

"Neutrinos - experimental status and prospects"

Ewa Rondio

National Centre for Nuclear Research

Summer School and Workshop on the Standard Model and Beyond

Corfu, September 5-th, 2016

Plan for the lecture...

Experimental view on neutrinos

- experimental information on number of neutrinos,
- Neutrino sources and measurement techniques
- How and what we measure to get oscillation parameters
- Summary on neutrino oscillation discovery
- New information from present measurements
- What we know and what is missing
- Prospects for better data

..... I will not talk about doule β decay searches, sorry..

Z⁰ width measured contributions from quarks and leptons calculated

total width ~ decay probability (~1/lifetime) partial width ~ branching rate (channel i)

$$Z = 1_{had} \pm 31_{l} \pm 11_{v}$$

 $+2\Gamma + N$

Natural sources of neutrinos

Neutrino sources

How to detect neutrinos - i.e. products of their interactions?

Go underground to reduce background
 Make your detector big

use large volumes of cheap materials

Typical detection techniques:

Radiochemical - counting neutrino interactions (no additional inform.)
 scintillators - record scintillation light
 water (light or heavy) - record Cherenkov light
 liquid argon - record drifting electrons from ionization
 iron slabs as targets and various detectors to record exiting particles, includes emulsion

Inverse β decay (IBD) interaction

Method to observe (anti)neutrinos from discovery to present experiments IBD: anti- $v_e + p \rightarrow e^+ +$ scintillator doped 0.1%) (chemical bond) n-capture (delay) anti-Ve 0.511keV) (reactor) (0.511keV (prompt) (Gd+H+C) T~30µs (H+C) T~220µs note: H=proton

Prompt signal from positron capture Delayed photons from neutron capture

Method used in Kamland, Daya Bay, Reno, Double Chooz

Observed neutrino energies (reactor) convolution of:

- Flux of anti-neutrinos from rector
- Cross section for interaction

Cherenkov radiation

Charge particle moving in the media faster than light in this media emits electromagnetic radiation

analogy to the ultrasonic plane producing sound wave

Sensitive to CC or NC with charge particle production

320

The light cone is produced Energy emitted can be summed up from detected light Direction can be determnied from time signal reaches walls Position wher the emmision starts (vertex) is the interaction pont where charge particle is produced

VFA-ID

© Kamioka Observatory, ICRR, Univ, of Tokyo

© Science@Berkeley lab, 30 Jan. 2006

Particle ID using ring shape & opening angle

simulation

IceCube

http://icecube.wisc.edu/

Experiment on the South Pol

Observes neutrino Interactions in ice

Antares

http://antares.in2p3.fr/

Observes interactions in sea water

Â

© François Montanet

- » Liquid argon time projection chamber (Lar-TPC)
- Bubble chamber like view o the interaction products
- Particel ID by dE/dx
- » Good resolution
- >> Used in Gran Sasso to serch for $V_{\mu} = > V_{\tau}$ (CNGS beam)

ICARUS

ICARUS

Sandwich like detectors: interchanging layers of heavy material and sensitive one (scintillator)

The OPERA detector in construction in the Gran Sasso Underground Laboratory

• T1: the 31 walls of the lead/emulsion target interleaved with planes of plastic scintillator strips tracker of supermodule 1

 M1a & M1b : the two sides of the dipole magnet instrumented with planes of resistive plate chambers of supermodule 1

• HPc1 : the rear module of high precision drift tubes planes of super-module 1; the front plane is not seen and the middle plane will be inserted in the space between M1a and M1b.

HPc1

7 T2, M2a M2b : similarly for super-module 2.

large mass + tracking + energy measurement

possible to magnetize → charge measurement

- now it is well established phenomenon and a lot of efforts are made to determine its parameters
- In future it can be a tool for
 - beyond SM effects
 - CP violation mechanism
 - Understanding matter-antimatter asymmetry

Neutrino oscillations – picture as of today

Sensitivity to oscillations

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(\frac{1.27\Delta m^2 L}{E_{\nu}}\right)$$

Venergy - E and distance L define range of sensitivity

	$E_{\rm v}$ (MeV)	L (m)	Range of Δm^2
Supernovae	<100	>10 ¹⁹	10 ⁻¹⁹ - 10 ⁻²⁰
Solar	<14	1011	10 ⁻¹⁰ ???
Atmospheric	>100	104 -107	10 -3-10-4
Reactor	<10	<106	10-5
Accelerator – SB	>100	10 ³	10-1
Accelerator - LB	>100	<106	10-3

Two mass differences and three neutrino types oscillating
→ full description in 3x3 oscillation matrix,
→ studies in many experiments to get full picture....

information from oscillation data:

 principle of the measurement:
 → Predict how many interactions should be seen in the detector
 → Compare with what is seen
 if not consistent – take oscillation formula and determine parameters

In leading order the analysis can be done for 2X2 cases (solar and atmospheric), first results With better precision mixing part (1-3) becomes important 3 flavour analysis is required

First approach – results leading to dicovery of neutrino oscillations \rightarrow Nobel Prize 2015 (SK and SNO)

Just a reminder, as it was shown many times after Nobel Prize 2015

SNO experiment : measurement sensitive to 3 reactions Including sensitivity to Neutral Currents

Solar Neutrino Puzzle - solution

reason for missing neutrino is their oscillation to other neutrino types, which are not detected in radio-chemical and Cherenkov H_2O experiments

But: ∆m²₁₂~10⁻⁵, not 10⁻¹⁰ and solar and reactor oscillations are described by the same Δm^2

How to get it consistent?

Need to consider matter effects (MSW effects):

propagation in matter neutrinos are not all equal

(as thy are in the vacuum)

Additional term in the potent modifies oscillation probabilities Δm^2 effective is introduce for maximal effect we have condition:

$$\Delta m^{2}_{matter} = \sqrt{(\Delta m^{2}\cos 2\theta - A)^{2} + (\Delta m^{2}\sin 2\theta)^{2}}$$

Knowing electron density we can define m_1 , m_2 mass odrering

Only
$$v_e$$
 has charged current elastic scattering $v_e \longrightarrow e$
 $v_{\mu,\tau}$ have neutral current only
 $v_e(CC + NC): V_e = \pm \sqrt{2}G_F(1 - \frac{1}{2} + 2\sin^2\theta_W) \cdot n_e$
 $v_{\mu,\tau}(NC) : V_e = \pm \sqrt{2}G_F(-\frac{1}{2} + 2\sin^2\theta_W) \cdot n_e$

ial
$$v_e(CC + NC): V_e = \pm \sqrt{2}G_F(1 - \frac{1}{2} + 2\sin^2\theta_W)$$

Looking at fits for solar neutrinos solutions for very low masses inconsistent for different energies common solution same as for Kamland (reactor anti-neutrinos)

Conclusions for 1-2 sector

- ν_μ appearance shown in SNO through NC observation
- Solar neutrinos need matter effects for consistency
- Reactor anti-neutrino give Δm² and mixing consistent with solar neutrinos

•
$$\Delta m_{12}^2 \sim 10^{.5} \text{ eV}^2$$

Mixing not maximal (~30°)

studies of background for proton decay

Compare v_{μ} to v_{e} - take ratios to cancel out errors on absolute neutrino fluxes:

$$R = \frac{(\mu / e)_{data}}{(\mu / e)_{MC}} = 0.638 \pm 0.016 \pm 0.050 \qquad R_{highE} = \frac{(\mu / e)_{data}}{(\mu / e)_{MC}} = 0.658^{+0.030}_{-0.028} \pm 0.078$$

Too few muon neutrinos observed!

Evidence for Oscillation of Atmospheric Neutrinos

What we know more now from new measurements for solar (1-2), atmospheric (2-3) and sub-leading (1-3)neutrino oscillations?

Observation of all expected transitions

appearance $v_{\mu} \rightarrow v_{\tau}$ OPERA 5 v_{τ} CC candidates found, with 0.25 events background exclusion of background-only hypothesis: 5.1 σ **discovery of v_{\tau} appearance**

Sum of momenta of charged part and gammas

v_{τ} events observed in OPERA

Fifth v_{τ} candidate => discovery of v_{τ} appearance

Probability to be explained by background fluctuation $p = 1.1 \times 10^{-7}$

No oscillation hypothesis excluded at 5.1 σ

 $\Delta m_{23}^2 = 3.3 \times 10^{-3} \text{ eV}^2$ with a 90% confidence interval [2.0, 5.0] x 10⁻³ eV² (assuming full mixing)

Phys. Rev. Lett. 115 (2015) 121802

Decay channel	Expected background				expected signal events	Observed
	Charm	Had. Re- interaction	Large µ scattering	Total	$\Delta m^2 = 2.44 \times 10^{-3} eV^2$	events
$\tau \rightarrow 1h$	0.017±0.003	0.022±0.006	-	0.04±0.01	0.52±0.10	3
$\tau \rightarrow 3h$	0.17±0.03	0.003±0.001	-	0.17±0.03	0.73±0.14	1
$ au ightarrow \mu$	0.004±0.001	-	$0.0002{\pm}0.0001$	0.004±0.001	0.61±0.12	1
$\tau \rightarrow e$	0.03±0.01	-	-	0.03±0.01	0.78±0.16	0
Total	0.22±0.04	0.02±0.01	0.0002±0.0001	0.25±0.05	2.64±0.53	5

Observation of last expected transitions

NEUTRINOS AT T2K-SK

appearance

disappearance

Improving oscillation parameters what is a goal, how it is done?

- To get oscillation parameters we need to fit probability of disappearance and/or appearance as a function of L/E
- Input: ratio of observed interactions (of given neutrino flavour – defined by produced charged lepton) to expected number (if no oscillations would be present)

• What needs to be done?

- Improve statistics of interactions observed "after oscillations"
 → done by larger detectors, long time, better selection
- Improve predictions → understand source (Sun, reactor, beam..) and measure "before oscillation" and extrapolate

very good agreement with precise measurements

- \rightarrow We seem to understand our star very well
 - Power production from unknown sources <4% !!!!! This is the way to improve parameters for 1-2 sector

Same sector (1-2) but for anti-neutrinos Kamland

Kamland – exposure of 5780 kton-yr

Obs/exp = 0.631 +/- 0.014 (stat) +/- 0.027 (syst) Corresponding to exclusion of non-oscillation at 10.2σ CL

- Observed events 2611
- Expected events 3564+/- 145
- Bgr 364+/-30 (accidentals 125)

... and ways of measuring θ_{13}

disappearance -> reactor experiments

$$P_{\rm sur} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.267 \Delta m_{31}^2 L/E)$$

eading terms

Energy ~ a few MeV Distance ~ a few km

appearance -> long-baseline experiments with v_μ beam

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27\Delta m_{23}^{2} L/E\right)$$

Second order terms depend on δ and mass hierarchy

Energy ~ a few GeV Distance ~ a few hundred km

Reactor neutrinos probe sector 1-2 or 1-3 depending on the distance

Sector 1-3 reactor data Daya Bay, RENO, Double CHOOZ most precise measurements of θ_{13}

How neutrino experiments turned to high precision phase? Example from T2K

- \rightarrow Artificial dedicated neutrino beams with high intensities
- \rightarrow Precise information about π and K mesons production is required → NA61 at CERN

Proton beam on target \rightarrow Produces π and K

$$\pi^{+} \rightarrow \mu^{+} + \nu_{u}$$

$$\mu^{+} \rightarrow e^{+} \overline{\nu}_{\mu} \nu_{e}$$
$$K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$$

precisely tuned with L and E to oscillation maximum

- Maximal effect
- Also lower background
 (due to smaller number of high energy NC, possibly similar to v_e CC)

Most precise measurement of Δm_{23} , θ_{23}

2.5

I∆m²I / (10⁻³ eV²)

3.0

2.0

What's next?

Differences in neutrino vs antineutrino oscillation probabilities Changes the contribution from matter effects (important for neutrinos travelling through dense matter e.g through Earth) Additional source of degeneracies

Measurement strategies (for LBL):

Looking for appearance

$$P(v_{\mu} \rightarrow v_{e}) \quad vs. \quad P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$$

- The longer the baseline the better (matter effects!)
- Study more than one oscillation maximum to disentangle the effects

An unknown hierarchy usually leads to a reduced ability to observe CP violation

Mass hierarchy and matter effects In the Sun oscillations happen in dense matter \rightarrow MSW effect – matter effect of electron density Resonance enhancement appears at specific energies (It depends on Δm^2 and electron density) \rightarrow for solar v we observe resonance around 10MeV • From that we know that $m_1 < m_2$ position of m₃ is not known Norma Inverted m_3^2 \rightarrow open question – two options Δm_{23}^2 Δm_{31}^2

 m_{1}^{2}

CPV and MH

In long baseline neutrino experiments

 \rightarrow Many contributions, for precisions all need to be considered

Present status in sector 2-3:

Parameter not well known δ_{CP}

27 May 2016 POT total: 1.510×10²¹ v-mode POT: 7.57×10²⁰ (50.14%) v-mode POT: 7.53×10²⁰ (49.86%)

Comparison of neutrino and antineutrino oscillations

 \rightarrow direct sensitivity to CP phase

Combined analysis of long base line Oscillations in appearance and disappearance channels for Neutrinos and anti-neutrinos Give sensitivity to all parameters Including CP violating phase

Expected number of events in appearance channel depends on dCP and changes for v and \overline{v}

	OBS.	EXP. (NH, sin ² O ₂₃ =0.528, NH)					
		δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =+π/2	δ _{CP} =π		
ν _μ	125	127.9	127.6	127.8	128.1		
ve	32	27.0	22.7	18.5	22.7		
$\overline{\nu}_{\mu}$	66	64.4	64.3	64.4	64.6		
ve	4	6.0	6.9	7.7	6.8		

- First time from single experiment 90% CL range for CP violation phase
- Pointing to value corresponding to CP violation (0 and π otside 90% limit)
- More data needed \rightarrow T2K II
- Combined fits for all experiments will come soon (teoretica groups)

Long Baseline Future

Long term ie. after/around 2025

Prospect for measurements after 2025

Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5+3.5 yrs x 40kt @ 1.07 MW)

(Bands represent range of beam configurations)

Dune with 40 ktons optimized beam

In both experiments more goals than oscillations

sensitivity for **Hyper-Kamiokande**

$sin\delta_{CP}=0$ exclusion

Sterile neutrinos were hypothesized in a paper by Pontecorvo in 1957

- May be we need at least one additional neutrino type to explain some anomalous results from experiments?
 - Short baseline experiments (LSND, MiniBoone)
 - Reactor neutrino anomaly (?)

Observed/predicted averaged event ratio: R=0.935±0.024 (2.7 σ)

Hints

for more that 3 neutrinos also from astrophysics

Sterile neutrinos?

Several proposal to search for them

- Short baseline experiment on ~GeV beam with LAr detector
- Very short base line with radioactive sources (even with source inside detector)

Fermilab SBL on NuMi beam: LAr1-ND MicroBoone **ICARAS** – far detector

SOX-C

SOX-B

SOX (Borexino) CeLAND (KamLAND) CL-B 111 50 k CL-A SOX-A

Summary:

 $\theta_{23} = 45.8 \pm 3.2^{\circ}$ $\theta_{12} = 33.46 \pm 0.85^{\circ}$ $\theta_{13} = 8.51 \pm 0.23^{\circ}$ $\Delta m_{21}^{2} = (7.53 \pm 0.18) \cdot 10^{-5} \text{ eV}^{2}$ $|\Delta m_{32}^{2}| = (2.44 \pm 0.06) \cdot 10^{-3} \text{ eV}^{2}$ $\delta_{CP} = \text{ some hints}$

PLEASE CONTINUE TO ENJOY NEUTRINO OSCILLATIONS

