2 ε.μ (55) μτ 4 ε.μ 3 ε.μ + τ 0 4 2 ε.μ (88) 0 2 ε.μ</td><td>0-3.6 </td><td>Yes Yes Yes ris ris Yes</td><td>3.2 20.3 10.3 20.8 14.6 14.6 14.8 15.4 20.3</td><td>2 450 GeV 1.14 T 1.24 Te 1.24 To 10 GeV 5.25 - 510 GeV 5.24 To TeV</td><td>1.3 TeV J₁₁=0.11, λ₁₀₀₁₀₀₀=0.07 1.4 TeV m(3)=r0(1, ct₂₀+1 m) M m(3)=500W, J₁₀₁=0 (k = 1.1) m(3)=520W, J₁₀₁=0 (k = 1.1) M(3)=520W, J₁₀₁=0 (k = 1.2) M(3)=520W, J₁₀₁=0 (k = 1.2) M(3)=520W, J₁₀₁=0 (k = 1.2) M(3)=520W, J₁₀₁=0</td><td>1997/08079 1404.8580 ATLAS-COMF-2016-878 1805.5086 ATLAS-COMF-2016-657 ATLAS-COMF-2016-657 ATLAS-COMF-2016-647 ATLAS-COMF-2016-647 ATLAS-COMF-2016-6415-6415</td></th>	<td>MPV</td> <td>$\begin{array}{l} UFV_{\beta\beta}\!\!=\!$</td> <td>αμετιμτ 2 ε.μ (55) μτ 4 ε.μ 3 ε.μ + τ 0 4 2 ε.μ (88) 0 2 ε.μ</td> <td>0-3.6 </td> <td>Yes Yes Yes ris ris Yes</td> <td>3.2 20.3 10.3 20.8 14.6 14.6 14.8 15.4 20.3</td> <td>2 450 GeV 1.14 T 1.24 Te 1.24 To 10 GeV 5.25 - 510 GeV 5.24 To TeV</td> <td>1.3 TeV J₁₁=0.11, λ₁₀₀₁₀₀₀=0.07 1.4 TeV m(3)=r0(1, ct₂₀+1 m) M m(3)=500W, J₁₀₁=0 (k = 1.1) m(3)=520W, J₁₀₁=0 (k = 1.1) M(3)=520W, J₁₀₁=0 (k = 1.2) M(3)=520W, J₁₀₁=0 (k = 1.2) M(3)=520W, J₁₀₁=0 (k = 1.2) M(3)=520W, J₁₀₁=0</td> <td>1997/08079 1404.8580 ATLAS-COMF-2016-878 1805.5086 ATLAS-COMF-2016-657 ATLAS-COMF-2016-657 ATLAS-COMF-2016-647 ATLAS-COMF-2016-647 ATLAS-COMF-2016-6415-6415</td>	MPV	$\begin{array}{l} UFV_{\beta\beta}\!\!=\!$	αμετιμτ 2 ε.μ (55) μτ 4 ε.μ 3 ε.μ + τ 0 4 2 ε.μ (88) 0 2 ε.μ	0-3.6 	Yes Yes Yes ris ris Yes	3.2 20.3 10.3 20.8 14.6 14.6 14.8 15.4 20.3	2 450 GeV 1.14 T 1.24 Te 1.24 To 10 GeV 5.25 - 510 GeV 5.24 To TeV	1.3 TeV J ₁₁ =0.11, λ ₁₀₀₁₀₀₀ =0.07 1.4 TeV m(3)=r0(1, ct ₂₀ +1 m) M m(3)=500W, J ₁₀₁ =0 (k = 1.1) m(3)=520W, J ₁₀₁ =0 (k = 1.1) M(3)=520W, J ₁₀₁ =0 (k = 1.2) M(3)=520W, J ₁₀₁ =0 (k = 1.2) M(3)=520W, J ₁₀₁ =0 (k = 1.2) M(3)=520W, J ₁₀₁ =0	1997/08079 1404.8580 ATLAS-COMF-2016-878 1805.5086 ATLAS-COMF-2016-657 ATLAS-COMF-2016-657 ATLAS-COMF-2016-647 ATLAS-COMF-2016-647 ATLAS-COMF-2016-6415-6415

Dun 2 CLICV Saarahas

Searches now extended to more challenging scenarios

- Electroweak production, compressed mass spectra, ...
- · Can expect many more after end of 2016 data taking!
- Mass limits (in simplified model spectra!)
 - pushed to about 1.9 TeV (gluinos) and 900 GeV (top squarks); limits on EW production even for small mass differences

ICH

SUSY GUTs: low energy spectrum

Little hierarchy problem:

$$V^{2} \sim \delta m_{H_{u}}^{2} \simeq -\frac{3y_{t}^{2}}{4\pi^{2}} \left(m_{stop}^{2} + \frac{g_{s}^{2}}{3\pi^{2}} m_{gluino}^{2} \log\left(\frac{\Lambda}{m_{gluino}}\right) \right) \log\left(\frac{\Lambda}{m_{stop}}\right) ?$$

Little hierarchy problem \Rightarrow definite SUSY structure MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$
$$M_{\tilde{g}} > 1TeV \implies \Delta > b \frac{\widetilde{M}_{Z}^{2}}{M_{Z}^{2}} \sim 100$$

 \Rightarrow Correlations between SUSY breaking parameters and/or additional low-scale states

Little hierarchy problem \Rightarrow definite SUSY structure $^{\land}$ MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$
$$M_{\tilde{g}} > 1TeV \implies \Delta > b \frac{\widetilde{M}_{Z}^{2}}{M_{Z}^{2}} \sim 100$$

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

Fine Tuning measure:

$$\Delta(a_i) = \left| \frac{a_i}{M_Z} \frac{\partial M_Z}{\partial a_i} \right|,$$

$$\Delta_{\rm m} = Max_{a_i} \Delta(a_i), \quad \Delta_q = \left(\sum \Delta_{\gamma_i}^2\right)^{1/2}$$

Ellis, Enquist, Nanopoulos, Zwirner Barbieri, Giudice

Fine tuning from a likelihood fit:

1

If v included as a "Nuisance" variable

$$L(\text{data} | \gamma_i) \propto \int d\mathbf{v} \delta(m_Z - m_Z^0) \delta\left(\mathbf{v} \cdot \left(-\frac{m^2}{\lambda}\right)^{1/2}\right) L(\text{data} | \gamma_i; \mathbf{v})$$
$$= \frac{1}{\Delta_q} \delta(n_q(\ln \gamma_i - \ln \gamma_i^S)) L(\text{data} | \gamma_i; \mathbf{v}_0)$$

Fine tuning

Ghilencea, GGR Cabrera, Casas, de Austri

Fine tuning from a likelihood fit:

If v included as a "Nuisance" variable

$$L(\operatorname{data} | \gamma_i) \propto \int d\mathbf{v} \delta(m_Z - m_Z^0) \delta\left(\mathbf{v} \cdot \left(-\frac{m^2}{\lambda}\right)^{1/2}\right) L(\operatorname{data} | \gamma_i; \mathbf{v})$$
$$= \frac{1}{\Delta_q} \delta(n_q (\ln \gamma_i - \ln \gamma_i^S)) L(\operatorname{data} | \gamma_i; \mathbf{v}_0)$$
Fine tuning

Probabilistic interpretation:

$$\chi_{new}^2 = \chi_{old}^2 + 2\ln\Delta_q \qquad \Delta_q \ll 100$$

$$\gamma_{i} = \mu_{0}, m_{0}, m_{1/2}, A_{0}, B_{0}$$

 $v^{2} = -\frac{m_{eff}^{2}}{\lambda_{eff}}$

- $1 \quad h^0$ resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $\tilde{\tau}$ co-annihilation
- 4 t co-annihilation
- 5 A^0 / H^0 resonant annihilation

Within
$$3\sigma$$
 WMAP:
 $\Delta_{Min}^{EW} = 15$, $m_h = 114.7 \pm 2GeV$
 $< 3\sigma$ WMAP:
 $\Delta_{Min}^{EW} = 18$, $m_h = 115.9 \pm 2GeV$

$$\Delta^{\Omega} = \max \left| \frac{\partial \ln \Omega h^2}{\partial \ln q} \right|_{q=m_0, m_{1/2}, A_0, I}$$

$$\Delta_{Min}^{EW+\Omega} = 29, \quad m_h = 117 \pm 2GeV$$

Cassel, Ghilencea, GGR

The CMSSM - after Higgs discovery

Reduced fine tuning (c.f. CMSSM)

• New focus points?

Gauginos: $M_{\tilde{g},\tilde{W},\tilde{B}}$ Non-universal gaugino correlations

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u_{3}}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \approx |M_3|^2$ at M_{SUSY}

Horton, GGR Choi et al...

Reduced fine tuning (c.f. CMSSM)

• New focus points?

Gauginos: $M_{\tilde{g},\tilde{W},\tilde{B}}$ Non-universal gaugino correlations

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

• New degrees of freedom

Horton, GGR Choi et al...

e.g.
$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S$$

Reduced fine tuning: New heavy states - higher dimension operators

$$\delta L = \int d^2 \theta \frac{1}{M_*} (\mu_0 + c_0 S) (H_u H_d)^2, \quad S = m_0 \theta \qquad \text{Dimension 5}$$

$$\delta V = \zeta_1 (|h_u|^2 + |h_d|^2) h_u h_d + \zeta_2 (h_u h_d)^2; \quad \zeta_1 = \frac{\mu_0}{M_*}, \quad \zeta_2 = \frac{c_0 m_0}{M_*}$$
Singlet extensions

$$W = W_{\text{Yukawa}} + \lambda S H_u H_d + \frac{\kappa}{3} S^3 \qquad \text{NMSSM}$$

$$W = W_{\text{Yukawa}} + (\mu + \lambda S) H_u H_d + \frac{\mu s}{2} S^2 + \frac{\kappa}{3} S^3 + \xi S \qquad \text{GNMSSM}$$

$$W = W_{\text{Yukawa}} + (\mu + \lambda S) H_u H_d + \frac{\mu s}{2} S^2 + \frac{\kappa}{3} S^3 + \xi S \qquad \text{GNMSSM}$$

$$U_S >> m_{3/2}: \quad W_{\text{eff}}^{\text{GNMSSM}} = (H_u H_d)^2 / \mu_s + \mu H_u H_d$$

$$\delta V = \frac{\mu}{\mu_s} (|H_u|^2 + |H_d|^2) H_u H_d \qquad (Z_4^R \Rightarrow \mu, \mu_s \text{ naturally small})$$

Fine tuning in the (C)GNMSSM $(\lambda \le 0.7^{\dagger})$

Non-universal gaugino masses

$$\Delta_{Min} = 20$$
, $m_h = 125.6 \pm 3 GeV$

LHC8 SUSY bounds DM relic abundance DM searches

(uniform scan)

GGR, Kaminska, Schmidt-Hoberg

LHC 13 TeV

Reduced fine tuning (c.f. CMSSM)

• New focus points?

Gauginos: $M_{\tilde{g},\tilde{W},\tilde{B}}$ Non-universal gaugino correlations

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

New degrees of freedom

Horton, GGR Choi et al...

e.g.
$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S$$

 $m_0, m_{1/2}, A_0, \tan\beta, \mu, B\mu, \mu'$

$$\mathcal{L}_{NH} = T'_{u,ij} H^*_d \tilde{u}^*_{R,i} \tilde{q}_j + T'_{d,ij} H^*_u \tilde{d}^*_{R,i} \tilde{q}_j + T'_{e,ij} H^*_u \tilde{e}^*_{R,i} \tilde{l}_j + \underline{\mu' \tilde{H}_d \tilde{H}_u} + \text{h.c.}$$

Higgsino mass origin

• Gaugino mediation $\int d^{4}\theta X X^{\dagger} \overline{D}_{\alpha} (\Phi_{1}^{\dagger} e^{V}) \overline{D}^{\alpha} e^{-V} \Phi_{2}^{\dagger}$ $M_{\Psi_{\phi_{1}}\Psi_{\phi_{2}}} \propto \frac{\mu_{\phi}^{2} \langle \phi \rangle^{2} F_{Y} F_{X}}{M^{7}}$

 ϕ link field coupled to hidden sector and visible sector via Higgs portal

Sequestering

Hidden sector running drives Higgs mass to zero leaving Higgsino mass unchanged

Perez, Roy, Schmaltz

New SUSY breaking soft terms

 $m_0, m_{1/2}, A_0, \tan\beta, \mu, B\mu, \mu'$

 $\mathcal{L}_{NH} = T'_{u,ij} H^*_d \tilde{u}^*_{R,i} \tilde{q}_j + T'_{d,ij} H^*_u \tilde{d}^*_{R,i} \tilde{q}_j + T'_{e,ij} H^*_u \tilde{e}^*_{R,i} \tilde{l}_j + \mu' \tilde{H}_d \tilde{H}_u + \text{h.c.}$

LHC 13 TeV

 $\Delta_{CMSSM} \geq 350$

$$\Delta_{CMSSM+\mu'} \ge 20$$

Summary

- SM leaves many questions unanswered
- GUT answers:

- -Multiplet structure
- -Gauge couplings
- -quark -lepton symmertry
- -neutrino masses (see saw)
- -SUSY
- -family symmetry (non-Abelian discrete)
- discrete R- symmetry
- -SUSY (compressed spectra)
- -nucleon decay
- -squark and slepton masses

Further symmetry:

