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Non-supersymmetric constructions

•   Non-supersymmetric constructions have been extensively studied in the past

•   Renewed interest in the context of String Phenomenology

•  Attempts to construct non-supersymmetric heterotic vacua

with semi-realistic spectra

Two fundamental questions

•   Tachyonic instabilities : either explicit, or spontaneous (Hagedorn, …)

•   Destabilisation of the classical vacuum : one loop tadpoles

I will return to these points later in the talk

  Blaszczyk, Groot-Nibbelink
  Loukas, Ramos-Sanchez
  Abel, Dienes, Mavroudi
  Lukas, Lalak, Svanes
  Ashfaque, Athanasopoulos
  Faraggi, Sonmez, Ruehle
  Kounnas, Partouche
  Angelantonj, Tsulaia, Rizos
  …



(stringy) Scherk-Schwarz mechanism

A way to break supersymmetry

•   Flat gauging of N=4 supergravity

•   Spontaneous breaking of SUSY with exactly tractable worldsheet description   

•    Freely-acting orbifolds

   Scherk, Schwarz 1979 
   Rohm 1984
   Kounnas, Porrati 1988
   Kounnas, Rostand 1990

Assume SUSY is (spontaneously) broken but the vacuum is classically stable

Study one-loop corrections to couplings in the low energy effective action



Scherk Schwarz mechanism

Deformation of vertex operators / fields by symmetry

�(X5 + 2⇡R) = eiQ �(X5)

�(X5)

Kaluza-Klein spectrum of charged states is shifted

�(X5) = eiQX5/2⇡R
X

m2Z
�m eimX5/R

MKK =
|Q|
2⇡R

Q

Choose  Q=F  (spacetime fermion number)

Assigns different boundary conditions (& masses) to states within the same 
supermultiplet : spontaneous breaking of supersymmetry

Breaking scale ~1/R, tied to the size of compact dimensions



Non-supersymmetric Universality

α,	 β,	 γ	 :	 model	 dependent	 constants	 computable	 from	 the	 massless	 spectrum
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Under certain well-defined conditions    Angelantonj, I.F. , Tsulaia ’14, ‘15



Effective potential



What about the potential ?

T, U are moduli at tree level

•   Scherk-Schwarz breaking exhibits no-scale structure

•   The scale of SUSY breaking is not determined at tree level

m3/2 =
|U |p
T2U2

•   Loop corrections to the effective potential may (de)stabilise the no-scale moduli

•   Dynamical determination of SUSY breaking scale

What is the morphology of the one loop effective potential 
in such models ?



What about the potential ?

•   Fixed points of the lattice (T-self dual) correspond to local extrema of the potential

•   Natural scale in this problem : the string scale

SUSY is recovered 
asymptotically

V (T2)

T2

⇠ `2s T2 � `2s

modulus trapped 
around self-dual point

typical form of the 1-loop potential



What about the potential ?

•   Standard Scherk-Schwarz breaking : fermions become massive

•  # bosons > # fermions at the massless level

V = �
Z

F
dµZ(⌧, ⌧̄)

SUSY is broken at the string scale m3/2 ⇠ Ms

No decompactification problem : gauge couplings do not explode

Danger of encountering tachyonic modes ?

g = (�1)Fs.t. �

⇠ (nF � nB)/R
4



What about the potential ?

•   Can we construct solutions with an abundance of massless fermions ?

•   If so, we could expect a local maximum  “spontaneous decompactification”

Opens the possibility for low scale SUSY breaking m3/2 ⇠ 1/
p

T2

Favours large volume : no tachyons

SUSY is recovered 
asymptotically

V (T2)

T2⇠ `2s

T2 � `2s

modulus rolls out of 
the self-dual point

non-perturbative 
effects



What about the potential ?

•   Can we construct solutions with an abundance of massless fermions ?

•   If so, we could expect a local maximum  “spontaneous decompactification”

For SUSY breaking at TeV range, the potential is still too large

SUSY is recovered 
asymptotically

V (T2)

T2⇠ `2s

T2 � `2s

modulus rolls out of 
the self-dual point

non-perturbative 
effects



What about the potential ?

exponentially suppressed vacuum energy
for large volume T2>>1

“super no-scale models”

Abel, Dienes, Mavroudi
     Kounnas, Partouche

Possible way out :                    at the massless levelnB = nF

V
one�loop

⇠ nF � nB
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What about the potential ?

•   Answer:  YES

Question : Is it possible to construct such chiral models ?

BUT

although being necessary for suppressing the value of the cosmological 
constant, the condition for bose-fermi degeneracy is NOT sufficient

I.F. and J. Rizos 2016

it turns out that non level-matched states around self-dual points crucially 
affect the shape of the potential, including its sign !

!



Model Classification

Using the fermionic construction with 9 basis vectors

v1 = 1 = { µ, �1,...,6, y1,...,6, !1,...,6|ȳ1,...,6, !̄1,...,6,  ̄1,...,5, ⌘1,2,3, �̄1,...,8}
v2 = S = { µ, �1,...,6}
v3 = e12 = {y1,2, !1,2|ȳ1,2, !̄1,2}
v4 = e34 = {y3,4, !3,4|ȳ3,4, !̄5,6}
v5 = e56 = {y5,6, !5,6|ȳ3,4, !̄5,6}
v6 = b1 = {�3,4, �5,6, y3,4, y5,6|ȳ3,4, ȳ5,6, ⌘̄1,  ̄1,...5}
v7 = b2 = {�1,2, �5,6, y1,2, y5,6|ȳ1,2, ȳ5,6, ⌘̄2,  ̄1,...5}
v8 = z1 = {�̄1,...,4}
v9 = z2 = {�̄5,...,8} + choice of GGSO coefficients ~ 108  models

•   chirality

•   spontaneous breaking of N=1 SUSY

•   no tachyons (at the fermionic point)

Conditions

I.F. and J. Rizos 2016
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Model Classification

Scan of random sample of 106 models satisfying these conditions : 1135 models

Number of 

models

Net # families

orchid :  total # of models

black :  nF > nB  at the 
fermionic point

I.F. and J. Rizos 2016

white :  nF = nB  at the 
generic point



Example A

Example A : net chirality 12 and nF>nB
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I.F. and J. Rizos 2016



Example A

T 2 ⇥ T 2 ⇥ T 2/(Z2)
6

+ standard embedding : explicitly breaking N=4 down to N=1Z(1)
2 ⇥ Z(2)

2

Z(3)
2 : (�1)Fs.t.+F2 �1 Scherk-Schwarz breaking of N=1 to N=0

Z(4)
2 : (�1)F1 �3 discrete Wilson line

+ a particular choice of discrete torsions

Z(5)
2 : �5

Z(6)
2 : (�1)F1 r = (06, 12; 04, 1

2

2
)

✏(1, 2), ✏(1, 4), ✏(1, 5), ✏(1, 6), ✏(2, 3), ✏(2, 4), ✏(3, 6), ✏(4, 5), ✏(4, 6)

X1,2 X3,4 X5,6

SO(10)⇥ SO(8)2 ⇥U(1)3gauge group

I.F. and J. Rizos 2016

Example A : net chirality 12 and nF>nB



Example A

T (2) = T (3) = 1 + i

T (1) = 1 + iT2

U (1) = U (2) = U (3) =
1 + i

2

blue dots : numerical

red line : asymptotics 

Dominant asymptotics via unfolding
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Counter Example B

Example B : net chirality 8 and nF = nB  at the generic point

I.F. and J. Rizos 2016
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0
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super no-scale model but with abundance of massless 
bosons at the fermionic point !



Counter Example B

T 2 ⇥ T 2 ⇥ T 2/(Z2)
6

+ standard embedding : explicitly breaking N=4 down to N=1Z(1)
2 ⇥ Z(2)

2

Scherk-Schwarz breaking of N=1 to N=0

+ a particular choice of discrete torsions

Z(5)
2 : �5

X1,2 X3,4 X5,6

SO(10)⇥ SO(8)2 ⇥U(1)3gauge group

I.F. and J. Rizos 2016

Z(3)
2 : (�1)Fs.t.+F1+F2 �1

Z(4)
2 : �3

Z(6)
2 : (08; 04, 1

2

2
)

✏(1, 4), ✏(1, 5), ✏(2, 3), ✏(2, 4), ✏(3, 4), ✏(5, 6)

Example B : net chirality 8 and nF = nB  at the generic point



Counter Example B
I.F. and J. Rizos 2016

1 2 3 4
T2

-0.0020

-0.0015

-0.0010

-0.0005

VHT2 L

super no-scale analogue of the model by 
Angelantonj, Cardella, Irges 2006

SUSY is broken at the string scale m3/2 ⇠ Ms

Danger of encountering tachyonic modes ?

Example B : net chirality 8 and nF = nB  at the generic point



Counter Example B
I.F. and J. Rizos 2016

1 2 3 4
T2

-0.0020

-0.0015

-0.0010

-0.0005

VHT2 L

super no-scale analogue of the model by 
Angelantonj, Cardella, Irges 2006

super no-scale condition does not suffice to determine the 
global shape and sign of the potential!

what are the conditions for having the right shape for the potential ?

Example B : net chirality 8 and nF = nB  at the generic point



Small, positive cosmological constant ?

exponentially suppressed vacuum energy
for large volume T2>>1

how do we ensure that the potential has a positive maximum at the fermionic point ?

impose super no-scale condition                   
at the massless level and at the generic point

nB = nF

V
one�loop

⇠ nF � nB
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I.F. and J. Rizos 2016

Naively : one might think about additionally imposing nF > nB at the fermionic point

! this will not work ! (chirality & super no-scale structure)



an Anatomy of the Vacuum Energy
I.F. and J. Rizos 2016

expand the partition function as

Z =
X

n2Z/2
n��1/2

2

4
[n]+2X

m=�[n]�1

Zn,m qmi

3

5 qnr
qr = e�2⇡⌧2

qi = e2⇡i⌧1

⌧ = ⌧1 + i⌧2
complex structure of 
the worldsheet torus

“mass level”
“asymmetry”

model dependent
degeneracies

V = �
Z

F
dµZ(⌧, ⌧̄)

partition

+
F S1 S2

= I1 + I2

level matched only
m=0 also unphysical ones!

intuition from field theory is based on S1 but is S2 negligible at self-dual points?



an Anatomy of the Vacuum Energy
I.F. and J. Rizos 2016

expand the integrals as
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exponentially suppressed with increasing level n
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an Anatomy of the Vacuum Energy
I.F. and J. Rizos 2016

expand the integrals as

V =
X

n

Zn,0 I
1
n,0 +
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3 model i
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now consider non-level matched states

I20,m ⇠ (�1)m+1

✓
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◆2
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q
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4

�
1� 1
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�2i2

unlike field theory : alternating signs !

exponentially suppressed with increasing level n

unphysical states of low “mass” can reverse the sign of the potential !



an Anatomy of the Vacuum Energy
I.F. and J. Rizos 2016

expand the integrals as

V =
X

n

Zn,0 I
1
n,0 +

X

n,m

Zn,m I2n,m

n m 0 ±1 ±2 ±3

�1 N/A 0 N/A N/A

�1

2

N/A 0 N/A N/A

0 �0.500 0 0 N/A

1

2

�0.00755 0 0 N/A

1 �0.000208 0 0 0

3

2

�6.61⇥ 10�6 0 0 0

Table 2: Numerical values of the integral I1n,±m for the first few energy levels.

From this asymptotic form we see that, again, level matched states I2n,0 from region S
2

still produce

a negative contribution, as expected, and that higher mass levels are exponentially suppressed by at

least a factor of e�⇡n
p
3.

The last remaining case to consider is I2n,m containing the contribution of non level-matched

states, m 6= 0, at various non-vanishing mass levels, n 6= 0. Deriving an exact formula for this

integral can be quite tedious due to the presence of e↵ectively two scales in the problem, set by the

integers n and m, controlling the exponential suppression and oscillation, respectively. Although it is

possible to obtain certain exact series representations with fast convergence around various limits for

(n,m), their precise mathematical form is quite complex and we will not display them here explicitly.

Instead, it will be simpler for our arguments to consider an approximate asymptotic formula that

captures the essential behaviour of the integral in the parameter range of interest

I2n,m ⇠ (�1)m+1

2(⇡m)2

✓
1� 1

2m

◆
e�2⇡n

q
1� 1

4(1�
1

2m)
2

h
1� 1

4

�
1� 1

2m

�
2

i
2

. (5.12)

Already this approximate formula, which is valid even for n < 0 as long as m 6= 0, illustrates quite

clearly that that non-negligible positive contributions do arise from non-level matched states with

odd m.

The integrals I1n,m and I2n,m are model independent quantities that play a central role in organising

the various contributions to the one-loop potential. To illustrate these contributions and see how the

various states of models A and B contributed to its shape at the fermionic point, we have tabulated

their explicit numerical values for the first few mass levels in Tables 2 and 3, with precision of 3

significant figures. Entries marked as N/A in these tables are irrelevant to our analysis, since the

corresponding terms in the expansion (5.5) do not occur in the class of models under consideration.

An inspection of Tables 2 and 3, at each mass level, reveals that not only do the non level-matched

states contribute to the one-loop potential with comparable magnitude to the level-matched ones,

but that this contribution might in fact be sizeable and positive, e.g. I2�1,±1

' 12.2. With these

28

n m 0 ±1 ±2 ±3

�1 N/A 12.2 N/A N/A

�1

2

N/A 0.617 N/A N/A

0 �0.0493 0.0315 �0.00989 N/A

1

2

�0.00245 0.00163 �0.000587 N/A

1 �0.000123 0.0000846 �0.0000346 0.0000180

3

2

�6.24⇥ 10�6 4.45⇥ 10�6 �2.02⇥ 10�6 1.11⇥ 10�6

Table 3: Numerical values of the integral I2n,±m for the first few energy levels.

values at our disposal, we are now ready to perform the anatomy of the contributions of the various

physical and unphysical states to the one-loop potential in models A and B. We begin by expanding

the corresponding partition functions according to (5.2),
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(5.14)

Plugging the above expansions together with the numerical values of the integrals I1n,m and I2n,m

into (5.5), we can see how the various states contribute to the determination of the sign of the

e↵ective potential at the fermionic point. The numerical contributions to the (rescaled) potential

2(2⇡)4V
1�loop

for models A and B are presented in Table 4 for the first few energy levels. We would

like to stress that although for simplicity we only explicitly display the contributions up to mass level

n = 3/2, the results remain essentially unaltered as the order increases.

An inspection of Table 4 shows already that the contribution of the necessarily non level-matched,

negative mass levels n = �1 and n = �1/2 is significant for both models. Subsequently, at the

massless level n = 0, model A is dominated by the contribution of the abundance of 312 massless

fermionic states, which gives rise to an enormous contribution ⇠ 172 to the integral. That this

huge number can actually arise is possible precisely because of the very fact that model A is not

29

I1n,m I2n,m



an Anatomy of the Vacuum Energy
I.F. and J. Rizos 2016

expand the integrals as

V =
X

n

Zn,0 I
1
n,0 +

X

n,m

Zn,m I2n,m

n Model A B

�1 24.4 24.4

�1

2

�9.87 �19.7

0 172. 2.11

1

2

�29.6 �17.7

1 3.13 �2.73

3

2

9.71 8.18

Total +170. �5.47

Table 4: Contributions to the rescaled one-loop potential 2(2⇡)4V
1�loop

arranged according to energy

level for models A and B. At each level n, the cumulative contribution of level-matched as well as

non level-matched states is displayed.

constrained by the super no-scale conditions at the generic point in (T, U) moduli space, and the

situation remains largely unchanged as massive levels n > 0 are taken into account.

On the contrary, model B exhibits only a modest contribution ⇠ +2.11 at n = 0, out of which

only ⇠ �4.39 is due to the level-matched massless states. It is very interesting that, up until the

massless level n  0, unphysical state contributions completely dominate over those of physical ones

and, in fact, summing up all contributions up to n = 0 would have given rise to a positive net value

⇠ +6.81 for the one-loop potential. The situation changes drastically as soon as the first few massive

levels n > 0 are considered. Indeed, for n > 0, the most significant contributions are negative and

arise from massive level-matched states, which add up to eventually generate a negative total value

⇠ �5.47 for the (rescaled) one-loop potential.

What this anatomy of the energy budget of models A and B teaches us is that the shape of the

stringy one-loop potential around self-dual points can be quite intricate. Its form may be significantly

a↵ected by both level-matched as well as non-level matched states, including so-called unphysical

tachyons (m 6= 0 and n < 0). As a result of this investigation and in what concerns model building,

we may already conclude that any argument or condition imposed on the string spectrum for purposes

of controlling the form of the one-loop potential around self-dual points, should not be restricted to

the massless physical sector alone. Instead, it should necessarily take into account both the non

level-matched as well as the first few massive states.

Therefore, the requirement of positivity of the potential at the fermionic point translates itself

into constraints for the model dependent coe�cients Zn,m, such that
X

n

Zn,0 I
1

n,0 +
X

n,m

Zn,m I2n,m > 0 , (5.15)

with the model-independent coe�cients I1n,m and I2n,m given in Tables 2 and 3, respectively. It is
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the first few massive levels should be 
taken into account as well !

unphysical tachyons have significant contribution !
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super no-scale model with abundance of massless bosons at the fermionic point !

c(C)[
�i

�j
] =

0

BBBBBBBBBBBB@

1 1 1 1 �1 1 1 1 �1
1 1 1 �1 �1 1 1 1 �1
1 1 �1 1 1 �1 1 �1 1
1 �1 1 �1 �1 1 �1 �1 �1
�1 �1 1 �1 1 1 �1 �1 1
1 �1 �1 1 1 1 1 1 �1
1 �1 1 �1 �1 1 1 1 �1
1 1 �1 �1 �1 1 1 1 �1
�1 �1 1 �1 1 �1 �1 �1 �1

1

CCCCCCCCCCCCA

Z(C) =
2qi
qr

� 16qip
qr

+
�
40 + 64qi + 56q2i

�
+

✓
224 +

6912

qi
+ 768qi � 672q2i

◆
p
qr

+

✓
14336 +

9216

q2i
+

118656

qi
� 10144qi + 3072q2i + 792q3i

◆
qr

+

✓
�203776 +

934400

q2i
+

498224

qi
� 39744qi + 12800q2i � 10128q3i

◆
q3/2r + . . .

naively, worse than Model B !!!



Example C

Example C : net chirality 12 and nF = nB  at the generic point

I.F. and J. Rizos 2016

the unphysical states manage to reverse the sign of the potential
- checked to very high orders !

n Model C

�1 24.4

�1

2

�9.87

0 �20.5

1

2

10.6

1 4.04

3

2

2.73

Total +11.4

Table 7: Contributions to the rescaled one-loop potential, 2(2⇡)4V
1�loop

, arranged according to energy

levels for model C. At each level n, the cumulative contribution of level-matched as well as non

level-matched states is displayed.

unchanged if one keeps increasing the order of truncation to higher masses, and the validity of these

statements has been checked to very high levels.

In order to study the precise form of the one-loop potential, we need to define the model at the

generic point in the perturbative moduli space, by rewriting it in its orbifold representation and then

marginally deform it. As with all models in the class under consideration, the form of the partition

function is always the same and was given in (3.3), with the only model dependence entering the

modular covariant phase �. For model C, it is given by

� =ab+ k`+ ⇢�

+ ag
2

+ bh
2

+ h
2

g
2

+ kG+ `H +HG

+ ⇢G+ �H +HG

+H
1

(b+ �) +G
1

(a+ ⇢)

+H
2

� +G
2

⇢+H
2

G
2

+H
3

(`+ �) +G
3

(k + ⇢)

+H
1

g
2

+G
1

h
2

+H
3

g
2

+G
3

h
2

+H
3

G+G
3

H

+H
3

G
2

+G
3

H
2

.

(6.4)

Similarly to models A and B, also model C shares the precise same generic characteristics discussed

in section 3. In particular, the gravitino mass, gauge group, residual T-duality group and the fact

that non-vanishing contributions to the vacuum energy only arise from h
1

= g
1

= 0, are precisely
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T 2 ⇥ T 2 ⇥ T 2/(Z2)
6

X1,2 X3,4 X5,6

✏(2, 3), ✏(2, 5), ✏(4, 5), ✏(5, 6)

+ a particular choice of discrete torsions

Z(1)
2 : X1,2,5,6 ! �X1,2,5,6

Z(2)
2 : X3,4,5,6 ! �X3,4,5,6

Z(3)
2 : (�1)Fs.t.+F2 �1 , �1 : {X1 ! X1 + ⇡R1}

Z(4)
2 : (�1)F2 �3 , �3 : {X3 ! X3 + ⇡R3}

Z(5)
2 : (�1)F1+F2 �5 , �5 : {X5 ! X5 + ⇡R5}

Z(6)
2 : (�1)F1 r , r : (08; 04, 1

2

2
)
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T20.000
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V!T2"

Figure 4: The one-loop potential as a function of T
2

for Model C, obtained by direct numerical

evaluation of the integral (1.1) without unfolding.

for model B. Unfortunately, the latter model exhibited a minimum at the fermionic point and the

corresponding potential had the form of a puddle, dynamically stabilising the volume T
2

at the

fermionic point and at a huge negative value for the cosmological constant.

In the present case of model C, the situation is drastically di↵erent, as outlined in the beginning

of the section. This is so because the unphysical tachyons, and massive non level-matched states

conspire to overcome the negative contributions caused by the excess of 40 physical massless bosons,

and lead to a positive value of the cosmological constant at the fermionic point. The precise form of

the one-loop potential V
one�loop

as a function of the Scherk-Schwarz volume is plotted in Figure 4, as

obtained by direct numerical integration without unfolding. Perhaps not surprisingly, the potential

has the form of a local minimum at positive values for V
one�loop

. The presence of this metastable

structure can be explained by the fact that, as one deforms away from the fermionic point, the

abundance of 40 extra massless bosons must be eliminated in order to reach the super no-scale

structure at the generic point. Therefore, as the excess bosons acquire a mass, the contribution of

the unphysical tachyons and the non level-matched massive modes responsible for the positivity of

the potential becomes even more dominant.

This appears to be precisely the situation we were aiming for. One could imagine a scenario

in which the theory starts with the torus volume stabilised at the false vacuum T
2

= 1 and then

subsequently decays towards the true vacuum in the regime of large volume and low SUSY breaking
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meta-stable like behaviour in the volume T2

and fixed U2=1/2

what happens around T2=1 ? is the “false vacuum” really stable ?

•   dynamical roll to large volume

•   low SUSY breaking

•   small positive cosmological constant

?
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mass formula for lowest tachyonic states

what happens around T2=1 ? is the “false vacuum” really stable ??

M2
BPS =

1

2

✓
T2 +

1

T2

◆✓
U2 +

1

4U2
�
����U2 �

1

4U2

����

◆
� 1

tachyon free region in T,U parameter space

✓
T2 +

1

T2

◆�1

 U2  1

4

✓
T2 +

1

T2

◆
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?

Figure 5: The one-loop potential for Model C as a function of U
2

, plotted for di↵erent values of the

volume T
2

.

metric string theories, such as the stabilisation of moduli and the degeneracy of vacua, are lifted as

soon as supersymmetry is broken. In particular, quantities of phenomenological interest which re-

main undetermined in a supersymmetric setup, such as the gravitino mass scale, may be dynamically

fixed by radiative corrections to the scalar potential.

One might imagine an idealised scenario in which the rich structure of string radiative corrections

and a deep understanding of contributions to the e↵ective potential could even furnish us with

a dynamical mechanism able to explain the number of non-compact spacetime dimensions of our

low energy world. Although our present conceptual and technical understanding of strings in non-

supersymmetric setups is still very limited compared to supersymmetric ones, it is an interesting and

important problem to analyse the implications of such theories.

In practice, taming radiative corrections in the absence of supersymmetry appears to be a rather

delicate task. On the one hand, for such theories to be viable, they need to be supplemented with a

mechanism that dynamically secures their classical stability against the presence of tachyonic modes.

On the other hand, a non-vanishing value of the vacuum energy already at one loop signals a dilaton

tadpole that necessitates a proper treatment of the back-reaction problem.

In this work, we propose that both issues may be to some extent addressed in one stroke by

constructing super no-scale models which, at least in a wide region of parameter space, are dynami-

cally stable and which naturally select supersymmetry breaking at low scales m
3/2 ⌧ M

Planck

, while
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what happens around T2=1 ? is the “false vacuum” really stable ?
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Figure 6: Numerical reconstruction of the one-loop potential for Model C as a smooth function of T
2

and U
2

within the allowed parameter space defined by eq. 6.10.

maintaining a controllable exponentially suppressed value for the cosmological constant.

To this end, we exploited the equivalence between fermionic and orbifold constructions at special

points in moduli space, in order to scan a random sample of 106 models subject to certain criteria,

such as the presence of chiral matter and an observable SO(10) gauge group factor. Working in the

interplay between the two formulations, it was possible to study the contributions of various states

to the one-loop e↵ective potential and derive a set of conditions (5.15) that guarantee its positivity.

Our central observation is that massive and even non-level matched states play a significant role

in determining the morphology of the e↵ective potential around special self-dual points. This result,

although counter-intuitive from a field theoretic perspective, was central to our analysis and resulted

in the construction of the explicit example ‘Model C’ defined in (6.5) that illustrates the desired

behaviour for the one-loop potential.

Of course, our present analysis is only a first step in this very interesting direction and there are

several open questions that deserve future investigation. On the one hand, the specific construction of

Model C is by no means unique but only a particular solution to our computer-aided scan in a random

40

for T2 >2.20, stabilisation of U2 at its 
fermionic value and the potential is 

dynamically stable



Some open questions

•   Running of couplings : decompactification problem

•   Linked to the presence of N=2 sectors and chirality

•   Could it be that accidental cancellations occur in the beta functions for specific 
models ?

•    Can this picture be coupled to a viable mechanism to stop the roll ?

non-perturbative 
effects

V (T2)

T2⇠ `2s

T2 � `2s ?

Abel 2016



Thank you !


