Charged Lepton Flavor Violation from Low Scale Seesaw Neutrinos

Francesca Scarcella

Instituto de Física Teórica, Universidad Autónoma de Madrid/CSIC

francesca.scarcella@studio.unibo.it

Sep, 2^{nd} 2016

CORFU 2016 Workshop on the Standard Model and Beyond

Based on: V. De Romeri, M.J. Herrero, X. Marcano, F. Scarcella

arXiv: 1607.05257

Francesca Scarcella (IFT, Madrid)

CORFU 2016

Motivation

The Standard Model predicts zero lepton flavor violation

Lepton Flavor Violation = New Physics

Neutral LFV observed in neutrino oscillations!

neutrino oscillations \implies BSM neutrino masses

This NP can induce charged LFV

$$nLFV \xrightarrow{\text{New Neutrino Physics}} cLFV$$

LFV transitions	LFV Present Bounds $(90\% CL)$	Future Sensitivities
$BR(\mu \to e\gamma)$	4.2×10^{-13} (MEG 2016)	4×10^{-14} (MEG-II)
$BR(\tau \to e\gamma)$	3.3×10^{-8} (BABAR 2010)	10^{-9} (BELLE-II)
$BR(\tau \to \mu \gamma)$	4.4×10^{-8} (BABAR 2010)	10^{-9} (BELLE-II)
$BR(\mu \to eee)$	1.0×10^{-12} (SINDRUM 1988)	10^{-16} Mu3E (PSI)
$BR(\tau \to eee)$	2.7×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu \mu \mu)$	2.1×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu \eta)$	2.3×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$CR(\mu - e, Au)$	7.0×10^{-13} (SINDRUM II 2006)	
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II 2004)	10^{-18} PRISM (J-PARC)
$\operatorname{CR}(\mu - e, \operatorname{Al})$		3.1×10^{-15} COMET-I (J-PARC)
		2.6×10^{-17} COMET-II (J-PARC)
		2.5×10^{-17} Mu2E (Fermilab)

Strongest present constraints on LFV - μe sector

Upper bounds on LFV Z and H decays (95% CL):

	LEP	ATLAS	CMS
$BR(Z \to \mu e)$	$1.7 imes 10^{-6}$	$7.5 imes 10^{-7}$ PRD90(2014)072010	
$BR(Z \to \tau e)$	9.8×10^{-6}		
$BR(Z \to \tau \mu)$	$1.2 imes 10^{-5}$	$1.69 imes 10^{-5}$ arXiv:1604.07730	
$BR(H \to \mu e)$	-		$3.6 imes10^{-3}$ CMS-PAS-HIG-14-040
$BR(H \to \tau e)$	-	1.04×10^{-2} arXiv:1604.07730	$0.7 imes 10^{-2}$ CMS-PAS-HIG-14-040
$BR(H \to \tau \mu)$	-	1.43×10^{-2} arXiv:1604.07730	1.51×10^{-2} PLB749(2015)337-362

cLFV signal???:

CMS 2.4 σ excess: BR $(H \to \tau \mu) = 0.84^{+0.39}_{-0.37}\%$ (95%*CL*) PLB749(2015)337-362 ATLAS ~ 1 σ excess: BR $(H \to \tau \mu) = 0.53 \pm 0.51\%$ (95%*CL*) arXiv:1604.07730

Type-I Seesaw Model

Modelling neutrino masses m_{ν} : Add ν_R to the SM

- Dirac mass: $m_D = v Y_{\nu}$
- ν_R is a SM singlet \Rightarrow Majorana mass: M_R (violates Lepton Number $U(1)_L$)

Type-I Seesaw Model: $m_D \ll M_R$

$$\begin{split} \mathcal{L}_{\text{type-I}} &= -\frac{Y_{\nu}^{ij}\overline{L_{i}}\tilde{\phi}\nu_{R_{j}} - M_{R}^{ij}\overline{\nu_{R_{i}}^{c}}\nu_{R_{j}} + h.c. \quad i, j = 1..3\\ \mathcal{L}_{\text{type-I}}^{mass} &= -\frac{1}{2} \begin{pmatrix} \overline{\nu_{L}} & \overline{\nu_{R}^{c}} \end{pmatrix} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{T} & M_{R} \end{pmatrix} \begin{pmatrix} \nu_{L}^{c} \\ \nu_{R} \end{pmatrix} + h.c. \end{split}$$

Type-I Seesaw Model - Continued

Diagonalize the mass matrix \longrightarrow Physical states

$$U_{\nu}^{T} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{T} & M_{R} \end{pmatrix} U_{\nu} = \begin{pmatrix} m^{light} & 0 \\ 0 & M^{heavy} \end{pmatrix} \qquad \qquad \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \end{pmatrix} = U_{\nu}^{*} P_{L} \begin{pmatrix} n \\ N \end{pmatrix}$$

For
$$m_D \ll M_R$$
:
 $m_{\nu}^{light} \sim \frac{m_D^2}{M_R}$ $M_{\nu}^{heavy} \sim M_R$

 $\begin{array}{l} \mbox{Large coupling } Y_{\nu} \sim 1 \Longleftrightarrow \mbox{ heavy } M \sim 10^{14} \mbox{ GeV} \\ \mbox{Low } M \sim 1 \mbox{ TeV} \iff \mbox{small } Y_{\nu} \ll 1 \end{array} \right\} \begin{array}{l} \mbox{Suppressed} \\ \mbox{Pheno} \end{array}$

Use symmetry arguments to lower M_R yet keeping the coupling Y_{ν} large: Approximate Lepton Number consevation: $U(1)_L$ Smallness of neutrino masses \longleftrightarrow small violation of $U(1)_L$

SM extended with 3 pairs of fermion singlets: $\nu_R(L=1)$ & X(L=-1)

 $\begin{array}{c} \mbox{Low heavy masses } M \sim 1 \mbox{ TeV} \\ \mbox{Large coupling } Y_{\nu} \sim 1 \end{array} \right\} \begin{array}{c} \mbox{Enhanced} \\ \mbox{Pheno} \end{array}$

Maximum allowed LFV Z decay rates?

Use μ_X to accommodate low energy neutrino data. Arganda et al., PRD91(2015)1,015001

$$\mu_X = M_R^T m_D^{-1} U_{\rm PMNS}^* m_\nu U_{\rm PMNS}^\dagger m_D^{T^{-1}} M_R$$

it allows to choose Intuitive Input Parameters

 $M_R \longrightarrow$ Masses of the 6 heavy Majorana neutrinos (3 pseudo-Dirac pairs)

 $Y_{\nu} \longrightarrow$ Yukawa interaction between $\nu_L - \nu_R - H$

Geometrical parametrization for Y_{ν}

E. Arganda, M.J. Herrero, XM, C. Weiland, PRD91(2015)1,015001

Assuming $M_{R_{ij}} = M_R \delta_{ij}$ and real Y_{ν} matrix:

$$LFV_{ij} \longleftrightarrow \left(Y_{\nu}Y_{\nu}^{T}\right)_{ij}$$

 Y_{ν} 9 d.o.f \longrightarrow 3 vectors (global strength f):

$$Y_{\nu} \equiv f \left(egin{array}{c} m{n}_{e} \ m{n}_{\mu} \ m{n}_{ au} \end{array}
ight) \left\{ egin{array}{c} 3 ext{ moduli} : |m{n}_{e}|, |m{n}_{\mu}|, |m{n}_{ au}| \ 1 \ \pi_{ au}| \ 3 ext{ relative flavor angles: } heta_{\mu e}, heta_{ au e}, heta_{ au \mu} \ heta_{ au}| \ global ext{ rotation } O(heta_{1}, heta_{2}, heta_{3}), ext{ } OO^{T} = 1 \end{array}
ight.$$

$$\theta_{ij}$$
 \mathbf{n}_{i}

$$Y_{\nu}Y_{\nu}^{T} = f^{2} \begin{pmatrix} |\boldsymbol{n}_{e}|^{2} & \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\mu} & \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\tau} \\ \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\mu} & |\boldsymbol{n}_{\mu}|^{2} & \boldsymbol{n}_{\mu} \cdot \boldsymbol{n}_{\tau} \\ \boldsymbol{n}_{e} \cdot \boldsymbol{n}_{\tau} & \boldsymbol{n}_{\mu} \cdot \boldsymbol{n}_{\tau} & |\boldsymbol{n}_{\tau}|^{2} \end{pmatrix} \quad \begin{array}{c} \text{Fully de} (f, |\boldsymbol{n}_{e}|, \boldsymbol{n}_{e}) \\ \text{Fully de} (f, |\boldsymbol{n}_{e}|, \boldsymbol$$

Fully determined by $(c_{ij} \equiv \cos \theta_{ij})$ $(f, |\mathbf{n}_e|, |\mathbf{n}_{\mu}|, |\mathbf{n}_{\tau}|, c_{\mu e}, c_{\tau e}, c_{\tau \mu})$

Independent of O

Exp. Searches: LFV_{μe} very suppressed \implies LFV_{μe} = 0 \rightarrow $n_e \cdot n_\mu = 0 \leftrightarrow c_{\mu e} = 0$

We choose
$$Y_{\nu} = A \cdot O$$
 with $A = f \begin{pmatrix} |\mathbf{n}_e| & 0 & 0 \\ 0 & |\mathbf{n}_{\mu}| & 0 \\ |\mathbf{n}_{\tau}|c_{\tau e} & |\mathbf{n}_{\tau}|c_{\tau \mu} & |\mathbf{n}_{\tau}|\sqrt{1 - c_{\tau e}^2 - c_{\tau \mu}^2} \end{pmatrix}$

CORFU 2016

Results for LFV radiative decays in the ISS with $LFV_{\mu e}$

E. Arganda, M.J. Herrero, XM, C. Weiland, PRD91(2015)1,015001 V. De Romeri, M.J. Herrero, XM, F. Scarcella, arXiv: 1607.05257

Dominant contributions:

$$-\mathrm{LFV}_{\tau e} \text{ with } \mathrm{LFV}_{\tau e, \mu e}$$
$$-\mathrm{LFV}_{\tau e} \text{ with } \mathrm{LFV}_{\tau \mu, \mu e}$$

ISS scenarios with highly suppressed $LFV_{\mu e}$

We study different classes of scenarios with $LFV_{\mu e}$ in the LFV_{$\tau\mu$} direction (\equiv TM):

Scenario Name	$c_{\tau\mu}$	$ n_e $	$ m{n}_{\mu} $	$ \boldsymbol{n}_{ au} $	Example	
TM-1	$1/\sqrt{2}$	1	1	1	$Y_{\nu} = f \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$	
TM-2	1	1	1	1	$Y_{\nu} \simeq f \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} \right)$	
TM-3	$1/\sqrt{2}$	0.1	1	1	$Y_{\nu} = f \left(\begin{array}{ccc} 0.1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{array} \right)$	
TM-4	1	0.1	1	1	$Y_{ u} \simeq f \left(egin{array}{ccc} 0.1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} ight)$	
TM-5	1	$\sqrt{2}$	1.7	$\sqrt{3}$	$Y_{\nu} = f \begin{pmatrix} 0 & 1 & -1 \\ 0.9 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \equiv Y_{\tau\mu}^{(1)}$	
TM-6	1/3	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{3}$	$Y_{\nu} = f \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix} \equiv Y_{\tau\mu}^{(2)}$	
TM-7	0.1	$\sqrt{2}$	$\sqrt{3}$	1.1	$Y_{\nu} = f \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 0.8 & 0.5 & 0.5 \end{pmatrix} \equiv Y_{\tau\mu}^{(3)}$	

And equivalent ones for the LFV_{τe} direction (\equiv TE) (Replace $\mu \leftrightarrow e$ in all the above)

The flavor of the Heavy Neutrinos

E. Arganda, M.J. Herrero, XM, C. Weiland, PLB752(2016)46-50

- All the above scenario share the property of suppressing $LFV_{\mu e}$
- The flavor of the heavy neutrinos is different in each scenario.
- Some of the neutrinos carry both μ and τ flavors.

LFV $Z \to \tau \mu$ and $Z \to \tau e$ in the ISS with $\bot F V_{\mu e}$

V. De Romeri, M.J. Herrero, XM, F. Scarcella, About to appear

LFV Z decays: a promising window to Low scale Seesaw neutrinos!!

Bounds from LEP: BR $(Z \rightarrow \tau \mu) < 1.2 \times 10^{-5}$, BR $(Z \rightarrow \tau e) < 9.8 \times 10^{-6}$

Present searches by LHC: BR $(Z \to \tau \mu) < 1.69 \times 10^{-5}$ (ATLAS, April'16)

LFV Z decays in the ISS-LFV_{μe}

Formulas from Illana et al. arXiv:hep-ph/0001273

Large rates within present experimental sensitivities[†]

Francesca Scarcella (IFT, Madrid)

$Z \to \tau \mu \text{ vs } \tau \to \mu \mu \mu$

We find **Strong correlation** between $Z \to \tau \mu$ and $\tau \to \mu \mu \mu$

in agreement with Abada et al.JHEP1504(2015)051

We have checked it is due to the dominance of the Z penguin in $\tau \to \mu \mu \mu$

ISS-LFV_{μe}: Bounds on BR($\tau \rightarrow \mu \mu \mu$) suggest BR($Z \rightarrow \tau \mu$)_{max} ~ 10⁻⁷

Francesca Scarcella (IFT, Madrid)

Full study of the ISS-LFV_{μe}: Constraints

We consider the following subset of most constraining observables:

• LFV transitions: formulas from Ilakovac, Pilaftsis NPB437(1995)491

$$\begin{split} &\mathrm{BR}(\tau \to \mu \gamma) < 4.4 \times 10^{-8} \ \mathrm{(BABAR'10)} \\ &\mathrm{BR}(\tau \to \mu \mu \mu) < 2.1 \times 10^{-8} \ \mathrm{(BELLE'10)} \end{split}$$

• Lepton flavor Universality: formulas from Abada et al. JHEP1402(2014)091

$$\Delta r_k^{3\sigma} \equiv \frac{R_K}{R_K^{SM}} - 1 = (4 \pm 12) \times 10^{-3} \text{ (NA62)} \text{ with } R_K \equiv \frac{\Gamma(K^+ \to e^+\nu)}{\Gamma(K^+ \to \mu^+\nu)}$$

• Lepton flavor Conserving observables

Z invisible width: formulas from Abada et al. JHEP1402(2014)091

$$\Gamma(Z \rightarrow {\rm inv.})^{3\sigma} = 499.0 \pm 4.5 ~{\rm MeV}~{\rm (LEP)}$$

EWPO: S, T, U parameters formulas from Akhmedov et al. JHEP1305(2013)081

 $S^{3\sigma} = -0.03 \pm 0.30, \quad T^{3\sigma} = 0.01 \pm 0.12, \quad U^{3\sigma} = 0.05 \pm 0.10 \text{ (PDG'14)}$

• Theoretical constraints:

Perturbativity imposed by constraining heavy neutrino widths: $\Gamma_N/M_N < 1/2$ Agreement with **light neutrino data**: validity of the μ_X parametrization

CORFU 2016

Full study of the ISS-LFV_{μe}: Results

 $BR(Z \to \tau \mu)_{max} \sim 10^{-7}$ allowed by all the constraints for masses $M_R \sim 2-3$ TeV

Full study of the ISS-LFV_{μe}: Other scenarios

Similar results for other scenarios

Conclusions

- The Inverse Seesaw is an appealing Model for explaining light neutrino data.
- Heavy neutrinos from the ISS model can have important implications for charged lepton flavor violation.
- Strong experimental bounds motivate scenarios with suppressed $LFV_{\mu e}$
- Studying the LFV_{$\tau\mu$} sector within the ISS-LFV_{μe} (similar for LFV_{τe}).:
 - LFV Z decays: We found ratios, as large as $BR(Z \to \tau \mu) \sim 10^{-7}$, potentially measurable at Future Linear Colliders and FCCee.

LFV is a promising window to Low scale Seesaw neutrinos

Thank you!

I warmly thank my advisor M.J. Herrero and my colleague X. Marcano for his valuable help in preparing this presentation

Backup slides

Studying the LFV_{$\tau\mu$} sector within the ISS-LFV_{μe} (similar for LFV_{τe}).:

- LFV Z decays: We found ratios, as large as $BR(Z \to \tau \mu) \sim 10^{-7}$, potentially measurable at Future Linear Colliders and FCCee.
- LFV H decays: large ratios for BR $(h \rightarrow \tau \mu)$, specially in the SUSY-ISS with contributions of the order of the CMS excess.
- **Production at colliders:** We predicted detectable number of singular LFV events $\mu^{\pm}\tau^{\mp}jj$ for heavy neutrino masses reachable at the LHC.

LFV Z decays

The lightest neutrino mass m_{ν_1} is assumed as a free input parameter in agreement with the upper limit on the effective electron neutrino mass in β decays from the Mainz [C. Kraus *et al.*, 2005] and Troitsk [V. N. Aseev *et al.*, 2011] experiments,

$$m_{\beta} < 2.05 \text{ eV} \quad \text{at } 95\% \text{ CL} \,.$$
 (1)

The other two light masses are obtained from:

$$m_{\nu_2} = \sqrt{m_{\nu_1}^2 + \Delta m_{21}^2} , \quad m_{\nu_3} = \sqrt{m_{\nu_1}^2 + \Delta m_{31}^2} .$$
 (2)

For simplicity, we set to zero the CP-violating phase of the U_{PMNS} matrix and we have used the results of the global fit [M. C. Gonzalez-Garcia *et al.*, 2012] leading to:

$$\sin^{2} \theta_{12} = 0.306^{+0.012}_{-0.012}, \qquad \Delta m_{21}^{2} = 7.45^{+0.19}_{-0.16} \times 10^{-5} \text{ eV}^{2},
\sin^{2} \theta_{23} = 0.446^{+0.008}_{-0.008}, \qquad \Delta m_{31}^{2} = 2.417^{+0.014}_{-0.014} \times 10^{-3} \text{ eV}^{2}, \qquad (3)
\sin^{2} \theta_{13} = 0.0231^{+0.0019}_{-0.0019},$$

where we have assumed a normal hierarchy.

Examples of ISS neutrino mass spectrum

ISS examples	А	В	С
$M_{R_1}(\text{GeV})$	1.5×10^4	1.5×10^{2}	1.5×10^2
$M_{R_2}(\text{GeV})$	1.5×10^4	1.5×10^3	1.5×10^3
$M_{R_3}(\text{GeV})$	1.5×10^4	1.5×10^{4}	1.5×10^4
$\mu_{X_{1,2,3}}(\text{GeV})$	5×10^{-8}	5×10^{-8}	5×10^{-8}
$m_{\nu_1}(\text{eV})$	0.1	0.1	0.1
$\theta_{1,2,3}(\mathrm{rad})$	0, 0, 0	0, 0, 0	$\pi/4, 0, 0$
$m_{n_1}(eV)$	0.0998	0.0998	0.0998
$m_{n_2}(eV)$	0.1002	0.1002	0.1002
$m_{n_3}(eV)$	0.1112	0.1112	0.1112
$m_{n_4}(\text{GeV})$	15014.99250747	150.1499250500	150.1499250500
$m_{n_5}(\text{GeV})$	15014.99250752	150.1499250999	150.1499250999
$m_{n_6}(\text{GeV})$	15015.04822299	1501.504822277	1501.587676006
$m_{n_7}(\text{GeV})$	15015.04822304	1501.504822327	1501.587676056
$m_{n_8}(\text{GeV})$	15016.70543659	15016.70543659	15015.87685358
$m_{n_9}(\text{GeV})$	15016.70543664	15016.70543664	15015.87685363
$ (Y_{\nu}Y_{\nu}^{\dagger})_{23} $	0.8	8.0	1.4
$ (Y_{\nu}Y_{\nu}^{\dagger})_{12} $	0.2	1.7	0.3
$ (Y_{\nu}Y_{\nu}^{\dagger})_{13} $	0.2	1.8	4.0

Relevant neutrino interactions for LFVHD

Following the notation in [A. Ilakovac and A. Pilaftsis, 1995] and [Arganda *et al.*, 2005], the relevant interactions are given in the mass basis by the following terms of the Lagrangian:

$$\mathcal{L}_{int}^{W^{\pm}} = \frac{-g}{\sqrt{2}} W^{\mu-} \bar{l}_i B_{l_i n_j} \gamma_{\mu} P_L n_j + h.c,$$

$$\mathcal{L}_{int}^{H} = \frac{-g}{2m_W} H \bar{n}_i C_{n_i n_j} \left[m_{n_i} P_L + m_{n_j} P_R \right] n_j,$$

$$\mathcal{L}_{int}^{G^{\pm}} = \frac{-g}{\sqrt{2}m_W} G^{-} \left[\bar{l}_i B_{l_i n_j} (m_{l_i} P_L - m_{n_j} P_R) n_j \right] + h.c,$$
(4)

where the coupling factors $B_{l_i n_j}$ (i = 1, 2, 3, j = 1, ..., 9) and $C_{n_i n_j}$ (i, j = 1, ..., 9) are defined in terms of the U_{ν} matrix such that $U_{\nu}^T M_{\text{ISS}} U_{\nu} = \text{diag}(m_{n_1}, ..., m_{n_9})$ by:

$$B_{l_i n_j} = U_{ij}^{\nu *}, \tag{5}$$

$$C_{n_i n_j} = \sum_{k=1}^{3} U_{ki}^{\nu} U_{kj}^{\nu *} .$$
 (6)

Accommodating light neutrino data: two different cases

<u>Case I:</u> simplest case with diagonal M_R and μ_X matrices

• Accommodate neutrino data using a modified Casas-Ibarra parametrization [Casas and Ibarra, 2001]:

$$m_D^T = V^{\dagger} \sqrt{M^{\text{diag}}} R \sqrt{m_{\nu}^{\text{diag}}} U_{\text{PMNS}}^{\dagger}, \text{ with } M \equiv M_R \mu_X^{-1} M_R^T$$

• Large Yukawa couplings for large M_R masses.

• Input parameters: $M_{R_i}, \mu_{X_i}, m_{\nu}, U_{\text{PMNS}}$ and R.

<u>Case II</u>: More general case with non-diagonal μ_X matrix

- Look for Yukawa matrices which lead to large LFVHD
- Accomodate neutrino data setting

$$\mu_X = M_R^T m_D^{-1} U_{\rm PMNS}^* m_\nu U_{\rm PMNS}^{\dagger} m_D^{T^{-1}} M_R$$

• Input parameters: M_R and Y_{ν} $(m_{\nu}, U_{\text{PMNS}})$

Constraints from EWPO

Active sterile mixing

 $V_{lN} \equiv B_{lN} = U_{lN}^{\nu*}$ Controlled by $vY_{\nu}M_R^{-1}$

Limits at 90% C.L.: del Aguila et al., 2008

$$|V_{eN}|^2 < 3.0 \times 10^{-3}$$

 $|V_{\mu N}|^2 < 3.2 \times 10^{-3}$
 $|V_{\tau N}|^2 < 6.2 \times 10^{-3}$

Define the flavor of the heavy neutrino in terms of their coupling to W and charged leptons:

$$S_{lN_i} = \frac{|B_{lN_i}|^2}{\sum_{l=e,\mu,\tau} |B_{lN_i}|^2}$$

