

Constrained Superfields and Applications

Fotis Farakos

Padova U. & INFN

CORFU CSI 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why constrained superfields?

 $\rightarrow~$ When SUSY is broken it is generically non-linearly realized.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- \rightarrow Constrained superfields give non-linear realizations.
- $\rightarrow~$ Consistency with superspace methods.
- \rightarrow Offer a "hint" to the UV theory.

The goldstino

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

SUSY breaking

We can break SUSY with a chiral superfield

$$X = A + \sqrt{2} \,\theta^{\alpha} G_{\alpha} + \theta^{\alpha} \theta_{\alpha} F.$$

We have a Lagrangian

$$\mathcal{L} = A \partial^2 \bar{A} + i \partial_m \bar{G} \bar{\sigma}^m G - V(A, \bar{A}) + \cdots$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

SUSY broken:

- Massless goldstino: $\delta G_{\alpha} = -f \epsilon_{\alpha} + \cdots$
- $V(A_0, \bar{A}_0) = f^2 > 0.$
- The scalar A is generically massive.

Nilpotent goldstino superfield

Rocek '78, Lindstrom, Rocek '79, Casalbuoni, De Curtis, Dominici, Feruglio, Gatto '89, Komargodski, Seiberg '09

In IR the scalar can be removed by imposing the superspace constraint

$$egin{aligned} X^2 &= 0 & o & A^2 + 2\sqrt{2} heta(AG) + 2\, heta^2(2AF-G^2) = 0 \ & o & X = rac{G^2}{2F} + \sqrt{2}\, heta^lpha G_lpha + heta^lpha heta_lpha F. \end{aligned}$$

- Equivalent to sgoldstino decoupling.
- The simplest model for supersymmetry breaking is

$$\mathcal{L} = \int d^4 \theta X \bar{X} + \left\{ \int d^2 \theta f X + c.c. \right\}$$
$$= -f^2 + i \partial_m \bar{G} \bar{\sigma}^m G + \frac{1}{4f^2} \bar{G}^2 \partial^2 G^2 - \frac{1}{16f^6} G^2 \bar{G}^2 \partial^2 G^2 \partial^2 \bar{G}^2$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

and supersymmetry is non-linearly realized.

N=1 SUGRA and constrained superfields

The same setup works in supergravity with

$$X^{2} = 0,$$

and $K = X\overline{X}$ and $W = fX + W_0$.

► In the G = 0 gauge the component form is

$$e^{-1}\mathcal{L} = -\frac{1}{2}R + \frac{1}{2}\epsilon^{klmn}(\overline{\psi}_k\overline{\sigma}_l\mathcal{D}_m\psi_n - \psi_k\sigma_l\mathcal{D}_m\psi_n) \\ - W_0\,\overline{\psi}_a\overline{\sigma}^{ab}\overline{\psi}_b - \overline{W_0}\,\psi_a\sigma^{ab}\psi_b - |f|^2 + 3|W_0|^2$$

Dudas, Ferrara, Kehagias, Sagnotti '15, Bergshoeff, Freedman, Kallosh, Van Proeyen '15, Bandos, Martucci, Sorokin, Tonin '15

Bousso–Polchinski mechanism in SUGRA with three-form nilpotent chiral superfields. FF, Kehagias, Racco, Riotto '16 Constraints on matter superfields

Removing scalars

Brignole, Feruglio, Zwirner '97, Komargodski, Seiberg '09

We have the matter chiral superfield

$$Y = y + \sqrt{2}\theta\chi^y + \theta^2 F^y$$

We impose

X Y = 0

which means

$$\left(\frac{G^2}{2F}+\sqrt{2}\theta G+\theta^2 F\right)(y+\sqrt{2}\theta\chi^y+\theta^2 F^y)=0.$$

This gives

$$y = \frac{G\chi^{y}}{F} - \frac{G^{2}}{2F^{2}}F^{y}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A Zoo of constraints!

Komargodski, Seiberg '09

Keep only complex scalar

For a chiral superfield \mathcal{H} we impose

 $\overline{X}D_{\alpha}\mathcal{H} = 0 \rightarrow \mathcal{H}| = H + \text{fermions.}$

Keep only real scalar

For a chiral superfield \mathcal{A}

$$XA = X\overline{A} \rightarrow A| = \phi + \text{fermions}.$$

Remove gaugino

• For a chiral superfield $W_{lpha} = -rac{1}{4}\overline{D}^2 D_{lpha} V$

$$X W_{\alpha} = 0.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Can we organize?

Removing a single component

Dall'Agata, Dudas, FF '16

For a generic superfield

$$Q = q + \theta \chi^q + \cdots$$

$$X\overline{X}Q=0.$$

This removes only the lowest component

$$q = rac{G\chi^q}{\sqrt{2}F} + \cdots$$

✓ Use to eliminate more components ($|X|^2 DQ = 0$ for χ^q). ✓ Reproduces all known constraints.

Example

Lets see something complicated

$$\overline{X}\mathcal{A} = \overline{X}\overline{\mathcal{A}}.$$

This gives

$$X\overline{X}(\mathcal{A}-\overline{\mathcal{A}})=0$$
 : Removes real scalar

and

 $X\overline{X}D_{\alpha}\mathcal{A} = 0$: Removes fermion

and

$$X\overline{X}D^2\mathcal{A}=0$$
 : Removes aux. field.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Inflationary models with X and \mathcal{A}

Kahn, Roberts, Thaler '15, Ferrara, Kallosh, Thaler '15, Carrasco, Kallosh, Linde '15, Dall'Agata, FF '15

A simple example is

$$K = X\overline{X} - \frac{1}{4}(\mathcal{A} - \overline{\mathcal{A}})^2$$
, $W = g(\mathcal{A}) + X f(\mathcal{A})$

with $\overline{f(z)} = f(\overline{z})$ and $\overline{g(z)} = g(\overline{z})$.

• In the G = 0 gauge, the full Lagrangian is

$$egin{aligned} e^{-1}\mathcal{L} &= -rac{1}{2}R + \epsilon^{klmn}\overline{\psi}_k\overline{\sigma}_l\mathcal{D}_m\psi_n - g(\phi)\left(\overline{\psi}_a\overline{\sigma}^{ab}\overline{\psi}_b + \psi_a\sigma^{ab}\psi_b
ight) \ &-rac{1}{2}\partial\phi\partial\phi - \left(f(\phi)^2 - 3g(\phi)^2
ight). \end{aligned}$$

 Model building becomes extremely easy, but there is almost no predictive power.

But SUSY is not only N = 1, what happens for N > 1?

Broken N = 2 in low energy

Cribiori, Dall'Agata, FF '16

We need two goldstini

$$\delta \mathbf{G}_{\alpha} = \xi_{\alpha} \mathcal{F} + \dots$$
$$\delta \tilde{\mathbf{G}}_{\alpha} = \tilde{\xi}_{\alpha} \mathcal{F} + \dots$$

and the aux. field \mathcal{F} which gets the vev.

▶ In *N* = 2

$$\begin{split} \mathcal{X} = & \frac{G^2 \tilde{G}^2}{\mathcal{F}^3} + \theta \frac{G \tilde{G}^2}{\mathcal{F}^2} + \tilde{\theta} \frac{\tilde{G} G^2}{\mathcal{F}^2} + \theta^2 \frac{\tilde{G}^2}{\mathcal{F}} + \tilde{\theta}^2 \frac{G^2}{\mathcal{F}} \\ & + \theta \tilde{\theta} \frac{G \tilde{G}}{\mathcal{F}} + \tilde{\theta}^2 \theta G + \theta^2 \tilde{\theta} \tilde{G} + \theta^2 \tilde{\theta}^2 \mathcal{F}. \end{split}$$

The theory is

$$\mathcal{L} = \int d^8 \theta \mathcal{X} \bar{\mathcal{X}} + f \int d^4 \theta \mathcal{X} + c.c.$$

and in component form we find

$$\mathcal{L} = -f^2 + i\partial_m \bar{G}\bar{\sigma}^m G + i\partial_m \bar{\tilde{G}}\bar{\sigma}^m \tilde{G} + \cdots$$

Broken N = 2 as constrained N = 1

• We find (for
$$\bar{D}_{\dot{\alpha}}H_{\dot{\beta}}=0$$
)

$$egin{aligned} X^2 &= 0, \ ar{X}X \, D_eta H_{\dotlpha} &= 0, \ ar{X}X \, D^2 H_{\dotlpha} &= 0. \end{aligned}$$

- From the constraints in N = 1 we easily understand what is the components.
- The theory is

$$\begin{split} \mathcal{L} &= \int d^4\theta \left(X\bar{X} - \left| \partial_m \left(\frac{X\bar{H}^2}{2} \right) \right|^2 + i\partial_m (X\bar{H}^\alpha) \sigma^m_{\alpha\dot{\alpha}} (\bar{X}H^{\dot{\alpha}}) \right) \\ &+ f \left(\int d^2\theta X + c.c. \right). \end{split}$$

On top of the manifest N = 1 this theory has a second supersymmetry non-linearly realized! We also have the structure for generic N. *Cribiori, Dall'Agata, FF* '16

$$\mathcal{X} = \frac{G^{2N}}{\mathcal{F}^{2N-1}} + \dots + \theta_J^{2N-1} G^J + \theta^{2N} \mathcal{F}.$$

- We can now study low energy limits of broken N supersymmetric theories in superspace.
- Coupling to matter and gauge fields and to remove component fields.

(日) (日) (日) (日) (日) (日) (日)

Coupling to supergravity?

Summary - Outlook

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- We have discussed the constrained superfields formalism.
- We studied low energy limits for generic *N*.
- A lot of activity and applications in supergravity cosmology.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Other directions?

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○